1-Dimensional Array: Vector

An array is a *named* collection of data values organized into rows and/or columns. A 1-d array is a row or a column, also known as a *vector*. An *index* is a positive integer that identifies the position of a value in the vector. MATLAB array index starts at 1, not zero. To access a value in an array, use parentheses to enclose the index value. For example, \(x(2) \) is the value in the 2nd cell of vector \(x \). MATLAB distinguishes between *row* and *column* vectors. Use *square brackets* to delimit arrays.

Example 1

Write a program fragment that calculates the *cumulative sums* of a given vector \(v \). The cumulative sums should be stored in a vector of the same length as \(v \). E.g., the cumulative sums for the sequence 1,3,5,0 is 1,4,9,9. Do not use MATLAB predefined functions other than \texttt{length}.

Example 2

Write a function \texttt{evalPoly} to evaluate an \(n \)th order polynomial of \(x \):

\[
a_0 + a_1x + a_2x^2 + \cdots + a_nx^n
\]

The input parameters are \texttt{coef} and \(x \) where \texttt{coef} has length \(n + 1 \) and contains the coefficients of the polynomial and \(x \) is the value at which to evaluate the polynomial. Return the evaluated value. Note that \texttt{coef(1)} is the coefficient for the term \(x^0 \). Do not use MATLAB predefined functions other than \texttt{length}.

\begin{verbatim}
function val = evalPoly(coef,x)
% Evaluate polynomial of x given coefficients stored in coef.
% Return evaluated value val.
end
\end{verbatim}
A random walk with graphics

Write a function `randomWalk` that performs \(n \) steps of a “random walk” starting from position \((x_0, y_0)\) and draws the path. In a random walk, possible moves are left, right, up, or down (in a Cartesian plane).

```matlab
function randomWalk(n,x0,y0)
% Perform n steps of random walk starting from position (x0,y0)
% possible movements: ( deltaX(i), deltaY(i) )

deltaX=

deltaY=

x= [x0 zeros(1,n)]; % trajectory in x direction
y= [y0 zeros(1,n)]; % trajectory in y direction

% Perform walk, each step is based on a random integer
for k = 2:n+1
    % get a random integer in (1..4)
    r=

    % take the step
    x(k)=

    y(k)=
end

% Show the walk
plot(x,y,x(1),y(1),'r*',x(end),y(end),'ro')
axis('equal')
title([num2str(n) ' steps of random walk from * to o'])
```

Plotting

It is very easy to make plots using MATLAB. An x-y plot can be generated using the built-in function `plot`. The command

```
plot(a,b,'-', c,d,'*')
```

will generate a plot with two graphs, one showing the data contained in vectors `a` (in x-direction) and `b` (in y-direction) as a line and the other showing the data in vectors `c` and `d` as asterisks. Use the `help` facility in MATLAB to learn more about `plot` and the many formatting options. If you omit the formatting option (`'-'` and `'*'` above), the default on most system is to show the data as a line.