Topics: Review of OOP concepts, parameter passing, one-dimensional array

Reading (JV): Sec 6.1, “Selection Sort” in Sec 6.3

OOP ideas

- An object has variables (characteristics) and methods (behaviors). These are instance variables and methods.
- A class definition is the “blue print” or “plan” for making objects. Characteristics and behaviors that don’t logically belong to each object but relates to the entire collection of objects are class variables and methods. Keyword: static
- An object is an instance of a class
 ⇒ the class ≠ the object
 ⇒ defining a class ≠ creating the object
- Use keyword new to create an object
- An object is referenced, not stored in a variable
- Methods perform action. An instance method executes from (on) a particular instance.
- Method headers are “contracts” between the programmer and the user. Knowing the method header allows the user to use the method without knowing how the method actually works.
- Encapsulation:
 o Protect data
 o Hide details from clients
 o Keyword: private

Why doesn’t this swap work?

/* Try to swap two values */
public class BadSwap {
 public static void main(String[] args){
 int x = Keyboard.readInt(); int y = Keyboard.readInt();
 swap(x,y);
 }
 public static void swap(int x, int y) {
 int tmp;
 tmp = x;
 x = y;
 y = tmp;
 }
} //class BadSwap

Arrays

- Arrays are objects. An array is an ordered list of values (or objects) of one type
- The entire array has one name (identifier)
- Each element in the array has an integer index (begins at 0)
- An array of size \(N \) is indexed from 0 to \(N-1 \)

Array declaration and construction

- Declaration syntax: \texttt{type[]} \texttt{identifier};
 Examples:
 \begin{verbatim}
 int[] counts;
double[] price;
String[] names;
Room[] caves; // assuming a Room class has been defined
 \end{verbatim}
- Instantiation syntax: \texttt{new type[size]}
 \texttt{size} is an integer
 Example:
 \texttt{new int[4]}
- Declaration and instantiation
 \texttt{int limit = 4;}
 \texttt{double[]} price; // declaration
 \texttt{price = new double[limit];} // instantiation and assignment

\section*{Index operator \texttt{[]}}

The expression \texttt{identifier[integer_expression]} accesses an element in the array referred to by \texttt{identifier}

Examples:
\begin{verbatim}
int[] freq = new int[101]; // declaration & instantiation
freq[9+70] = 17; // set freq[79] to 1 (freq[79] is the 80th element in freq)
int grade = 79;
freq[grade] = freq[grade] + 1;
freq[grade]++; // set freq[79] to 1
\end{verbatim}

In the example above, the expression \texttt{freq[2]} represents an integer and can be used anywhere an \texttt{int} variable can be used.

The size of an array is held in the constant \texttt{length}. \texttt{length} is automatically defined when an array is created and cannot be changed. In the above example, the expression \texttt{freq.length} gives the size of the array \texttt{freq}.

\section*{Pattern for processing an array}

// assume an array has been created and is referred to by variable arr
\begin{verbatim}
for (i=0; i<arr.length; i++) {
 // perform some process (on arr[i])
}
\end{verbatim}

\section*{Sorting}

- Arrange elements in a list by some specified order
- Sort “in-place” means sort without using extra memory space for holding another copy of the array
- There are many sorting algorithms: \texttt{selection sort}, \texttt{insertion sort}, \texttt{bubble sort}, etc.

\section*{Template for selection sort (ascending order)}

// loop from first to second last element
\begin{verbatim}
 // find index of minimum value
\end{verbatim}

// swap ith element with minimum value