SOLUTIONS & Grading Guide
Problem 1 [10 points] General Concepts
Answer the following questions. Be concise and clear.

1a [1 point] Who is the course administrator for this course? Hint: Not DIS. Not Schwartz. And certainly not Ira.
Kelly Patwell

1b [1 point] What is the fundamental data type in MATLAB? Hint: Begins with letter “a” and isn’t MATRIX.
array

1c [2 points] What is a control structure? Give one brief example in MATLAB.

(1) statement (or group of statements) that alters the flow of execution
(1) while, for, or example of using the structures

1d [2 points] When is it appropriate to number/label one or more steps in an algorithm?

(2) when the step(s) must be referred to by another step

1e [2 points] Distinguish between the tokens and statements of a programming language.

(1) tokens: words in language
(1) statements: instructions composed of those words (need to say “action” or “instruction”)

1f [2 points] Distinguish between the syntax and semantics of a programming language.

(1) syntax: grammar, structure, spelling of language elements
(1) semantics: meaning of the language elements
Problem 2 [10 points] MATLAB Short-Answer

Fill in the boxes for the following MATLAB sessions. Consider each problem as if it were a fresh MATLAB session.

2a [1 point]

```matlab
>> mod(2.1723, 5.231)
ans =

  2.1723
```

2b [1 point]

```matlab
>> x = 1; y = x; x = 2; y
ans =

  1
```

2c [2 points]

```matlab
>> ~xor(1 && (0 | 1), ~(xor(1, 0)))
ans =

  0
```

2d [2 points]

```matlab
>> sqrt(4) || input('Enter value: ')
ans =

  1
```

2e [4 points]

```matlab
>> x = 0; for ii=-3:-1, for jj=ii:-ii:2, x = x+ii+jj; end; end; x + jj
ans =

  -15
```
Problem 3 [25 points] Selection, Repetition (for-loops)

Problem: Write an M-File script that determines how random MATLAB’s `rand` function really is. To do so, the program conducts a user-input number of tests in which MATLAB generates bits. Use `readInt` for the input. Refer to the second page of this exam for a reminder of the code. Your program will report the amounts of each bit generated in terms of percents and the success or failure of the study. If the difference in amounts is over 5%, rand failed expectations. For full credit, do not use arrays (except for loop indices, scalars, and output strings) for your solution.

Example session:
Enter number of tests between 1 and 7000 (inclusive): 100
Testing rand with 100 tests.
0s: 51%
1s: 49%
Result: success!

tests = readInt(1,7000,’Number of tests: ’);
MINDIFF = 5; % difference between 0s and 1s
count0 = 0; % 0 bit counted so far
count1 = 0; % 1 bit counted so far

% generate 1:tests number of bits and count each:
for t=1:tests
 bit = floor(rand*2); % OK if used ROUND, but should be avoided (training for Java)
 if bit % bit == 1
 count1 = count1 + 1;
 else % bit == 0
 count0 = count0 + 1;
 end
end

% report number of bits and whether or not they are within MINDIFF:
disp(’0s: ‘,num2str(100*count0/tests),’%’)
disp(’1s: ‘,num2str(100*count1/tests),’%’)
if (100/tests)*abs(count0-count1) <= MINDIFF
 disp(’Result: success!’);
else
 disp(’Result: failure!’);
end

1: readInt syntax
3: t=1:tests
4: finding random bit
6: choose correct count to increments
3: disp correct
3: results displace
1: style
1: abs
3: syntax (for, if, ”0s 1s”, == vs =, fprintf vs disp)
4a [15 points] Write an algorithm for secondmax. We are looking for correctness, pseudocode, generalization (use of variables when possible), and style (clarity, indentation, choice of wording).

```
initialize variables
    current first <-- -1
    current second <-- -1
    current count <-- 0
get first input for grade
if grade is valid (in bounds)
    increment count of grades
    if grade bigger than current first, swap:
        second <-- first
        first <-- current grade
    else if grade bigger than current second and not first
        second <-- current grade
    get next grade
repeat
report results:
    if no grades (count is zero), report no grades
    else if only one grade (count is one), report one grade
    else if second unchanged from initial value and count > 1
        report only constant grades entered
    else report first and second
```
4b [40 points] Selection, Repetition (while-loops)

Fill in the blanks and box in the comments and code, below, to complete the program. For full credit, use a while loop, no arrays (except for scalars and output strings), and only the variables we have supplied.

```
LOW = 0 ; % lowest valid grade
HIGH = 100 ; % highest valid grade
STOP = -1 ; % stopping value
first = STOP ; % highest max grade so far
second = STOP ; % second highest max grade so far
grade = readInt(STOP,HIGH,'Enter a grade: '); % initial grade
count = 0; % number of legal grades entered so far

disp('Welcome to SECONDMAX!');
% process grades until user enters STOP (grade within bounds)
while grade <= HIGH && grade >= LOW % or use STOP

    count = count + 1; % entered grade was legal
    if grade > first
        second = first;
        first = grade;
    elseif grade > second & grade ~= first
        second = grade;
    end
    grade = readInt(STOP,HIGH,'Enter a grade: ');
end

% report if no grades, constant grades, or first/second:
if count == 0
    disp('No grades entered!');
elseif count == 1;
    disp('Only one valid grade was entered.');
elseif second == STOP & count > 1
    disp('Only constant grades were entered.');
else
    disp(['Maximum: ',num2str(first)]);
    disp(['Next Maximum: ',num2str(second)]);
end
```

Grading:

2: comments
1: each "small" blank
3: input grade blank
1: used WHILE
3: WHILE condition (LOW/HIGH or STOP)
3: accounted for # of entered grades
5: updated FIRST
5: updated SECOND
2: gets next grade

2: no grades report
2: 1 grade report
4: constant grade report
2: reports first, second
1: used readInt
1: used assigned variables
1: used constants
1: meaningful variable names
-5 for unnecessary/extra code