Topics: Iteration using while, intro to 1-dimensional array

Reading (ML): Sec 4.1, revisit Sec 2.1-2.4, 2.8 for discussion on 1-d array (exclude matrix and matrix operations)

Iteration

Important features:

- Task can be accomplished if some step is repeated a number of times
- Must be able to quantify success ⇒
- Must have a starting point
- Must keep track of progress ⇒

Syntax of the while Loop

```
while expression
  statements to execute if
  expression evaluates to true
end
```

Example 1: Average

Write a program that prompts the user for 10 numbers and then print the average. Use only scalar variables.

Pattern for doing something n times

```
i = 1;
while i<=n
  % do something
  % ...
  i = i + 1;
end
```

% Average 10 numbers from user input

```
n = 10;  % number of data values
total = 0;  % current sum (initialized to zero)
i = 1;  % initialize counter
while (i<=n)
  % read and process input value
  num = input('Enter a number: ');
  total = total + num;
  % update
  i = i + 1;
end
ave = total/n  % average of n numbers
```
Example 2: Running average

Can you modify the program in Example 1 to print the running averages? A running average is the average of all previously entered numbers. The user enters 10 numbers in total. Again use only scalar variables.

```matlab
% Running average of 10 numbers from user input
n = 10; % number of data values
total = 0; % current sum (initialized to zero)
i = 1; % initialize counter
while (i<=n)
    % process input
    num = input('Enter a number: ');
    total = total + num;
    runningAve = total/i; % running average
    disp(['Running average is ' num2str(runningAve)])
    % update
    i = i + 1;
end
```

Example 3: Indefinite iteration

What if the total number of entries is not known in advance? Write another program for calculating running averages. The user enters -9999 to indicate the end of data entry.

Pattern for doing something an indefinite number of times

```matlab
% initialization
% ...
while not stopping signal
    % do something
    % ...
    % update status (variables)
    % ...
end
```

```matlab
% Running averages numbers from user input
% User terminates input by entering -9999

endSignal = -9999; % Ending signal from user
total = 0; % current sum (initialized to zero)
i = 0; % number of data entries so far
num = input('Enter a number (-9999 to quit): ');
while (num ~= endSignal)
    % process data
    i = i + 1;
    total = total + num;
    disp(['Current average is ' num2str(total/i)])
    % update
    num = input('Enter a number (-9999 to quit): ');
end
```
Brute-force algorithm to find minimum function value

- Start at $x = L$
- Set a current minimum function value—"minimum found so far"
- Until the end point $(x = R)$ is reached, repeat the following:
 - Calculate $f(x)$
 - Compare $f(x)$ with the minimum found so far and update if necessary
 - Increment value of x

1-Dimensional Array: Vector

An array is a named collection of data values organized into rows and/or columns. A 1-d array is a row or a column, also known as a vector. An index identifies the position of a value in the vector.

Suppose vector v is a collection of 4 values, i.e., vector v has 4 cells.

The ith value can be accessed as $v(i)$.

Assign a value of 9 to into the 4th cell of vector v: $v(4) = 9$.

Copy the value in the 4th cell to the 2nd cell of vector v: $v(2) = v(4)$.

Copy the value in the current cell to the next cell of vector v: $v(i+1) = v(i)$.