Goal: flexible sentence planning for argumentative text

Techniques:

- Combining *Text Structure* and *Upper Model*
- Aggregation
Tree Proof
add lines
Data base
lookup
Methods
transform
call
Verifier
Proverb
abstract/ verbalize
justify
start
start
Proof Tree
modify
apply
check
add lines
lookup
add lines
transform
modify
direct
User (Planner)
call
Proof Transform
Otter
MKRP
Setheo
LEO
INKA
Motivation

Theorem (Subgroup Criterion)
Let G be a group, $S \subseteq G$, if for all x, y in S, $y \ast x^{-1}$ is also in S, then the inverse of every element of S is also in S.

<table>
<thead>
<tr>
<th>Initial Clause Set:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_1 = {+(u \ast u^{-1} = e)}$</td>
</tr>
<tr>
<td>$C_2 = {+(e \ast w = w)}$</td>
</tr>
<tr>
<td>$C_3 = {- (x \in S), -(y \in S), -(x \ast y^{-1} = z), +(z \in S)}$</td>
</tr>
<tr>
<td>$C_4 = {+(v \in S)}$</td>
</tr>
<tr>
<td>$C_5 = {-(q^{-1} \in S)}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resolution Steps:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_3, 4 & C_3, 1 \rightarrow R_1$: ${- (x \in S), -(y \in S), -(x \ast y^{-1} = z), -(y' \in S), -(z \ast y'^{-1} = z'), +(z' \in S)}$</td>
</tr>
<tr>
<td>$R_1, 1 & C_4, 1 \rightarrow R_2$: ${- (y \in S), -(v \ast y^{-1} = z), -(y' \in S), -(z \ast y'^{-1} = z'), +(z' \in S)}$</td>
</tr>
<tr>
<td>$R_2, 1 & C_4, 1 \rightarrow R_3$: ${- (v \ast v^{-1} = z), -(y' \in S), -(z \ast y'^{-1} = z'), +(z' \in S)}$</td>
</tr>
<tr>
<td>$R_3, 2 & C_4, 1 \rightarrow R_4$: ${- (v \ast v^{-1} = z), -(z \ast v^{-1} = z'), +(z' \in S)}$</td>
</tr>
<tr>
<td>$R_4, 1 & C_1, 1 \rightarrow R_5$: ${- (e \ast v^{-1} = z'), +(z' \in S)} $</td>
</tr>
<tr>
<td>$R_5, 1 & C_2, 1 \rightarrow R_6$: ${+(v^{-1} \in S)}$</td>
</tr>
<tr>
<td>$R_6, 1 & C_5, 1 \rightarrow R_7$: \square</td>
</tr>
</tbody>
</table>

Proof:
Let a be in S. According to the definition of inverse element, $a \ast a^{-1} = e$. According to our hypothesis, e in S. $e \ast a^{-1} = a^{-1}$ according to the definition of unit. Again according to our hypothesis, a^{-1} is in S.
Previous Work

Machine Oriented Proofs
[Andrews 80, Miller 83, Pfenning 87, Lingenfelder 90]

Natural Deduction Proofs (ND)
[Chester 76, McDonald 83, Edgar & Pelletier 93]

Natural Language Proofs (NL)
Reconstructive Explanation in PROVERB

Problem
- Auto. Prover
- Refutation Graph
- Transformation

Proof in English
- TAG-GEN
- Input for TAG-GEN
- TAG Interface

Natural Deduction Proof
- Abstraction
- Text Planner
- Assertion Level Proof

Computational Model for Informal Mathematics
Computational Model for Proof Presentation

linguistic Specification:
The System *PROVERB*

Macrolananner: choice of content and order of the information to be conveyed

Microplanner: sentence scoping and planning of the internal structure of the sentences

Realizer: realization of the surface text by TAG-GEN
PROVERBS Macroplanner

Task: content determination

Input: an assertion level proof

Output: an ordered sequence of *proof communicative acts* (PCAs)

Methods:

- goal directed hierarchical planning (top-down)
- focus guided local organisation (bottom-up)
Case-Implicit

\[F \quad G \]

- Proof: \(\frac{F \lor G, Q, Q}{Q} \) CASE

- Acts:

 1. Subproof
 2. (CASE-FIRST, Assumptions: \(F \))
 3. Subproof
 4. (CASE-SECOND, Assumptions: \(G \))
 5. Subproof

- Features: (top-down compulsory implicit)
Local Organization

\[
\begin{align*}
[1] &: \ P(a, b) \\
[3] &: \ Q(a, b) \\
[5] &: \ Q(a, b) \land R(b, c)
\end{align*}
\]

- **local focus** = [1]
 focal centers = \{a, b\}

- **next node** = [3],
 since [3] does not introduce any new objects and \{b\} \subset \{a, b\}
The Need for a Microplanner

• first version of \textit{PROVERB} without a microplanner:

 – no paraphrasing:
 \begin{itemize}
 \item Since A, B. \\
 [A leads to B.]
 \end{itemize}

 – rigid recursive verbalization:
 \begin{itemize}
 \item \textit{Set}(F) \land \textit{Subset}(F, G) \\
 \item F is a set and F is a subset of G. \\
 [F is a set and a subset of G.]
 [The set F is a subset of G.]
 \end{itemize}

• only microplanning technique: derivation reference choice
 \Rightarrow \textit{preverbal message} (PM)
Example

(1) Let F be a group and U be a subgroup of F and 1 be a unit element of F and 1_U be a unit element of U.
(2) According to the definition of unit element $1_U \in U$.
(3) Therefore there is an $X, X \in U$.
(4) Now suppose that u_1 is such an X.
(5) According to the definition of unit element $u_1 * 1_U = u_1$.
(6) Since U is a subgroup of F, $U \subset F$.
(7) Therefore $u_1 \in F$.
(8) Similarly $1_U \in F$, since $1_U \in U$.
(9) Since F is a group, F is a semigroup.
(10) Since $u_1 * 1_U = u_1$, 1_U is a solution of the equation $u_1 * X = u_1$.
(11) Since 1 is a unit element of F, $u_1 * 1 = u_1$.
(12) Since 1 is a unit element of F, $1 \in F$.
(13) Since $u_1 \in F$, 1 is a solution of the equation $u_1 * X = u_1$.
(14) Since F is a group, $1_U = 1$ by the uniqueness of solution.
(15) This conclusion is independent of the choice of the element u_1.
PROVERBSs Microplanner

Task: sentence scoping and sentence organisation

Input: a sequence of PCAs

Output: a *Text Structure*

Methods:

- progressive refinement of the Text Structure
- operations on the Text Structure
A Text Structure [Meteer, 91] contains information about:

- constituency
- structural relations between constituents
- semantic categories of the constituents
PROVERBS Upper Model

- adopted from [Bateman et al., 90]
PROVERBS Textual Semantic Categories

- adopted from [Panaget, 94]
Resource Trees

- Text Structure built up by *resource trees*
- *resource trees* consist of basic tree types:

 ![Resource Tree Diagram]

 Kernel tree

 Peter likes Mary

 Composite trees

 pretty Mary

 Peter and Mary
Paraphrasing

$Orth(C_1, C_2)$

$quality\text{-}relation(Orth, C_1, C_2)$

$process\text{-}relation(Orth, C_1, C_2)$

$property\text{-}ascription(Orth, conjunction(C_1, C_2))$

$<\text{lex be}>$

vp

head

argument

$conj(C_1, C_2)$

np

C_1 and C_2 are orthogonal

matrix

$Orth$

np

the orthogonality of C_1 and C_2

adjunct

$conj(C_1, C_2)$

modifier
The Architecture of \textit{PROVERB}

- Natural Deduction Proof
- Macroplanner
 - PCAs
- Microplanner
 - DRCC
 - Text Structure Expansion
 - Sentence Scoping
 - Lexical Choice
 - Ordering
 - Aggregation
 - Cue Word Insertion
 - Layout
 - PMs
 - TSG
 - Upper Model
 - Realization Classes
 - Textual Semantic Categories
 - Lexicon
 - Text Structure
- Transformer
- Realizer
Aggregation

Grouping (5)
- Logical Predicates (1)
- PMs (2)
- Logical Connectives (2)

Embedding (2)

Pattern (4)
- Chaining (3)
- Others (1)

Aggregation (11)
Predicate Grouping

\[\text{Set}(F) \land \text{Set}(G) \]

"\(F \) is a set. \(G \) is a set."

\[\downarrow \]

\[\text{Set}(F \land G) \]

"\(F \) and \(G \) are sets."
Grouping of Implications

\[
\text{conjunction}(\text{implication}(a < b, a \neq b), \\
\text{implication}(a > b, a \neq b))
\]

“If \(a < b\) then \(a \neq b\). If \(a > b\) then \(a \neq b\).”

\[\downarrow\]

\[\text{implication}(\text{disjunction}(a < b, a > b), a \neq b)\]

“If \(a < b\) or \(a > b\) then \(a \neq b\).”
Embedding

Set(F) \land Subset(F, G)

“F is a set. F is a subset of G.”

\downarrow

Subset(Set(F), G)

“The set F is a subset of G.”
Pattern Based Aggregation

\[(T'_1 \cdots C \cdots T'_k) \]

\[M' \quad C' \]

\[\text{derive-cont} \]

\[\text{assume} \]

\[(R \quad M \quad C) \]

\[\text{derive-cont} \]

\[\text{assume} \]

\[(T'_1 \cdots T'_k) \]

\[M' \quad C' \]

\[\text{derive-cont} \]

\[\text{derive-cont} \]

\[\text{derive} \]

\[\text{DefTrans} \]

\[\sigma \subseteq \sigma^* \]

\[\text{derive}(\epsilon, \text{DefTrans}, \sigma \subseteq \sigma^*) \]

```
“\( \sigma \subseteq \sigma^* \) by the definition of transitive closure.”
```

\[\text{derive}((x, y) \in \sigma, \sigma \subseteq \sigma^*), \text{DefSubset}, (x, y) \in \sigma^* \]

```
“Since \((x, y) \in \sigma\) and \(\sigma \subseteq \sigma^*\), \((x, y) \in \sigma^*\) by the definition of subset.”
```

\[\Rightarrow \]

\[\text{derive}(\epsilon, \text{DefTrans}, \sigma \subseteq \sigma^*, \text{derive-cont}((x,y)\in \sigma), \text{DefSubset}, (x, y) \in \sigma^*) \]

```
“\( \sigma \subseteq \sigma^* \) by the definition of transitive closure, thus establishing \((x, y) \in \sigma^*\) by the definition of subset, since \((x,y) \in \sigma\).”
```
Theorem:

Let F be a group, U be a subgroup of F, and 1 an element of F. Then $1 \in U$.

Proof:

Let F be a group, U be a subgroup of F, and 1 an element of F. Then $1 \in U$.

Example (cont'd)
Conclusion

- Microplanning techniques necessary for mathematical proofs
- Text Structure combined with Upper Model and textual semantic categories
- Aggregation rules defined in terms of Upper Model concepts