Recursion

- **Recursive Definition:**
 A definition that is defined in terms of itself

- **Recursive Function:**
 A function that calls itself (directly or indirectly)

- **Recursion:**
 If you get the point, stop; otherwise, see Recursion

- **Infinite Recursion:**
 See Infinite Recursion

A Mathematical Example: Factorial

- Non-recursive definition:
 \[n! = n \times (n-1) \times \ldots \times 2 \times 1 \]

- Recursive definition:
 \[n! = n \times (n-1)! \quad \text{for } n \geq 0 \]

 Recursive case

 Base case

 What happens if there is no base case?

Example: Fibonacci Sequence

- Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
 \[a_0, a_1, a_2, a_3, a_4, a_5, a_6 \]
 * Get the next number by adding previous two
 * What is \(a_n \)?

- Recursive definition:
 \[a_n = a_{n-1} + a_{n-2} \quad \text{Recursive Case} \]
 \[a_0 = 1 \quad \text{Base Case} \]
 \[a_1 = 1 \quad \text{(another) Base Case} \]

 Why did we need two base cases this time?

Fibonacci as a Recursive Function

- Function that calls itself
 * Each call is new frame
 * Frames require memory
 * \(\infty \) calls = \(\infty \) memory

Fibonacci: # of Frames vs. # of Calls

- Fibonacci is very inefficient.
 * \(\text{fib}(n) \) has a stack that is always \(\leq n \)
 * But \(\text{fib}(n) \) makes a lot of redundant calls

String: Two Recursive Examples

- `length(s)`
 Returns: # characters in `s`
 * If `s` is empty
 \[\text{return 0} \]
 * Else
 \[\text{return 1 + length(s[1:])} \]

- `num_es(s)`
 Returns: # of `'e'`s in `s`
 * If `s` is empty
 \[\text{return 0} \]
 * Else
 \[\text{return 1 + num_es(s[1:])} \]

Imagine `len(s)` does not exist
How to Think About Recursive Functions

1. Have a precise function specification.
2. Base case(s):
 - When the parameter values are as small as possible
 - When the answer is determined with little calculation.
3. Recursive case(s):
 - Recursive calls are used.
 - Verify recursive cases with the specification
4. Termination:
 - Arguments of calls must somehow get "smaller"
 - Each recursive call must get closer to a base case

Understanding the String Example

```
def num_es(s):
    """Returns: # of 'e's in s""
    # {s is empty}
    if s == '':
        return 0
    # { s at least one char }
    return (1 if s[0] == 'e' else 0) + num_es(s[1:])
```

• Break problem into parts
 - number of e's in s = number of e's in s[0] + number of e's in s[1:]
• Solve small part directly
 - number of e's in s = (1 if s[0] = 'e' else 0) + number of e's in s[1:]

Exercise: Remove Blanks from a String

```
def deblank(s):
    """Returns: s but with its blanks removed""
    if s == '':
        return s
    if s[0] is a blank:
        return s[1:] with blanks removed
    return (s[0] with blanks removed) + deblank(s[1:]
```

• Sometimes easier to break up the recursive case
 - Particularly on small part
• Write recursive case as a sequence of if-statements
• Write code in pseudocode
 - Mixture of English and code
 - Similar to top-down design
• Stuff in red looks like the function specification!
 - But on a smaller string
 - Replace with deblank(s[1:])