STEPHAN SCHMITT

An Efficient Refiner for First-order Intuitionistic Logic

— JProver —
<table>
<thead>
<tr>
<th>Major Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>not extensible without</td>
</tr>
<tr>
<td>additional components needed</td>
</tr>
<tr>
<td>proves complicated formulæ as well</td>
</tr>
<tr>
<td>Connection prover (JProver)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Larger Fragments of I^\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy extensible to</td>
</tr>
<tr>
<td>obvious, "build-in"</td>
</tr>
<tr>
<td>very restricted</td>
</tr>
<tr>
<td>efficiency: \times</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tactic-based vs. "connection"-based theorem proving:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully automated proof search:</td>
</tr>
<tr>
<td>Goal: Increase proof automation during the interactive prove process in NuPRL</td>
</tr>
</tbody>
</table>

Motivation: Automated Theorem Proving
Connection to NuPRL-5

Concept: Add JProver as a new refiner to the NuPRL-5 architecture:
ARCHITECTURE OF THE JProver REFINER

J-formula / J-sequent: MetaPRL term, interface between NuPRL and OCaml

Connection prover: Proof search strategy based on the extension procedure

Reconstruction component: Search-free proof reconstruction procedure into LJ or LJ_{mc}
(Schmitt & Kreitz 1995 – 2000)

LJ sequent proof: Sequent proof in Gentzen’s single conclusioned sequent calculus LJ, i.e., the first-order fragment of ITT
Example: $A \wedge B \not\iff A \not\wedge B$.

Non-permutability of sequent rules: Efficient computation of a global substitution σ.

Connection calculi: Proof search = building chains of connectives (axioms).

Segment calculus: Proof search guided by connectives; successive decomposition.

CONNECTION-BASED THEOREM PROVING
Proof Reconstruction: Example

Basic Idea: Traverse reduction ordering \(\prec \) to construct a sequent proof in \(\Gamma_{mc} \)

Constraints

Acknowledgments

Substitution constraints + Connectives + Connection - Formula tree - \(\prec \)

Diagram:

\[\frac{\Gamma \vdash A \land \Gamma \vdash B \iff \Gamma \vdash A \land B \rightarrow A, \Gamma \vdash B \land B \equiv A, \Gamma \vdash B, \Gamma \vdash \neg B, \Gamma \vdash \neg A}{\therefore \Gamma \vdash \neg A, \Gamma \vdash \neg B, \Gamma \vdash \neg B, \Gamma \vdash B} \]
Proof Reconstruction II: \(\land \)-split
Refiner: Not yet stand-alone, embedded into MetaPROLOG to use term operations.

- Search-free proof reconstruction relies on complete redundancy detection in \(\mathcal{O}. \)
- Switching between \(\mathcal{L}\text{mc} \) (multiply conclusioned), or \(\mathcal{L} \) (single conclusioned).

Reconstruction component: Constructs sequent proofs in \(\mathcal{L}\text{k} \) (classical logic).

Proof search for propositional logic (intuitionistic or classical).

Input: Formula as MetaPROLOG term.

Realized components:

Demonstration I: Actual State of JProver
(Provability needs interaction with explicit hypotheses numbers)

\[
(\forall A \lor \exists B) \land (\exists A \lor \exists B) \land (\forall A \lor \exists B) \land (\forall A \lor 0B) \land 0A \iff \\
(0B \land (0A \land 0B)) \lor (\exists A \land (\exists A \land 1B) \iff 0B) \lor \\
(\exists B \land (\exists A \land 2B) \iff 1B) \lor (3B \land (\exists A \land 3B) \iff 2B) \lor \forall A \star
\]

Prover does not terminate (solvable picking the right implication on the left)

\[
S \lor S \lor \downarrow \leq \iff ((A \iff T) \lor (T \iff \downarrow)) \iff (\downarrow \iff (A \iff T) \iff) \lor S
\]

Prover can't handle (two interactions, picking \(\downarrow \) instead of \(A \) instead of \(B \))

(Prover (same as prover with stronger chaining and less control) vs. (Prover (straightforward steps, goes into disjunctions as well)

(Prover (this magic as well)

\[
\forall \iff \forall A \land \forall A
\]

Compared Prover to Variants of tactic-based Simple Prover:

DEMONSTRATION II: EXAMPLES
Requires complete redundancy deletion in \otimes

Selection strategy:

$\Gamma, \neg \alpha \vdash \beta \iff \neg \alpha \vdash \beta$

Dynamic completion of reduction ordering \otimes during proof reconstruction necessary

Switching between L^uc and L^uc
Suggestions Further Requirements?

- The whole sequent serves as input for JProver.
- User marks relevant (first-order) sequent formulas for JProver.
- Define interface to NuPRL-5; start JProver directly from NuPRL-5.
- Separate JProver from MetaPRL modules; keep only required term operations.

To do:

Extend prover / reconstruction components to quantifiers