Stability of intuitionistic verification systems

Sergei Artemov

PRL seminar
Department of Computer Science
Cornell University
April 24, 2000
Plan:

1. Constructive existence
2. Provability and reflection
3. Stability of verification systems
4. Explicit verification
5. Typical intuitionistic system is stable
6. Metamathematics of stability
1. Constructive existence

Classical \exists is not constructive: $\exists x F \sim \neg \forall x \neg F$

Classical logic cannot distinguish between
$\exists x A \rightarrow \exists y B \sim \forall x \exists y (A \rightarrow B) \sim \exists y \forall x (A \rightarrow B)$

(implicit function) (total function) (constant)

Intuitionistic positive \exists’s are constructive
$\exists x F$ is stronger than $\neg \forall x \neg F$
$\vdash \exists x F(x) \Rightarrow \vdash F(t)$ for some ground term t
$\vdash \forall x \exists y G(x, y) \Rightarrow \vdash \forall x G(x, f(x))$ for some term $f(x)$

Intuitionistic logic distinguishes all three presentations of functions above.

Negative \exists’s are not quite constructive
$\neg \exists x F \sim \forall x \neg F$, $(\exists x A(x) \rightarrow C) \sim \forall x (A(x) \rightarrow C)$
are classically true as well
2. Provability and reflection

(T - a consistent theory containing arithmetic)

Adequacy: \(\text{Proof}_T(p, F) \iff p \text{ is a proof of } F \)

\(\text{Bew}_T(F) = \exists p \text{Proof}_T(p, F) \sim "F \text{ is provable}" \)

"T is consistent" = \(\text{Consis } T = \neg \text{Bew}_T(\text{false}) \)

Reflection scheme: \(\text{Bew}_T(\phi) \to \phi \)

\text{Gödel Incompleteness Theorem: } T \not\vdash \text{Consis } T

Consistency is a special case of reflection:

\(\neg \text{Bew}_T(\text{false}) = \text{Bew}_T(\text{false}) \to \text{false} \)

Reflection is not provable:

\(T \not\vdash \text{Bew}_T(\phi) \to \phi \)

Explicit reflection is provable: \text{ for each specific } p

\(T \vdash \text{Proof}_T(p, \phi) \to \phi \)
3. Stability of verification systems

The common architecture of verification systems: assume that a small core system is correct and extend it by internally verified facts and rules. Stability: extended system = original system.

Rule: computable function (relation) \mathcal{R}
Standard notation: $\vdash /\mathcal{R}(,)$
$(, \text{ a finite set of premises, } \mathcal{R}(,) \text{ the conclusion})$

Verified rule: $V \vdash \forall, [\Box, \rightarrow \Box \mathcal{R}(,)]$
(here $\Box F$ is $\text{Bew}_V(F)$)

Derived rule: $V \vdash \forall, \Box [, \rightarrow \mathcal{R}(,)]$

Every derived rule is verified but not vice versa.
Verified not derived rules: *generalization, renaming of free variables, formalization, Löb rule, Markov rule*, etc.
Stability: $V = V + \mathcal{R}$ for every verified rule \mathcal{R}

Let $\Box_{\mathcal{R}}$ denote the provability in $V + \mathcal{R}$

Theorem (contrary to a claim by Davis-Schwartz)
A stability scheme $\forall F[\Box_{\mathcal{R}} F \leftrightarrow \Box F]$ is internally provable

Proof An induction on a proof in $V + \mathcal{R}$ inside V.

However: this does not yield that the ”real” stability is provable in V. Indeed, suppose \mathcal{R} is verified, i.e. $V \vdash \forall, [\Box, \rightarrow \Box \mathcal{R}(, ,)]$. We have to establish that $V + \mathcal{R} \vdash F \Rightarrow V \vdash F$. Try induction on a proof in $V + \mathcal{R}$.

For the induction step we have to show that

$$V \vdash , \Rightarrow V \vdash \mathcal{R}(, ,).$$

We try $V \vdash , \Rightarrow V \vdash \Box$, formalization

$V \vdash \Box, \Rightarrow V \vdash \Box \mathcal{R}(, ,)$ \mathcal{R} is verified

$V \vdash \Box \mathcal{R}(, ,) \Rightarrow V \vdash \mathcal{R}(, ,)$ reflection is needed!
4. Explicit verification

Explicitly verified rule: there is a computable term f which for any proof p of premises returns a proof $f(p)$ of the conclusion

$$V \vdash \forall, \forall p [\text{Proof}(p, ,) \rightarrow \text{Proof}(f(p), \mathcal{R}(, ,))]$$

Theorem For any explicitly verified rule \mathcal{R} there is a total computable function g which transforms any proof n of F in $V + \mathcal{R}$ into a proof $g(n)$ of F in V

$$\text{Proof}_\mathcal{R}(n, F) \Rightarrow \text{Proof}(g(n), F)$$

This theorem is a stability device:

$$V + \mathcal{R} \vdash F \Rightarrow \quad (\text{by formalization})$$

$$\text{Proof}_\mathcal{R}(n, F) \text{ holds for some } n \in \omega \Rightarrow (\text{by the theorem})$$

$$\text{Proof}(g(n), F) \Rightarrow \quad (\text{by the adequacy of Proof})$$

$$V \vdash F$$
5. Typical intuitionistic system

Constructive properties:

Disjunction Property
\[V \vdash A \lor B \Rightarrow V \vdash A \text{ or } V \vdash B \]

Explicit Definability for Numbers
\[V \vdash \exists x A(x) \Rightarrow V \vdash A(n) \text{ for some } n \]

Explicit Definability
\[V \vdash \forall x \exists y A(x, y) \Rightarrow V \vdash \forall x (A(x, f(x))) \]
for some computable term \(f \)

Independence of Premises
\[V \vdash A \rightarrow \exists y B(y) \Rightarrow V \vdash \exists y [A \rightarrow B(y)] \]
(for \(A \) is \(\exists, \lor \)-free, \(A \) is decidable, etc.)
Corollary

A system with constructive properties is stable

Proof

\[\forall, [\Box, \rightarrow \Box C (,)] \quad \text{verified rule} \]

\[\forall, \forall x[Proof(x, ,) \rightarrow \exists y Proof(y, C (,))] \]

\[\forall, \forall x \exists y[Proof(x, ,) \rightarrow Proof(y, C (,))] \]

\[\forall, \forall x[Proof(x, ,) \rightarrow Proof(f(x), C (,))] \quad \text{for some computable term } f \]

\[\Rightarrow C \text{ is explicitly verified} \]

For a typical intuitionistic system constructive properties are established by constructive (though not internally formalizable) means
6. Metamathematics of stability

Stability of classical verification systems - requires semantical set-theoretical properties which cannot be established constructively, not automatically assumed even in mathematics.

Stability of intuitionistic systems - follows from the standard properties which are usually established for a typical intuitionistic system by constructive means.