18. Recursion

Recursive Partitioning
Random Mondrian
The Mechanics of Recursion Using n!
Back to MergeSort
What is Recursion?

A function is recursive if it calls itself.

A pattern is recursive if it is defined in terms of itself.

I can tell you what this is in terms of what that is.
Recursive Graphics

We will develop a graphics procedure that draws this:

The procedure will call itself.
Partitioning a Triangle

Given This:
Partitioning a Triangle

Draw This:
Requires Repetition of This...

Given a yellow triangle

Define the inner triangle and the 3 corner triangles

Color the inner triangle and repeat the process on the 3 corner triangles
“Repeat the Process”

Visit every yellow triangle and replace it with

[Diagram of repeated yellow triangles]
Gives Us This...
“Repeat the Process”

Visit every yellow triangle and replace it with
Gives Us This...
“Repeat the Process”

Visit every yellow triangle and replace it with
Gives Us This

Etc.
To Pull This Off
We Will Need Some
Triangle Drawing Tools
def DrawPoly(x,y,color=None,stroke=1):
 """ Draws a polygon whose vertices are specified by float lists x and y. """

x = [-5,-1,4,0,-2]
y = [-3,-4,0,5,4]
DrawPoly(x,y,color=ORANGE)
Drawing a Polygon

(x[0], y[0])

(x[1], y[1])

(x[2], y[2])

(x[3], y[3])

(x[4], y[4])
Drawing the Inner Triangle

- $(x[0], y[0])$
- $(a[0], b[0])$
- $(a[1], b[1])$
- $(x[1], y[1])$
- $(x[2], y[2])$
- $(a[2], b[2])$
a = [(x[0]+x[1])/2, (x[1]+x[2])/2, (x[2]+x[0])/2]
DrawPoly(a,b,color=MAGENTA)

Computing Midpoints
The Notion of Level

A 0-level partition

A 1-level partition

A 2-level partition

A 3-level partition

Notice that a 3-level partition involves a display of the inner triangle and a 2-level partitioning of each corner triangle
def Partition(VertexInformation, Level):
 if Level == 0:
 Draw a yellow triangle
 else:
 Draw inner triangle magenta
 # Partition the 3 corner triangles
 # with the level reduced by one.
 Partition(VertexInformation, Level-1)
 Partition(VertexInformation, Level-1)
 Partition(VertexInformation, Level-1)
def Partition(x, y, Level):
 if Level == 0:
 DrawPoly(x, y, color=RED)
 else:
 a = specify x-values of vertices
 b = specify y-values of vertices
 DrawPoly(a, b, color=MAGENTA)
 u0 = specify x-values of vertices
 v0 = specify y-values of vertices
 Partition(u0, v0, Level-1)
 u1 = specify x-values of vertices
 v1 = specify y-values of vertices
 Partition(u1, v1, Level-1)
 u2 = specify x-values of vertices
 v2 = specify y-values of vertices
 Partition(u2, v2, Level-1)
def Partition(x,y,Level):
 if Level==0:
 DrawPoly(x,y,color=YELLOW)
 else:
 a = specify x-values of vertices
 b = specify y-values of vertices
 DrawPoly(a,b,color=MAGENTA)
 u0 = specify x-values of vertices
 v0 = specify y-values of vertices
 Partition(u0,v0,Level-1)
 u1 = specify x-values of vertices
 v1 = specify y-values of vertices
 Partition(u1,v1,Level-1)
 u2 = specify x-values of vertices
 v2 = specify y-values of vertices
 Partition(u2,v2,Level-1)
A Note on Chopping up a Region into Triangles...
It is Important!

Step One in simulating flow around an airfoil is to generate a mesh and (say) estimate velocity at each mesh point.
Next Up: Random Mondrians

Using Python:
Random Mondrian

Given This:
Random Mondrian

Draw This:
The Subdivide Process Applies to a Rectangle

Given a rectangle, either randomly color it or subdivide it.
Subdivision Starts with a Random Dart Throw
This Defines 4 Smaller Rectangles

Repeat the Process on Each of the Smaller Rectangles
Notion of Level

A 1-level Partitioning

A 2-level Partitioning
def Mondrian(x, y, L, W, level):
 if level == 0:
 c = RandomColor()
 DrawRect(x, y, L, W, color=c)
 else:
 Mondrian(upper left rectangle info, level-1)
 Mondrian(upper right rectangle info, level-1)
 Mondrian(lower left rectangle info, level-1)
 Mondrian(lower right rectangle info, level-1)
Side Note...

We need some new technology to organize the selection random colors.

We need lists whose entries are lists.
Lists with Entries that Are Lists

An Example:

cyan = [0.0, 1.0, 1.0]
magenta = [1.0, 0.0, 1.0]
yellow = [1.0, 1.0, 0.0]
myColors = [cyan, magenta, yellow]
print myColors[1][2]
Lists with Entries that Are Lists

from simpleGraphics import *
from random import randint as randi

def RandomColor():
 """ Returns a randomly selected rgb list."""
 c = [RED, GREEN, BLUE, ORANGE, CYAN]
 i = randi(0, len(c) - 1)
 return c[i]
Next Up

A Non-Graphics Example of Recursion: The Factorial Function
Recursive Evaluation of Factorial

Recall the factorial function:

```python
def F(n):
    x = 1
    for k in range(1,n+1):
        x = x*k
    return x
```

5! = 1x2x3x4x5
Recursive Evaluation of Factorial

Q. How would you compute $6!$ given that you have computed $5! = 120$?

A. $6! = 120 \times 6$
Recursive Evaluation of Factorial

```python
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

How does this work?
Executing $F(3)$

```
m = 3
x = F(m)
print x
```

We are in the calling script

```
m --> 3
x -->
```
The function F is called with argument 3. We open up a call frame.
Executing F(3)

```
executing F(3)

m = 3
x = F(m)
print x
```
Executing $F(3)$

```
We open up a call frame.
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a

m = 3
x = F(m)
print x
```
Executing $F(3)$

$m = 3$
$x = F(m)$
print x

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

We encounter a function call. F is called with argument 1.
We open up a call frame.
Executing $F(3)$

$m = 3$
$x = F(m)$
print x

def $F(n)$:
 if $n\leq 1$:
 return 1
 else:
 a = $F(n-1)$
 return $n*a$

def $F(n)$:
 if $n\leq 1$:
 return 1
 else:
 a = $F(n-1)$
 return $n*a$

def $F(n)$:
 if $n\leq 1$:
 return 1
 else:
 a = $F(n-1)$
 return $n*a$

The value of 1 is “assigned” to return
Executing F(3)

\[
m = 3 \\
x = F(m) \\
\text{print } x
\]

\[
def F(n): \\
\quad \text{if } n \leq 1: \\
\qquad \text{return } 1 \\
\quad \text{else:} \\
\qquad a = F(n-1) \\
\qquad \text{return } n \cdot a
\]

The value is sent back to the caller.
m = 3
x = F(m)
print x

def F(n):
 if n<=1:
 return 1
 else:
 a = F(n-1)
 return n*a

m --> 3
x --> 3
a --> 3
return 3

n --> 3
a --> 2
return 2

n --> 2
a --> 1
return 1

That function call is over
Executing $F(3)$

$m = 3$

$x = F(m)$

print x

def $F(n)$:
 if $n \leq 1$:
 return 1
 else:
 $a = F(n-1)$
 return $n \times a$

def $F(n)$:
 if $n \leq 1$:
 return 1
 else:
 $a = F(n-1)$
 return $n \times a$

$m \rightarrow 3$

$x \rightarrow$

$n \rightarrow 3$

$a \rightarrow$

return

$n \rightarrow 2$

$a \rightarrow 1$

return

Control now passes to this “edition” of F
Executing F(3)

Control passes to this “edition” of F. The value 2 is “assigned” to return.
Executing F(3)

```
m = 3
x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

The value is returned to the caller.
Executing F(3)

```
m = 3
x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

```
m --> 3
x -->
```

```
n --> 3
a --> 2
return
```

```
n --> 2
a --> 1
return 2
```

The function call is over
Executing F(3)

```
m = 3
x = F(m)
print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

Control now passes to this “edition” of F
Executing F(3)

```python
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

The value 6 is “assigned” to return
Executing $F(3)$

```
m = 3
x = F(m)
print x
```

```python
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

The value is returned to the caller.
Executing F(3)

```
m = 3
x = F(m)
p
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

This function call is over.
Executing F(3)

\[
m = 3 \\
x = F(m) \\
\text{print } x
\]

Control passes to the script that asked for F(3)
Executing F(3)

\[m = 3 \]
\[x = F(m) \]
\[\text{print } x \]

Output: 6

All Done!
Back To Merge Sort
def MergeSort(a):
 n = length(a)
 if n==1:
 return a
 else:
 m = n/2
 u0 = list(a[:m])
 u1 = list(a[m:]):
 y0 = MergeSort(u0)
 y1 = MergeSort(u1)
 return Merge(y0,y1)

Recursive Merge Sort
A function can call itself!
A Sorted List is produced at each "::" Let's look at the order in which lists are sorted.
A Sorted List is produced at each “:”. Let’s look at the order in which lists are sorted.
A Schematic

A Sorted List is produced at each “:” Let’s look at the order in which
A Schematic

A Sorted List is produced at each “;” Let’s look at the order in which
A Sorted List is produced at each “:”. Let’s look at the order in which
A Sorted List is produced at each “::” Let’s look at the order in which
A Sorted List is produced at each “;” Let’s look at the order in which
A Sorted List is produced at each “:". Let’s look at the order in which lists are sorted.
A Sorted List is produced at each “:” Let’s look at the order in which
A Sorted List is produced at each "::". Let's look at the order in which lists are sorted.
A Sorted List is produced at each “:” Let’s look at the order in which lists are sorted.
A Sorted List is produced at each “:” Let’s look at the order in which lists are sorted.
A Schematic

A Sorted List is produced at each “:” Let’s look at the order in which lists are sorted.
A Sorted List is produced at each “:” Let’s look at the order in which lists are sorted.
A Sorted List is produced at each “:” Let’s look at the order in which lists are sorted.
A Schematic

All Done!
Some Conclusions

Recursion is sometimes the simplest way to organize a computation.

It would be next to impossible to do the triangle partition problem any other way.

On the other hand, factorial computation is easier via for-loop iteration.
Some Conclusions

The function calls required by a recursive solution can be a significant overhead.
Some Conclusions

Infinite recursion (like infinite loops) can happen so careful reasoning is required.

Will we reach the “base case“?

Graphics examples: We will reach Level==0
Factorial: We will reach n==1
MergeSort: We will reach len(a) ==1