
A Multi-Level Approach to Program Synthesis

W. Bibel1 D. Korn1 C. Kreitz2 F. Kurucz1 J. Otten2 S. Schmitt1 G. Stolpmann1

1
Fachgebiet Intellektik, Fachbereich Informatik, Darmstadt University of Technology

Alexanderstr. 10, 64283 Darmstadt, Germany
2 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA

N. Fuchs, editor, 7th International Workshop on Logic Program Synthesis and Transformation
(LOPSTR’97), LNAI 1463, pp. 1–25, c©Springer Verlag, 1998.

Abstract. We present an approach to a coherent program synthesis sys-
tem which integrates a variety of interactively controlled and automated
techniques from theorem proving and algorithm design at different lev-
els of abstraction. Besides providing an overall view we summarize the
individual research results achieved in the course of this development.

1 Introduction

The development of programs from formal specifications is an activity which
requires logical reasoning on various levels of abstraction. The design of the pro-
gram’s overall structure involves reasoning about data and program structures.
Inductive reasoning is necessary for determining a program’s behavior on finite,
but non-atomic data such as lists, arrays, queues, and sometimes even natural
numbers. First-order reasoning is required to analyze the order of steps which
are necessary to achieve a desired result. Propositional reasoning is used to make
sure that all the formal details are correctly arranged.

Program synthesis and transformation is therefore strongly related to the
concept of proofs. This has been particularly emphasized by the development of
languages and tools for logic programming which use deductive techniques for
the simulation of mathematical reasoning as their basic execution model.

In the field of Automated Theorem Proving (ATP) deductive systems have
been developed for many of the above-mentioned areas. Each of these systems
is tailored towards a particular style of reasoning but shows weaknesses outside
its specific area. There is no single automated proof procedure which can handle
all the reasoning problems occurring during program synthesis equally well and
because of the very nature of the problem it is not very likely that there will ever
be one. Instead, it is more meaningful to combine the strengths of the individual
proof procedures by integrating them into a single reasoning system which can
perform reasoning at all the above-mentioned levels of abstraction.

During the last few years the Intellectics Laboratory of Darmstadt Insti-
tute of Technology has been active in the development of such an integrated,
application-oriented ATP-system which can serve as an inference engine of a co-
herent program synthesis system. For this purpose we have developed specialized
proof procedures which deal with problem formalizations on the propositional,
(constructive) first-order, inductive, and higher levels. On the other hand we
have generated interfaces for each of these procedures which make it possible to
present the generated proof in a common logical calculus. The resulting multi-
level synthesis system, called MAPS, can extract individual proof tasks from a



given programming problem, delegate them to specialized proof procedures, and
combine the resulting proofs into a solution of the original problem. In addi-
tion to that it will be able to proceed interactively whenever none of the proof
procedures can handle the task automatically.
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Fig. 1. Structure of the MAPS program synthesis system

The conceptual structure of MAPS is illustrated in Fig. 1. It shows on the left
hand side automatic proof procedures for different levels of reasoning, viz. propo-
sitional, first-order, and inductive reasoning as well as high-level algorithm design
strategies. Each of these procedures will receive proof tasks from a program devel-
opment system, indicated by the horizontal arrows on top, which were extracted
from a given synthesis problem. After solving their tasks the proof procedures
will send their solution to a conversion module. This module will generate a rep-
resentation of the solution in the common calculus and return it to the program
development system (horizontal arrows on the bottom level). The dotted arrows
indicate that the high-level strategies will ideally create subtasks which can be
handled by the lower-level procedures immediately. If none of the available proof
procedures suits the proof task to be solved the program development system
will have to rely on user interaction (right hand side).

As common platform for our work we have chosen the NuPRL proof develop-
ment system [10] since its underlying logical calculus can deal with a rich variety
of problems from mathematics and programming and allows to formalize even
high-level strategies in a natural way. Since it is based on the proofs-as-programs
paradigm to program synthesis [2] it allows to treat algorithm design strategies
as proof procedures and to integrate a great variety of reasoning techniques on
all levels of abstraction. Finally it supports interaction with a human expert
(programmer) whenever the automated strategies turn out to be too weak.

All our automated proof procedures were originally developed independently
from the common platform and we had to provide techniques for integrating
them into the top-down sequent proof style of NuPRL.
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– Formulas from propositional intuitionistic logic will be decided by translating
them into classical logic [17] and applying a non-normal form Davis-Putnam
procedure [28]. This procedure will be embedded as trusted refiner which
creates a sequent proof on demand.

– Matrix methods for constructive first-order logic use a non-clausal extension
of the connection method [4, 30]. They have been combined with an algorithm
for translating matrix proofs into sequent proofs [36] and integrated into
NuPRL as a proof tactic [22].

– Inductive proofs will be generated by proof planners involving rippling [9]
and rewrite techniques. Sequences of rewrite steps will be transformed into
applications of cut- and substitution rules while other techniques will deter-
mine the parameters of the general induction rule [25, 23].

– High-level synthesis strategies will be integrated by verifying formal theorems
about schematic program construction [18, 19]. For each strategy a theorem
describing the axioms for the correctness of a particular class of algorithms
will serve as derived inference rule. It will be accompanied by specialized tac-
tics for determining and validating values for its parameters [43]. This tech-
nique heavily relies on verified domain knowledge [42] but is very effective.

The MAPS enterprise may be seen as a milestone in the long tradition of program
synthesis efforts of our group which started as early as 1974 eventually leading to
the program system LOPS (see [6] for a detailed exposition of this development).
In lack of powerful proof systems at that time the emphasis then was laid on
high-level strategies guiding the synthesis (or search for a proof) while in MAPS
it is laid more on the proof obligations resulting in the synthesis task. The present
paper considerably extends the preliminary outline of the concepts underlying
MAPS given in [8] and presents the results achieved in the meantime.

In the following we shall describe our proof methods and their integration
into the NuPRL program development system. In Section 2 we shall discuss proof
procedures for intuitionistic propositional and first-order logic while Section 3
describes the integration of rewriting techniques for inductive theorem proving.
Section 4 deals with higher-level synthesis strategies, particularly with algorithm
design strategies based on schematic solutions for certain classes of algorithms.
We conclude with an outlook to future work.

2 Integrating Theorem Provers for First Order Logic

In this section we will give a survey on automated proof search procedures we
have developed for the first-order and propositional fragment of intuitionistic
logic. Furthermore we shall briefly discuss how to integrate the proofs con-
structed by these procedures into the NuPRL environment.

2.1 Decision Procedures for Intuitionistic Propositional Logic

The intuitionistic validity of propositional formulas could in principle be inves-
tigated by first-order proof procedures. Nevertheless there are good reasons to
develop methods tailored to the specific properties of propositional logic:
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1. first-order methods usually fail to detect the invalidity of a propositional
formula

2. the technical overhead necessary to deal with quantifiers can be skipped if
the formula under consideration is propositional only

3. in many cases all that is asked about a propositional formula can essentially
be answered by “yes” or “no” instead of an actual proof construction

In classical logic these insights have led to decision procedures like the Davis-
Putnam procedure which currently is about the most efficient complete proof
method for propositional classical logic. Unfortunately, attempting to adopt this
technique into intuitionistic propositional logic leads to serious difficulties:

– the existing Davis-Putnam procedures are defined for formulas in clausal
form only whereas there is no clausal form for intuitionistic formulas

– the essential idea of the Davis-Putnam procedures is a successive application
of the law of the excluded middle which does not hold in intuitionistic logic

In this section we present two techniques we have developed in order to overcome
both difficulties: a translation method from intuitionistic into classical proposi-
tional logic as well as a non-clausal Davis-Putnam procedure.

Translating intuitionistic into classical propositional formulas. A nat-
ural approach to deal with intuitionistic validity is to formalize the conditions
for intuitionistic forcing within classical first-order logic. A ⇒ B, for instance,
would be translated into ∀v.(wRv ⇒ A(v) ⇒ B(v)) where w denotes the current
possible world. For the sake of completeness axioms encoding the properties of
the accessibility relation R will be added which then must imply the translated
formula. This technique is known as the relational translation [26, 27, 3].

A major difficulty of this approach is the potential undecidability of the
resulting classical formula. On the other hand, any intuitionistic non-theorem
has a finite countermodel. This means that only finitely many possible worlds
need to be considered and that one could use finite conjunctions instead of having
to quantify over all possible worlds. Our aim therefore was to find a sufficiently
effective mechanism for constructing such finite potential countermodels. To this
end we have investigated the reasons which lead to infinite countermodels as
described in the following.

Essentially a potential countermodel can be extended by a new possible world
in two cases which both yield important conditions for adding any further pos-
sible worlds. If these conditions are not considered then infinitely many worlds
without “new” properties could successively be added to the countermodel:

The first case occurs when an implicative formula A ⇒ B is assumed not to be
forced at a given possible world w0. In this case we have to assume an accessible

1w0
A 6⇒ B

1w1
A, 6B
Y

world w1 where A is forced but B is not according to
the Kripke-semantics for intuitionistic logic. This counter-
model is shown in the right figure. Note, however, that A
will remain forced at any world wi accessible from w1.
Thus if we encounter the case that A⇒X is assumed not to be forced at such
a wi then, in order to obtain a world accessible from wi where A is forced but
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X is not, we only need to ensure X not to be forced at wi which is accessible from

1wi
A, A 6⇒ X, 6X
Y · · ·

itself by reflexivity. The respective situation is shown to the
right. Hence, once we have added a world to our counter-
model refuting some A⇒B it is not necessary anymore to
add another world accessible from there in order to refute A⇒X for some X.

Likewise, the second case occurs when refuting a negated formula ¬A at a
given world w0. In this case we need to provide another accessible world w1 where

1w0
6¬A

1w1
A

Y

A is forced. This situation is again shown in the right figure.
Once we have done so, however, there is no need to add any
other accessible world from there on. To see why, we need the
notion of F -maximality of a given world for a given proposi-
tional formula F . We consider a given possible world F -maximal iff no accessible
world forces some subformula of F which is yet unforced at the given world. One
can easily show that for any world w and any propositional formula F there
always is an accessible F -maximal world maxF (w) (cf. [17]). Once we have (po-
tentially) added w1 to our countermodel as shown above we know that there
must also be an F -maximal maxF (w1) accessible from w1, where F is the input
formula of our translation. But then A is also forced at maxF (w1) and we can
well add maxF (w1) to our countermodel instead of w1. The main advantage of
doing so is that whenever we would have to add a new world to our countermodel
accessible from maxF (w1) in order to force some subformula F ′ of F we know
that F ′ must already be forced at maxF (w1). Thus instead of actually adding
this accessible world we can simply add its properties to maxF (w1).

Obeying both restrictions for adding new worlds during the inductive con-
struction of a potential countermodel for a propositional formula F will always
lead to a finite set of possible worlds within this countermodel since F has only
finitely many subformulas. To encode a potential intuitionistic countermodel for
a given input formula F we first associate a unique function symbol wi with
each positive occurrence of an implicative or negated subformula in F . Then we
construct a set W of terms by applying a proper choice of concatenations of the
wi to the root possible world w0. The order of the wi within these concatena-
tions essentially reflects the possible refutation orderings between the associated
subformulas. No function symbol will occur more than once within a single con-
catenation and function symbols associated with negated subformulas will only
occur as the outermost symbol of a concatenation.

Given a term t ∈ W , which now denotes a particular possible world within
a potential countermodel, the finite set RF (t) of accessible worlds will then be
the set of those terms t′ ∈ W which contain t as a subterm. We can now essen-
tially apply the usual relational translation approach to F . However, instead
of positive occurrences of universal quantifications over accessible worlds we use
an appropriate such term as a representative for an arbitrary accessible world.
Negatively occuring quantifications are replaced by finite conjunctions over all
such terms denoting an accessible world. For any further details cf. [17].

To sum up we have achieved a morphism from intuitionistic to classical logic
that maps propositional input formulas to propositional output formulas (note
that no quantifiers or uninstantiated terms occur in the output formula).
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A non-clausal Davis-Putnam proof procedure. The Davis-Putnam pro-
cedure [11, 12] is one of the most successful proof procedures for classical propo-
sitional logic. Its essential idea is to apply the following splitting rule to prove
a formula F : assign the truth values true and false to a selected propositional
variable X occurring in F and simplify the resulting formulas, yielding F1 and
F2. This rule is applied recursively to the formulas F1 and F2 until the truth
values true or false are reached. The investigated formula F is valid if all leaves
of the resulting proof tree are marked with true, otherwise F is not valid.

Unfortunately the original formulation of the Davis-Putnam procedure and
all existing implementations require the formula F in clausal form, i.e. in dis-
junctive normal form. The usual translation of a given formula into this form is
based on the application of distributivity laws. In the worst case this will lead to
an exponential increase of the resulting formula. The application of the so-called
definitional translation [33] yields (at most) a quadratic increase of the resulting
formula’s size at the expense of introducing new propositional variables.

The translation of intuitionistic into classical propositional formulas described
above leads to formulas which are strongly in non-normal form. Experimental
results have shown that a translation to clausal form often yields formulas which
are too large to obtain a proof, in particular if applying the standard translation
techniques. To avoid any translation steps to clausal form we have developed
a non-clausal proof procedure [29]. It is a generalization of the original clausal
Davis-Putnam procedure and operates directly on arbitrary propositional for-
mulas. To this end we represent formulas by nested matrices. A matrix is a very
compact representation of a formula and the corresponding search space (see
also section 2.2). In the clausal Davis-Putnam procedure we regard a matrix as
a set of clauses where each clause is a set of literals. In our non-clausal approach
a clause is a set of matrices and a matrix is either a literal or a set of clauses.

In the original Davis-Putnam procedure the above-mentioned splitting rule
consists of a clause elimination step and a literal deletion step. Due to the more
generalized treatment of arbitrary formulas the non-clausal splitting rule uses
a matrix elimination step instead of the literal deletion step. In contrast to
the latter it will delete a whole matrix, not only a single literal. Furthermore
in the non-clausal approach an additional splitting rule, called beta splitting
rule, is applicable. Our experimental results have shown three advantages of
our non-clausal proof procedure: no translation to any clausal form is required,
the application of a more general matrix elimination step is possible and an
additional beta splitting rule is applicable which can shorten proofs considerably.

In practice, our translation from intuitionistic into classical logic combined
with the Davis-Putnam procedure described above has turned out to be a very
promising approach to deal with propositional intuitionistic logic. Already our
prototypic implementations of both approaches in Prolog were able to decide the
intuitionistic validity of a variety of propositional formulas with a performance
competitive to any intuitionistic decision mechanism known to us.
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2.2 Proof Construction in Intuitionistic First-Order Logic

The connection method is a well-known proof procedure for classical first-order
logic and has successfully been realized in theorem provers like Setheo [24] or
KoMeT [7]. It is based on a matrix characterization of logical validity: A formula
F is (classically) valid iff the matrix of F is (classically) complementary [4, 5].

In propositional classical logic the matrix of a formula F is complementary if
there is a spanning set C of connections for F . A connection is a pair of atomic
formulas with the same predicate symbol but different polarities.1 A connection
corresponds to an axiom in the sequent calculus. A set of connections C spans
a formula F if every path through F contains at least one connection from C.
With regard to a sequent calculus this means that all branches are closed by an
axiom. A path through F contains the atoms on a horizontal path through the
matrix representation of F . A matrix of a formula F is a compact representation
of F and the corresponding search space. This characterization also applies to
classical first-order logic if each connection in C is complementary, i.e. the terms
of each connection in C can be made identical by some first-order substitution
σQ in which (quantifier-)variables are replaced by terms.

Certain rules in the intuitionistic sequent calculus LJ differ from the classi-
cal LK [14]. The arising non-permutabilities between these rules need a special
treatment. In the matrix characterization for intuitionistic logic [44] this is done
by an additional intuitionistic substitution σJ . This substitution has to make
the prefixes of each connection identical and therewith complementary. A pre-
fix of an atom is a string consisting of variables and constants which essentially
describes the position of it in the tree representation of the formula to be proved.

Example 1. Consider F1 ≡ (Pa ⇒ ¬¬∃xPx). The prefixes of the atomic formu-
las Pa and Px are a0A1 and a0a2A3a4, respectively, where capital letters refer
to variables and small letters indicate constants. The set {Pa, Px} is a connec-
tion. It is complementary under the first-order substitution σQ = {x\a} and
the intuitionistic substitution σJ = {A1\a2A3a4}. Since the set C = {{Pa, Px}}
spans F1, the formula F1 is intuitionistically valid.

Example 2. Let F2 ≡ (¬¬P ⇒ P ). The prefixes of the two atoms a0A1a2A3 and
a0a4 are not unifiable. Therefore the formula F2 is not intuitionistically valid.

According to the above matrix characterization the validity of a formula
F can be proved by showing that all paths through the matrix representation
of F contain a complementary connection. Therefore for an automated proof
search procedure based on a matrix characterization we have to (1) search for a
spanning set of connections and (2) test the connections for complementarity.

Developing a proof procedure for intuitionistic first-order logic based on
Wallen’s matrix characterization means extending Bibel’s connection method
accordingly. It consists of an algorithm which checks the complementarity of all
paths and uses an additional string-unification procedure to unify the prefixes.
1 The polarity of an atomic formula is either 0 or 1 and indicates whether it would

occur negated (polarity 1) in the negational normal form or not (polarity 0).
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Searching for a spanning set of connections. Proof search is done by a
general path checking algorithm which is driven by connections instead of logi-
cal connectives [30, 32]. Once a complementary connection has been identified all
paths containing this connection are deleted. This is similar to Bibel’s connec-
tion method for classical logic but without necessity for transforming the given
formula to normal form. Dealing with arbitrary formulas is necessary since there
is no clausal form in intuitionistic logic. The advantage of such a method is that
the emphasis on connections drastically reduces the search space compared to
calculi which are connective-driven such as the sequent calculus or tableau cal-
culi. Furthermore it avoids the notational redundancy contained in these calculi.

Testing the connections for complementarity. In our path checking pro-
cedure we have to ensure that after adding a connection there are still first-
order and intuitionistic substitutions which make all connections complemen-
tary. While the first-order substitution σQ can be computed by well-known
term-unification algorithms we had to develop a specialized prefix -unification
procedure for computing σJ . This is done by a specialized algorithm for string-
unification [31]. String-unification in general is quite complicated but unifying
prefixes is much easier since there are certain restrictions on prefixes: prefixes
are strings without duplicates and in two prefixes (corresponding to atoms of
the same formula) equal characters can only occur within a common substring
at the beginning of the two prefixes. This enabled us to develop a much simpler
algorithm computing a minimal set of most general unifiers.

Our general proof procedure also allows a uniform treatment of other non-
classical logics like various modal logics [32] or linear logic [21]. We only have to
change the notion of complementarity (i.e. the prefix unification) while leaving
the path checking algorithm unchanged.

Path checking can also be performed by using a semantic tableau [13]. The
prover ileanTAP [28] is based on free-variable semantic tableaux extended by the
above-mentioned prefix unification. It is a very compact Prolog implementation
(about 4 kilobytes) and due to the modular treatment of the different connectives
it can easily be adapted to other non-classical logics.

2.3 Embedding Matrix Methods into Program Development

As long as only the matter of truth is involved, NuPRL allows to use the above
techniques as trusted external refiners. However, whenever a piece of code shall
be extracted from the proof, it is necessary to convert the proofs generated by a
search procedure back into a constructive sequent proof which, according to the
proofs-as-program paradigm [2], can be turned into a program.

In [36, 22] we have developed an embedding of connection based proof meth-
ods into NuPRL based on such conversions. The proof method described in [22]
constructs a matrix proof closely related to a cut-free sequent proof in LJmc, the
multiply-conclusioned sequent calculus on which the matrix characterization for
J is based [44]. Its integration into NuPRL basically consists of a transforma-
tion from LJmc-proofs into sequent proofs in Gentzen’s LJ [14], the first-order

8



fragment of NuPRL’s calculus. To allow a structure preserving transformation
the cut-rule had to be used in a restricted and regular manner. For the sake of
clarity we have hidden its application within an extended sequent calculus LJ ?.

Converting matrix proofs into sequent proofs. Improving the efficiency of
proof search in the above procedures resulted in strategies which do not support
a parallel construction of matrix proofs inMJ and LJmc-proofs anymore. Proof
strategies such as an extension procedure [32] or a tableaux prover [28] (see also
section 2.2) make it necessary to transform matrix proofs into sequent proofs
after the proof search has been finished. Hence, the above mapping LJmc 7→ LJ ?

has to be extended by an additional mapping MJ 7→ LJmc.
This two-step conversion from intuitionistic matrix proofs into LJ ?-sequent

proofs has first been presented in [36]. The first step MJ 7→ LJmc turns out to
be non-trivial since the compact representation of MJ -proofs, called reduction
ordering ∝?, does not completely encode the non-permutabilities of sequent rules
in an LJmc-proof. In order to complete this representation in the above sense we
have extracted some conditions, called wait-labels, which are dynamically added
during the conversion process. These conditions prevent non-invertible LJmc-
rules from being applied too early such that no proof relevant sequent formulas
will be deleted. We explain our approach by an example.

∝?

α1⇒ 0

β1∨1 α4∨0

α2¬1 α3¬1 α5¬0 α6¬0

a1A0 a2B0 a3B1 a4A1

∝?
1

>α1⇒ 0

>β1∨1 >α4∨0

α2¬1 α6¬0

a1A0 a4A1

∝?
2

>α1⇒ 0

>β1∨1 >α4∨0

α3¬1 α5¬0

a2B0 a3B1

Fig. 2. Reduction ordering ∝? of the matrix proof for F .

Consider the J -formula F ≡ ¬A ∨ ¬B⇒¬B ∨ ¬A and its matrix proof
MJ represented as a reduction ordering ∝? (see Fig. 2, left hand side). ∝?

consists of the formula tree of F together with additional ordering constraints
(curved arrows) which are extracted from the matrix proof and encode non-
permutabilities of sequent rules wrt. LJmc. Furthermore, the connections from
the matrix proof are assigned to the atoms of F in ∝?. For unique reference
to the subformulas of F each node in ∝? contains a position x as well as the
main operator op (x) and polarity pol (x) of the corresponding subformula Fx.
Positions with a ’β’ name denote subformulas which cause the sequent proof to
split into two independent subproofs, e.g. β1 in the example.

Proof reconstruction is based on a traversal of the reduction ordering ∝? by
visiting the positions of ∝?: (i) Select a position x from the open position set Po

which is not “blocked” by some arrow in ∝?, (ii) construct a unique sequent rule
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from pol (x) and op (x) of the subformula Fx and reduce the formula F
pol (x)
x in

the sequent, (iii) update Po with the immediate successor positions succ (x) of x
in ∝?. The traversal process and the resulting sequent proof for F are depicted
in Fig. 3. After reducing the β-position β1 the reduction ordering is split into
two suborderings ∝?

1,∝?
2 and the conversion continues separately on each of the

suborderings. For this we have developed an operation split (∝?, β1) [37] which
first splits the reduction ordering ∝?. Secondly non-normal form reductions are
applied to each of the ∝?

i in order to delete redundancies from ∝?
i which are

no longer relevant for the corresponding branch of the sequent proof. The result
of the splitting process is shown in Fig. 2, right hand side, where the positions
already visited are marked with ’>’.

A ` A
ax .

¬A, A ` ¬l

¬A ` ¬B,¬A
¬r

B ` B
ax .

¬B, B ` ¬l

¬B ` ¬B,¬A
¬r

¬A ∨ ¬B ` ¬B,¬A
∨l

¬A ∨ ¬B ` ¬B ∨ ¬A
∨r

` ¬A ∨ ¬B⇒¬B ∨ ¬A
⇒ r

Po select x rule applied on F pol (x)
x

{α1} α1 ⇒ r (¬A ∨ ¬B⇒¬B ∨ ¬A)0

∝? {β1, α4} α4 ∨r (¬B ∨ ¬A)0

{β1, α5, α6} β1 ∨l (¬A ∨ ¬B)1

{α2, α6} α6 ¬r ¬A0

∝?
1 {α2, a4} a4 — A1

{α2} α2 ¬l ¬A1

{a1} a1 ax. A0, A1

{α3, α5} α5 ¬r ¬B0

∝?
2 {α3, a3} a3 — B1

{α3} α3 ¬l ¬B1

{a2} a2 ax. B0, B1

Fig. 3. Sequent proof for F and the corresponding traversal steps of ∝?.

The problem of completing ∝? occurs when starting the traversal with
α1, α4, α5, which is not prevented by “blocking” arrows in ∝?. But such a selec-
tion ordering leads to a LJmc-derivation which could not be completed to a proof
since the reduction of α5, i.e. applying ¬r on ¬B0, deletes the relevant formula
¬A0 (position α6). Adding two wait-labels dynamically to α6 and α5 completes
∝? and avoids this deadlock during traversal. For a more detailed presentation
of this approach as well as for an algorithmic realization we refer to [37].

Building efficient conversion procedures. The basic problem for proof re-
construction in constructive logics lies in the deletion of redundancies after split-
ting at β-positions. The reason for this is that the reduction ordering together
with dynamically assigned wait-labels could be totally blocked from further con-
version steps although some of these labels are no longer needed. To avoid this
kind of deadlocks and to ensure completeness of the reconstruction process we
have to detect and delete these redundant subrelations from ∝?

i . One of the
deletion concepts used in the operation split is based on a non-normal form pu-
rity reduction which is recursively applied to non-connected leaf positions in ∝?.
Consider ∝?

1 in the example above. The atom a3 is not connected after splitting
at β1. Application of the purity reduction deletes a3 and α5 from ∝?

1. Conse-
quently, the wait-label could be removed from α6 since α5 does not exist any
longer. If the purity reduction were not applied, both wait-labels would remain
in ∝?

1 which would then be totally blocked for further reconstruction steps.
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In [37, 38] we have shown that complete redundancy deletion after splitting
at β-positions cannot be performed efficiently when only the spanning mating is
given from the matrix proof. Efficiency means that the selection of proof-relevant
subrelations from the ∝?

i should avoid any additional search. If only the spanning
mating is given, backtracking may be required over this selection (i.e. converting
irrelevant subrelations) in order to retain completeness.

For this purpose we have developed a concept of redundancy elimination
from a reduction ordering during proof reconstruction [34, 35]. The concept is
based on the specification of additional proof knowledge from the search process
in order to extract reconstruction knowledge for the conversion procedure. More
precisely, the history of matrix proofs will be integrated into the conversion
process rather than using only the spanning matings. This makes our procedure
depend on a particular proof search strategy, i.e. an extension procedure [5, 32].
But a compact encoding of this proof knowledge into the conversion process
(which can be done in polynomial time in the size of the matrix proof) allows
us to derive the reconstruction knowledge in terms of a few elegant conditions.
Finally, the resulting conversion strategy integrates these conditions into the
split operation which efficiently extends redundancy deletions after β-splits to
a maximal level. We are able to show that all redundancies in the resulting
subrelations ∝?

1,∝?
2 will be eliminated after splitting ∝? at a β-position. This

guarantees that no decisions on selecting proof-relevant subrelations have to be
made and hence, additional search wrt. these decisions will be avoided.

Our approach for reconstructing LJmc-proofs fromMJ -proofs has been uni-
formly extended to various non-classical logics [37, 21] for which matrix charac-
terizations exist. A uniform representation of different logics and proofs within
logical calculi as well as abstract descriptions for integrating special properties
of these logics in a uniform way, e.g. the completion of reduction orderings ∝?,
yields a general proof reconstruction method for all logics under consideration.

Furthermore, a technique for efficient redundancy elimination after splitting
at β-positions has been developed for all of these logics [35]. The result can be
seen as a general framework for building efficient and complete conversion pro-
cedures for non-classical logics when the basic proof search method is known.
The theoretical concept for extracting reconstruction knowledge form the cor-
responding proof knowledge is invariant wrt. a special logic and hence, extends
the uniformity of the underlying conversion theory.

3 Induction Techniques

Pure first-order logic theorem proving can only generate programs without loops.
For deriving recursive programs induction techniques are needed during the proof
process. In [23] we have developed an induction prover for “simple” induction
problems which is based on rippling [9, 1]. The basic concept for integrating this
external prover into the NuPRL system is similar to the first-order case: (i)
separating a subgoal in the actual NuPRL sequent, (ii) searching an induction
proof for the goal with the external prover, and (iii) converting the induction
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proof into a NuPRL sequent proof. This integration concept has been realized
with tactics and extends an earlier approach presented in [25].

3.1 Introduction to Rippling

In order to prove a goal by induction an induction scheme of the form

A(base) ∧ (∀x.A(x) ⇒ A(step(x))) ⇒ ∀x.A(x)

has to be applied to the goal which results in the following two subgoals: a
base case A(base), which for the most part can be proved directly, and a step
case ∀x.A(x) ⇒ A(step(x) which needs term rewriting to derive the conclusion
A(step(x)) from the induction hypothesis A(x). To perform rewriting in a goal
oriented way, a special technique called rippling was introduced by Bundy [9].
A more refined and formalized version has later been developed by Basin and
Walsh [1] from which we take the central ideas for our presentation.

Rippling uses annotations on subterms to mark the differences between the
conclusion and the hypothesis. It first identifies additional function symbols in
the conclusion, called wave fronts, which will be annotated by surrounding boxes.
Subterms inside a wave front which are identical to the corresponding subterms
in the hypothesis are called wave holes and will be underlined in the depictions.
Consider for example the step case for the associativity of ’+’

(x + y) + z = x + (y + z) ⇒ (s(x) + y) + z = s(x) + (y + z),

for which the annotated conclusion is given by

( s(x)
↑

+ y) + z = s(x)
↑

+ (y + z).

Arrows at boxes indicate the direction to which the wave fronts will be moved
(or rippled) in the term tree. An ‘↑’ means that a wave front has to be moved
towards the root (rippling-out) whereas ‘↓‘ permits a wave front to be moved
towards the leaves (rippling-in). For this purpose annotated rewrite rules called
wave rules are used, e.g.

s(U)
↑

+ V
R7−→ s(U + V )

↑
(1)

s(U)
↑

= s(V )
↑ R7−→ U = V (2)

A proof using the rippling-out strategy is successfully finished, if all wave
fronts have been eliminated by applying wave rules. If rippling-in is used instead
each universally quantified variable of the hypothesis is marked with a special
sink symbol ‘bsinkc‘. All wave fronts have to be rippled towards these sink
positions, which requires the application of a rule for switching from ‘↑ to ‘↓’
(there is no rule for the opposite direction) and of additional wave rules for
rippling-in. Afterwards a substitution has to be found which matches the sink
variables in the hypothesis with the corresponding terms in the wave fronts.
Backtracking may be required in order to find instances for all sink variables.

The main difference between the two strategies is that rippling-out provides
a goal-oriented proof search whereas rippling-in does not. For rippling-out each
step moves a wave front towards the root of the term tree and the search cannot
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branch. In contrast to this, rippling-in guides a wave front only to be rippled
towards the leaves without giving guarantee that there exists a sink under the
actual wave front position. Backtracking is required to find a sequence of rules
which ripples all wave fronts into sink positions. A sink heuristic, defined in [1],
makes sure that rippling-in always ripples a wave front towards sink positions.
The restriction on the class of provable problems caused by this heuristic is
harmless compared with the gain one obtains by the reduced backtracking.

3.2 Rippling-Distance – A Uniform Rippling Strategy

Even with the sink heuristic rippling-in often has an untractable search space.
In order to obtain an efficient induction strategy we have generalized rippling-
out and rippling-in to a new uniform strategy, called rippling-distance [23]. The
arrows ‘↑‘ and ‘↓‘ were removed from the wave fronts and each wave front is
assigned to one goal sink . To guarantee termination a distance measure MD
has been introduced which describes the distance between a wave front and its
assigned goal sink in the term tree. Each application of a wave rule has to reduce
this measure wrt. the selected wave front. This strategy splits the enormous
search space into smaller subspaces which can be searched independently.

Rippling-distance provides a more goal-oriented proof search than rippling-in
with sink heuristic since it implicitly contains the application of the switching-
rule. No backtracking over the switching position in the term tree has to be
done. In the worst case mn assignments from wave fronts to goal sinks have to
be tested for an annotated term with m wave fronts and n sinks. The number
of possible assignments seems to be very large, but this heuristic allows us to
divide the proof search into separate search tasks. Whereas a non-separated
search has a complexity of about m( 1

4 n·m·d2) steps for finding a rippling proof
the divided search needs only about m(n+m·d) steps, where d is the depth of
the term. Furthermore, the assignment concept gives us control knowledge for
avoiding assignments which most likely do not contribute to a successful search.
An extension of dividing the proof search can be reached by separating the wave
fronts into independent classes such that each class is assigned to a different goal
sink. Then an independent proof search for each class reduces the complexity
to about m! · d steps for m = n, and to (m′)(n+m′·d) steps for m > n, where
m′ = m− (n− 1) (see [23] for details).

In order to uniformly integrate rippling-out into the rippling-distance strat-
egy the definition of sinks has been generalized to arbitrary term positions. Then
rippling-out can be seen as a special case of rippling-in by putting a sink around
the whole term on which the wave rules will be applied, e.g.

b s(x) ≤ s(x) · s(x) c

This approach can be optimized if the outermost relation of the term is equality.
Then two sink positions are defined at the immediate subterms of ’=’, e.g.

b( s(x)
↑

+ y) + zc = b s(x)
↑

+ (y + z)c
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The distance measure MD can be applied directly to this rippling-out sim-
ulation without any changes. For practical use within a rippling prover we have
combined rippling-distance with dynamically annotated wave rules. This means
that the annotations of wave rules are determined at runtime from a set of
rewrite rules which do not have annotations. Since there are no direction marks
’↑’, ’↓’ at the wave fronts the number of possible annotations is decreased and
the annotations are easier to compute [23].

The admissibility of annotated wave rules has to be tested using a well
founded reduction ordering ≺x in order to avoid cyclic sequences of wave rules.
From the measure MD we have developed a new reduction ordering ≺dist which
can be computed more efficiently than the ordering ≺comp , the compound reduc-
tion ordering for rippling-in presented in [1]. This advantage becomes remarkable
if multi-wave holes are used where wave fronts may contain more then one wave
hole. Furthermore, ≺dist has been extended with an additional weight-function,
which allows the use of additional associativity and commutativity wave rules.

3.3 Integrating the Rippling-Distance Strategy into NuPRL

In [23] we have described the integration of an external rippling prover into
the NuPRL system which uses rippling-distance with dynamic rule annotations
for guiding a proof search. The prover is implemented in NuPRL-ML [15] and
called during a NuPRL proof session via a tactic Ripple. This tactic prepares
the proof goal for the prover by applying an appropriate induction scheme and
extracting the induction step. After the prover has solved this step case the
resulting rippling proof will be translated back into a NuPRL sequent.

An application of NuPRL’s induction scheme for natural numbers IN yields
as step case a subgoal of the form x−1 7→ x . This means that an additional
function symbol ’−’ occurs in the hypothesis which cannot be handled directly by
the rippling calculus. We have developed a simulation of the step case x 7→ x+1
in NuPRL which is admissible for rippling. Furthermore, NuPRL’s induction
scheme for list types TList is also supported by our rippling prover.

Before applying an induction scheme the induction variable is moved in front
of other universally quantified variables in order to maximize the number of sink
variables. After the step case is proved the translation back into a sequent proof
has to be done. In [25] a translation for rippling-out proofs was developed, which
can be used for arbitrary sequences of rewrite rules. It is implemented as meta-
tactic and uses the basic refinement rules cut , substitution and lemma. We have
extended this approach with the following concepts [23]:
1. The (universally quantified) induction hypothesis can be instantiated.
2. Polymorphic types for integration of rewrite steps can be reconstructed.
3. Premises in a NuPRL-sequent can be used as rewrite rules.

The first improvement is necessary for completing rippling-in proofs. The hy-
pothesis has to be instantiated with sink terms which have been rippled into the
sink positions of the induction conclusion. To complete a rippling-out simulation
with optimization for equality ‘=‘ (see Section 3.2) the generalized sink positions
have to be unified by using the induction hypothesis as a rewrite rule.
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Fig. 4. Components and integration of the rippling module

The second extension determines the type and universe level for a substitu-
tion rule by analyzing the proof. This type reconstruction is necessary since the
external rippling prover is untyped. A temporary proof goal will be generated in
order to compute the type for a successful application of the substitution. Then
the goal is forced to fail and the extracted type information will be used for the
original proof.

The last improvement allows premises of the current proof goal to be used
as wave rules if they are in NuPRL’s universal formula format [16]. So second
order proofs over universally quantified functions can be established by using
the recursive definitions of these functions in the premises as wave rules.

Many additional improvements have been made for adapting the basic trans-
lation approach to the rippling-distance strategy. Furthermore, NuPRL‘s tactics
BackThruLemma and BackThruHyp for backward chaining in universal formulas
are applied to support a uniform translation of the rippling steps wrt. equality-,
implication- and hypothesis-axioms. The components of the rippling module and
its integration into the NuPRL system are summarized in Fig. 4.

In future work we will adapt NuPRL’s induction scheme for integers ZZ to
an admissible induction scheme for the rippling calculus. This can be realized
by simply extending the presented adaption for natural numbers IN to ZZ. Fur-
thermore, a library of measures MX and corresponding reduction orderings ≺x

will be built for realizing special extensions. In the current implementation there
are two alternative measures, one for fast proofs in large terms and the other
for more complicated proofs. The latter allows us to use additional associativity
and commutativity rules for normalizing wave fronts which is necessary for un-
blocking proof search. In the current state of the system the user has to specify
the measure which should be used but this can be done automatically as soon
as syntactic and functional characterizations have been developed.
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4 High-Level Synthesis Strategies

The theorem proving techniques described in the previous sections operate on a
rather low level of abstraction and have only little to do with the way in which a
programmer would reason when developing a program. The application of these
methods is therefore restricted to programming problems which are conceptually
simple and can be solved completely automatically.

Techniques which are to support the synthesis of larger programs, however,
will depend on a cooperation between programmer and machine. A programmer
will have to control and guide the derivation process while the system will fill in
the formal details and ensure the correctness of the generated algorithms. The
corresponding proof techniques have to operate on a higher level of abstraction
and must be based on comprehensible formalizations of application domains and
programming concepts rather than on low-level inferences of the logical calculus.

Algorithm design strategies based on schematic solutions for certain classes
of algorithms [40] have proved to be suited best for this purpose since they
can be formulated almost entirely in programmer’s terminology. It has been
demonstrated [41] that algorithm schemata do not only lead to a very efficient
synthesis process but can also produce competitive algorithms if properly guided.

Formally verified theorems stating the requirements for the correctness of
an abstract program scheme [19] are the key for an integration of these strate-
gies into the general framework. Such theorems can be applied like high-level
inference rules which decompose the synthesis task into the task of proving in-
stances of the given axioms. The latter can then be solved by first-order theorem
provers, simple inductions, applications of additional theorems, or knowledge-
base queries. The conceptually difficult problem – generating the algorithm and
proving it correct – has been solved once and for all while proving the formal
theorem and requires only a single step in the synthesis process. In this section
we shall illustrate how this methodology is used for integrating a strategy for
the design of global search algorithms [39] into the uniform proof system.

4.1 Formalizing the Design of Global Search Algorithms

Solving a problem by enumerating candidate solutions is a well-known concept in
computer science. Global search is a concept that generalizes binary search, back-
tracking, branch-and-bound, and other methods which explore a search space by
looking at whole sets of possible solutions at once.

The basic idea of global search, illustrated in Fig. 5, is to combine enumera-
tion and elimination processes. Usually, global search has to compute the com-
plete set of output values for a given input. Global search systematically enumer-
ates a search space which must contain the set of all output values (a) and tests if
certain elements of the search space satisfy the output-condition (b). The latter
is necessary to guarantee correctness but is too fine-grained to achieve efficiency,
particularly if the search space is much bigger than the set of solutions. There-
fore whole regions of the search space are filtered out during the enumeration
process if it can be determined that they cannot contain output values (c).
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Fig. 5. Global Search as elimination process

In order to synthesize global search algorithms from specifications, we have to
formalize their general structure as an abstract program scheme and to describe
techniques for automatically generating appropriate enumeration and filtering
processes. We begin by fixing the notation for general programming concepts.

A programming problem is usually characterized by the domain D of the
desired program, its range R, a condition I on acceptable input values x, and
a condition O on the returned output values z. Formally, a specification can be
described as 4-tuple spec = (D,R,I,O) where D and R are data types, I is
a predicate on D, and O is a predicate on D×R. A specification and a (pos-
sibly partial) computable function body:D 6→Set(R) together form a program.
A program is correct if it computes the complete set of output values for each
acceptable input (∀x:D. I(x) ⇒ body(x)= {z:R |O(x,z)}). A specification is sat-
isfiable if it can be extended into a correct program. As in [40] we use a formal
notation for programs which emphasizes that we are interested in computing the
set of all solutions of a given problem (assuming that there are finitely many):

FUNCTION f(x:D): Set(R) WHERE I(x) RETURNS {z | O(x, z)} ≡ body(x).
The name f can be used in the body in order to describe recursive algorithms.
Often we use only the left side to denote specifications in a more readable way.

All the above concepts, including an ML-like mathematical notation for com-
putable functions, can be straightforwardly formalized in the logical language of
NuPRL (see [19, section 2]) and are the formal foundation for the automated
derivation of global search algorithms within the integrated synthesis system.

A careful analysis in [39] (later refined and formalized in [18, 19]) has shown
that the common structure of global search algorithms can be expressed by a
pair of abstract programs which is presented in Fig. 6. These programs contain
placeholders D, R, I, and O for a specification and seven additional components
S, J, s0, sat , split , ext , Φ which are specific for a global search algorithm. On input
x this algorithm starts investigating an initial search space s0(x) and passes it
through the filter Φ which globally checks whether a search region s contains
solutions. Using the auxiliary function fgs the algorithm then repeatedly extracts
candidate solutions (ext(s)) for testing and splits a search space s into a set
split(x, s) of subspaces which are again passed through the filter Φ. Subspaces
which survive the filter contain solutions and are investigated recursively.
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FUNCTION f(x : D):Set(R) WHERE I(x) RETURNS { z | O(x, z)}
≡ if Φ(x, s0(x)) then fgs(x, s0(x)) else [ ]

FUNCTION fgs(x, s : D×S):Set(R) WHERE I(x) ∧J(x, s) ∧Φ(x, s)
RETURNS { z | O(x, z) ∧ sat(z, s)}

≡ let immediate solutions =
let extracted candidates = ext(s) in

filter (λz.O(x, z)) extracted candidates
and recursive solutions =

let filtered subspaces = filter (λt.Φ(x, t)) (split(x, s)) in

flatten (map (λt.fgs(x, t)) filtered subspaces)
in append immediate solutions recursive solutions

Fig. 6. Structure of Global Search algorithms

For the sake of efficiency, search spaces are represented by space descriptors
s ∈S instead of sets of values z ∈R and the fact that a value z belongs to the space
described by s is denoted by a predicate sat(z, s). The predicate J(x, s) expresses
that s is a meaningful search space descriptor for the input x. Formally S must
be a data type. J and Φ must be predicates on D×S and sat one on R×S.
s0:D 6→S, split :D×S 6→S, and ext :S 6→Set(R) must be computable functions.

Six requirements, formalized in Fig. 7, must be satisfied to ensure the correct-
ness of global search algorithms. The initial descriptor s0(x) must be meaningful
(1) and splitting must preserve meaningfulness (2). All solutions must be con-
tained in the initial search space (3) and be extractable after splitting finitely
many times (4). Subspaces containing solutions must pass the filter (5) and fil-
tered splitting, the combined enumeration/elimination process, must eventually
terminate (6). In [39] (refined in [18, 19]) the following theorem has been proved.

Theorem 1. If D, R, I, O, S, J , sat, s0, split, ext, and Φ fulfill the axioms of
global search then the pair of programs given in Fig. 6 is correct and satisfies the
specification FUNCTION f(x: D): Set(R) WHERE I(x) RETURNS {z | O(x, z)}.

Thus a global search algorithm can be synthesized for a given specification
by deriving seven components S, J , sat , s0, split , ext, and Φ which satisfy the
axioms of global search and instantiating the abstract programs accordingly.

4.2 Knowledge Based Algorithm Construction

A direct derivation of global search algorithms on the basis of theorem 1 is ob-
viously a difficult task. The theorem does not provide information how to find
the seven additional components and the verification of the six axioms, particu-
larly of axioms 4 and 6 which require induction, would put a heavy load on the
proof process – even if the techniques mentioned in sections 2 and 3 were already
integrated into the derivation strategy. Instead, it is much more meaningful to
base the construction of global search algorithms on general knowledge about
algorithmic structures. For a given range type R, for instance, there are usually
only a few general techniques to enumerate search spaces and each global search
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∀x: D. ∀z: R. ∀s: S.

1. I(x) ⇒ J(x, s0(x))
2. I(x) ∧ J(x, s) ⇒ ∀t ∈ split(x, s). J(x, t)
3. I(x) ∧O(x, z) ⇒ sat(z, s0(x))
4. I(x) ∧ J(x, s) ∧O(x, z) ⇒ sat(z, s) ⇐⇒ ∃k. ∃t ∈ splitk(x, s). z ∈ext(t)
5. I(x) ∧ J(x, s) ⇒ Φ(x, s) ⇐ ∃z. sat(z, s) ∧O(x, z)
6. I(x) ∧ J(x, s) ⇒ ∃k. splitkΦ(x, s) = ∅

where splitΦ(x, s) = {t ∈ split(x, s) | Φ(x, t)}

and splitkΦ(x, s) =

{
s if k = 0⋃

t ∈ splitk−1
Φ

(x,s)
splitΦ(x, t) if k > 0

Fig. 7. Axioms of Global Search

algorithm will use a special case of such a technique. Therefore it makes sense to
store information about generic enumeration processes in a knowledge base and
to develop techniques for adapting them to a particular programming problem.

The investigations in [39] have shown that standard enumeration structures
for some range type R can be stored in a knowledge base as objects of the form
G = ((DG, R, IG, OG), S, J, s0, sat, split, ext) which are proved to satisfy axioms
1 to 4. Such objects are called GS-theories. A problem reduction mechanism will
make sure that the four axioms are preserved when the enumeration structure
is specialized to a given specification which involves the same range.

Specializing a standard GS-theory G works as follows. Its specification specG
= (DG, RG, IG, OG) characterizes a general enumeration method fG which ex-
plores the space RG as far as possible. Specialization simply means to avoid
enumerating elements which are not needed and results in a kind of “truncated”
enumeration structure for the same type. Formally, specG can be specialized to
a given specification spec = (D, R, I,O) if the the following condition is valid:

R=RG ∧ ∀x: D. I(x) ⇒ ∃xG:DG. IG(xG) ∧ ∀z:R. O(x, z)⇒OG(xG, z)

Thus specialization also allows to adapt the input of a problem since the
original input x is mapped to a value xG which serves as input for the search
performed by fG. A proof of the above condition implicitly contains a substitu-
tion θ:D→DG which maps x to xG. θ can be extracted from the proof and then
be used for refining fG into a search method with inputs from D instead of DG.
On the output side of the problem specialization restricts fG to the computation
of values which satisfy the stronger condition O. Technically, this can be done
by checking O for each computed value. Altogether problem reduction allows us
to create a global search algorithm f for the specification spec by defining

f(x) = {z ∈fG(θ(x)) | O(x, z)}.
For the sake of efficiency, the modifications caused by θ and O will be moved
directly into the components of the algorithm. By an index θ as in Jθ or splitθ
we indicate that the transformation θ is applied to all arguments expecting a
domain value from D, e.g. splitθ(x, s) = split(θ(x), s).
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Specializing predefined GS-theories allows us to derive six components of a
global search algorithm which satisfy axioms 1 to 4 with comparably little effort.
In a similar way, we can avoid having to prove the sixth axiom explicitly. For
each enumeration structure there are only a few standard methods to ensure
termination through an elimination process. In [18, 19] it has been shown that
these methods can be stored in the form of filters Φ for a GS-theory G which
are proved to satisfy axiom 6. Such filters will be called well-founded wrt. G and
this property will be preserved during specialization as well. Thus specialization
reduces the proof burden to checking that, after specialization, the selected filter
is necessary wrt. the GS-theory, i.e. that it satisfies axiom 5.

The process of adapting the search space to the specific problem can be
completely formalized and expressed in a single reduction theorem.

Theorem 2. Let G=((DG, R, IG, OG), S, J, s0, sat, split, ext) be a GS-theory.
Let spec=(D,R, I, O) be a specification such that specG=(DG, R, IG, OG) can
be specialized to spec. Let θ be the substitution extracted from the specializa-
tion proof. Then Gθ = ((D,R, I, O), S, Jθ, s0θ, sat, splitθ, ext) is a GS-theory.
Furthermore if Φ is a well-founded filter wrt. G then Φθ is well-founded wrt. Gθ

Adapting standard algorithmic knowledge to a given problem moves most of
the proof burden into the creation of the knowledge base and keeps the synthesis
process itself comparatively easy. Information retrieved from the knowledge base
will provide all the basic components and guarantee that axioms 1 to 4 and 6 are
satisfied. Only the specialization condition and the necessity of the specialized
filter – conditions whose proofs are much easier than those of axioms 4 and 6
– need to be checked explicitly. These insights led to the following strategy for
synthesizing global search algorithms from formal specifications (see [19, Section
4.4] for an application example).

Strategy 3 Given the specification
FUNCTION f(x:D): Set(R) WHERE I(x) RETURNS {z | O(x, z)}

1. Select a GS-theory G=((DG, R, IG, OG), S, J, s0, sat, split, ext) for R.
2. Prove that specG=(DG, R, IG, OG) can be specialized to the specification.

Derive a substitution θ:D→DG from the proof and specialize G with θ.
3. Select a well-founded filter Φ for G and specialize it with θ.
4. Prove that the specialized filter is necessary for the specialized GS-theory.
5. Instantiate the program scheme given in Fig. 6.

It should be noted that in step 4 the specialized filter could be refined by
heuristically adding further conditions which do not destroy its necessity. In
some case this can drastically improve the efficiency of the generated algorithm.

4.3 Integrating the Design Strategy into Deductive Systems

So far we have described the synthesis of global search algorithms only semi-
formally in order to illustrate the fundamental ideas. Integrating the strategy
into a proof based system now requires a more rigorous approach. Each step in a
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` spec is satisfiable

BY InstLemma 〈name of global search theorem〉 [gs; Φ]

` gs describes global search limited by Φ

` R(spec) = R(specification(gs))

1. PROGRAM SCHEME

O SATISFIES 〈decidability of the output condition of spec〉
θ SATISFIES 〈the specification for θ〉

⇒
filtered body(gs specialized to spec using θ; Φ; O)

SATISFIES spec
END

` spec is satisfiable

Fig. 8. Principal structure of a proof generated by the Global Search tactic

derivation must be completely formal such that it can be controlled by the proof
system. On the other hand, each derivation step should remain on the high level
of abstraction which we have used so far. In the following we will explain the
techniques by which these two requirements could be achieved.

The application of formally verified theorems is one of the most important
principles which make program synthesis within a formal proof system like
NuPRL feasible (see [19, Section 3] for a detailed exposition). In such systems all
derivations must eventually be based on primitive inference rules. Formal the-
orems, however, can serve as derived inference rules on a much higher level of
abstraction. Their application corresponds to a single, conceptually large infer-
ence step which would require thousands of elementary proof steps if performed
purely on the level of primitive inferences. In order to represent rule schemes,
these theorems contain universally quantified variables which must be instanti-
ated by concrete values before the theorem can be applied. Finding appropriate
values is the only difficult aspect of this technique.

The kernel of our implementation of the global search strategy, for instance,
is a single formal theorem which combines theorems 1 and 2. It quantifies over
variables for GS-theories (gs), filters (Φ), transformations (θ), and specifications
(spec) which must be instantiated by a proof tactic for synthesizing global search
algorithms. The instance for spec is obvious. G and Φ should be provided manu-
ally since their selection from a restricted set of alternatives is a design decision
rather than a deductive task. The function θ, however, should be derived fully
automatically, since it does not introduce any new algorithmic idea but is deter-
mined by the specialization conditions. The value for θ is only clear after these
conditions have been investigated.

The different nature of these variables had be taken into consideration while
developing a NuPRL-tactic for deriving global search algorithms. In general, the
design of proof tactics should correspond to the structure of the proofs they
generate. As proofs are typically divided into subproofs for certain subgoals,
the tactic should be organized in the same manner and provide subtactics for
the different tasks. The handling of variables representing design decisions has
to be moved to the beginning of the proof, since they pre-structure the rest of
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it. Almost all tactics have to reflect the structure of the terms to which they
are applied, since the primitive rules only allow a structural analysis or synthe-
sis of terms.

This leads to a fixed anatomy on the top-level of a proof, as illustrated
in Fig. 8. A typical synthesis proof begins by stating that an algorithm for a
specification spec shall be found. It then instantiates the global search theorem
by invoking the tactic InstLemma which requires the ‘design parameters’ gs and
Φ, denoting the concrete GS-theory and the filter, to be provided manually. This
results in three preconditions for the initial formula (NuPRL proceeds top-down).
The first says that gs is valid, i.e. fulfills the axioms 1 to 4, and that Φ makes
the search space well-founded. These assumptions are usually shown by referring
to lemmas, since gs and Φ are selected from a few alternatives whose properties
are stored as lemmas in the NuPRL library. The second subgoal states that
the range types of the specification and the GS-theory are identical. The third
expresses that the algorithmic scheme introduced by gs and Φ can be adapted to
spec. Here the specialization to be performed is described in terms of so-called
program schemes. By this we emphasize that θ is the missing algorithmic link
between the schematic search space and the final program for spec.

Program schemes express that a complex problem can directly be reduced to
simpler problems. The part after the implication symbol in Fig. 8 describes how
the algorithm for the complex problem is formed by algorithms for the simpler
ones. The latter may occur as variables which have to be declared before the
implication symbol. The SATISFIES clause specifies the problem associated with
the variable to be solved. Thus the final program filtered body(...) can be
constructed as soon as the two auxiliary algorithms O and θ are given.2 The
specification for θ as algorithm contains all conditions in which θ finally occurs,
i.e. the conditions for specialization and necessity. Necessity is usually viewed
as property of the filter Φ but, since specialization prunes the search space, we
have to check whether the combination of Φ and θ results in a necessary filter.

The overall effect of the concept of program schemes is that we can formulate
the final program although two auxiliary algorithms are yet unknown. Applying
the basic theorem therefore corresponds to a macro reduction step transforming
a complicated initial specification into one or more simpler subproblems. This
results in improved comprehensibility of both the proof and the tactic.

Automatic proof methods are especially valuable for solving the third sub-
goal. We have already pointed out that θ can be only derived together with the
proof showing that θ satisfies its specification. This means that we need a sepa-
rate proof search phase, in which we find out how to successfully solve the goal,
before we can actually construct the proof. The methods discussed in sections 2
and 3 have these capabilities, and we will investigate to what extent they can be
applied to subgoals of the discussed kind. In the KIDS system, term rewriting
is successfully used to prove these conditions. Term rewriting can again be real-
ized by theorem application. But in this case the theorems have a much simpler

2 When presenting the global search method on paper one easily overlooks the fact
that the predicate O must be transformed into a computable function.
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structure and instances for the quantified variables can almost always be found
by first-order matching.

One should now be able to imagine what had to be done to fully implement
the global search strategy on a platform like NuPRL. As logical calculi provide
only primitive concepts, we first had to increase their level of abstraction by
representing standard data types like lists, finite sets, etc. as well as the corre-
sponding operations and their laws. This allows us to formulate simple programs
and to prove their properties. Next, in order to reason about programs as such,
we had to implement concepts like program, specification and related notions
which were formalized in [18, chapter 2]. The conditions for specialization and
filtering reside on a similar level. They are used in the axioms of the GS-theories
which had to be implemented on the basis of the specific data structure con-
taining the different components. Furthermore, we need the fundamental global
search theorem and its proof. Finally, relevant GS-theories together with the
associated well-foundedness filters had to be represented. In both cases, lem-
mas have to guarantee that the required properties are fulfilled. Together, these
definitions and lemmas describe the formal knowledge about global search.

All the rest is tactic development. The global search strategy, as explained
above, had to be built from the top-level tactic and many subtactics solving
specific subtasks. Moreover, tactics had to be written for proving the laws of the
data types, the global search theorem, the properties of different GS-theories and
filters. Although these proofs have to be constructed only once, it does not make
sense to create them without automatic support. We expect that integrating the
techniques discussed in sections 2 and 3, especially induction, into our tactics
will be very helpful for this purpose.

Once the global search tactic has found a proof, we can extract a correct
algorithm from it using NuPRL’s standard extraction mechanism. The KIDS
system has shown that the efficiency of this algorithm can dramatically be im-
proved by postprocessing steps. It needs to be investigated where to place such
a step in a system which relies of derivations in a formal logic.

In our current implementation we have completed only the essential parts of
the global search strategy in NuPRL. Especially, only the proofs for the relevant
library theorems have been implemented, because the necessary proof methods
were not yet integrated. Instead, while formalizing the various concepts, we have
focused on the question whether type theory, despite the many formal details, is
suitable for practical program synthesis. As it turned out, the strict semantics
of type theory led to deeper insights into some of the concepts: it forced us to
change their formulation since the obvious one often meant something differ-
ent or was not even well-formed. Our work also led to improvements of some
standard tactics of NuPRL: in the term rewriting tactic we can often infer type
information automatically. By this the chances for success have been dramati-
cally increased; an automatic invocation of such a tactic is now imaginable. This
allows handling many difficulties resulting from the peculiarities of the calculus.
We believe that the formal complications can be further limited by integrating
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additional proof methods which will make program synthesis feasible even within
the strict framework of proof systems.

5 Conclusion

We have presented the design of the program synthesis system MAPS which
integrates a variety of techniques from automated theorem proving and algo-
rithm design at different levels of abstraction. We have demonstrated how proof
procedures for (constructive) propositional, first-order logic, and induction as
well as schema-based algorithm design strategies can be embedded into a single
framework for automated proof and program development.

Because of the rigorous formal framework into which all these methods are
embedded, executing the individual techniques is somewhat less efficient than
separate implementations. We believe however that the integrated approach is
the safest way of combining them into an automated reasoning system which can
deal with many of the problems occurring during a formal program derivation.

Future work will involve a more efficient implementation of the individual
techniques and support for a stronger cooperation between the high- and low-
level methods. We are currently elaborating a method for extracting programs
directly from matrix and induction proofs. We also intend to deepen our studies
on induction techniques and to integrate additional algorithm design strategies
using the same methodology. We will also work on supporting several existing
functional, logical, and imperative programming languages as a target language
of our derivations. Recent work on embedding the Objective Caml programming
language into NuPRL’s formal language [20] has shown that the practical use-
fulness of systems for program synthesis and transformation can be drastically
increased by such efforts.
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