
Simple and Effective Analysis of
Statically-Typed Object-Oriented Programs

Amer Diwan J. Eliot B. Moss Kathryn S. McKinley*

Department of Computer Science

University of Massachusetts, Amherst, MA 01003

Abstract

To use modern hardware effectively, compilers need ex-
tensive control-flow information. Unfortunately, the fre-
quent method invocations in object-oriented languages
obscure control flow. In this paper, we describe and eval-
uate a range of analysis techniques to convert method
invocations into direct calls for statically-typed object-
oriented languages and thus improve control-flow in-
formation in object-oriented languages. We present
simple algorithms for type hierarchy analysis, aggre-
gate analysis, and interprocedural and intraprocedu-
ral type propagation. These algorithms are also fast,

O(lprocedures] * Cprocedurea np * up) worst case time
(linear in practice) for our slowest analysis, where np
is the size of procedure p and vP is the number of vari-
ables in procedure p, and are thus practical for use in a
compiler. When they fail, we introduce cause analysis
to reveal the source of imprecision and suggest where
more powerful algorithms may be warranted. We show
that our simple analyses perform almost as well as an
oracle that resolves all method invocations that invoke
only a single procedure.

1 Introduction

Computer hardware and programming languages are on

a collision course. Modern hardware exposes an increas-

*The authors can be reached electronically via Internet addresses
{diwan,moss,mckinley}@cs.umass.edu. This work was sup-
ported by the National Science Foundation under grants CCR-
9211272 and CCR-9525767 and by gifts from Sun Microsystems
Laboratories, Inc.

P~r~i~~io~ to make dWalhard copy of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made
or distributed for Profit or commercial advantage, the copyright notice, the

title ?f @ Pubkation,and its date appear, and notice is given that
CoPYW 1s bY PermissIon pf ACM, Inc. To copy otherwise, to republish to
Post on sewers, or to redistribute to lists, requires prior specific perm&ion
and/or a fee.

OOPSLA ‘96 CA, USA
0 1996ACM 0-89791-788~X/96/0010...$3.~

ing amount of implementation details to the compiler.

The exposed detail includes the pipeline, the memory

hierarchy, and the functional parallelism of the proces-

sor. To achieve the processor’s potential, the compiler

must be able to predict the program’s control-flow.

In object-oriented languages, programmers use a type

hierarchy and method invocations to improve code reuse

and correctness. Unfortunately, method invocations ob-

scure which procedure is actually being invoked. In

dynamically-typed languages, frequent method look-up

is costly in itself [6] but in statically-typed languages,

it is typically not a significant cost. For both static

and dynamic languages however, method invocations

inhibit optimization. If analysis can resolve method in-

vocations to direct calls, the compiler can then optimize

effectively across method invocation sites, replacing the

method invocation with a direct call, a tailored call, or

an inlined call. The additional control-flow information

provides fodder for an optimizing compiler to improve

performance.

In this paper, we describe and evaluate the following

analyses for resolving method invocations in a statically-

typed object-oriented language:

l Type hierarchy analysis determines the procedures

a method invocation may call by considering the

types that implement that method.

l Type propagation performs intraprocedural and in-

terprocedural data-flow analysis for types.

l Aggregate analysis detects when an object or record

field is restricted to a single type.

Our type hierarchy analysis is the same as previous

work. What differentiates our type propagation and ag-

gregate analysis from previous work is that we make

simplifications to achieve a fast whole program analy-

sis, 0 ((procedures\ * ~~oced“rer np *vp) time worst case

292

(linear in practice) for the slowest analysis, where np is

the size of procedure p and Q is the number of vari-

ables in procedure p. We also introduce a cause analysis

algorithm that determines the reason when our analysis

does not resolve a method invocation. Using the cause

analysis, we present detailed experimental results that

characterize which language and programming features

affect the procedure(s) called at run-time from a method

invocation site and the ability of the analysis to resolve

the method invocations.

method invocations and our ability to resolve them. Sec-

tion 6 gives the reasons for our failures and successes and

compares our analyses to an oracle. Section 7 discusses

how our results apply to languages like C++. Section 8

reviews related work. Section 9 concludes.

2 Background:
Polymorphism through subtyping

We implemented the analyses for Modula-3 programs

[191 in the SRC Modula-3 compiler version 3.5 [16].

Modula-3 is a statically-typed object-oriented systems

programming language similar (for present purposes)

to C++ and even more so to Java. We evaluated the

analyses on ten Modula-3 programs ranging in size from

400 to 29,000 lines of non-blank, non-comment lines of

code (76,122 total lines).

Statically-typed object-oriented languages support poly-

morphism through subtyping. A type S is a subtype of

T if it supports all the behavior of T. Thus, the program

can use an object of type s whenever an object of type T

is expected. In particular, a variable with declared type

T may refer to objects that are subtypes of T, not just T.

Our results demonstrate that these simple algorithms

are very effective at resolving statically monomorphic

method invocation sites, i.e., those method invocation

sites that call a single procedure. Our techniques detect

92% of the method invocation sites in our test suite that

call one procedure at run time.

Consider the Modula-3 type hierarchy in Figure 1,

which defines a type T, and S, a subtype of T. Proce-

dures mT, ms, and nS are defined elsewhere. S has all

the behavior of T (in particular, the m method) but it

may have different implementations of T’s methods (in

this case, mS instead of mT). S may support behavior not

supported by T (in this example, the n method). Invok-

ing the m method on a variable with declared type T may

invoke one of three procedures:
Most method invocations are resolved by type-

hierarchy analysis, but intraprocedural and interprocedu-

ral type propagation, and aggregate analysis, also benefit

individual programs. Our cause analysis indicates that

the primary reason for analysis failure is polymorphism,

i.e., the method invocations call more than one proce-

dure at run time and thus analysis alone cannot resolve

them. Our results show that most polymorphic method ,

invocations are due to use of heap allocated structures.

For monomorphic sites, the primary cause of analysis

failure is the loss of information at control-flow merges,

records, and heap allocated structures. Although there

is room to improve the aggregate analysis, our simple

analysis resolves most of the few monomorphic calls that

could be resolved by an aggregate analysis. Our analyses

are simple, fast, and effective enough to incorporate into

existing compilers for statically-typed object-oriented

languages.

1. mT, if the last object assigned to the variable had

type T

2. mS, if the last object assigned had type S; and

3. error, if the last object assigned was NULL.

In general, invoking a method on a variable (the re-

ceiver) can call any procedure that overrides that method

in the variable’s declared type or any subtype of its de-

clared type. The NULL type is a subtype of all objects

in Modula-3 and overrides all methods with an error

procedure.

The remainder of this paper is organized as follows.

Sections 2 and 3 review background material and further

motivate these analyses. Section 4 describes type hierar-

chy analysis, type propagation, and aggregate analysis.

Section 5 presents static and dynamic measurements of

A polymorphic method invocation site calls more than

one user procedure at run time. For example, consider

invoking the print method on each element of a linked

list in a loop. If the list links objects of different types,

then the print method invokes different procedures

depending on the type of the list element.

A monomorphic method invocation site always in-

vokes the same user procedure (or error). It may have

the potential to be polymorphic but the polymorphism is

293

TYPE T = OBJECT

f: T;

METHODS

m := mT;

END;

(* S is a subtype of T *)

TYPE S = T OBJECT

METHODS

n a- nS;

WE&DES

m := mS;

END;

Figure 1: A Modula-3 Type Hierarchy

never present at run time. To continue the linked list ex-

ample, if the list links objects of only one type, then the

print method will always invoke the same procedure.

A method invocation is resolved if it is identified as

being monomorphic. The goal of the analyses presented

here is to resolve all the monomorphic sites.

3 Motivation

Object-orientation promises many important software

engineering benefits. There are however significant

obstacles to obtaining peak performance from object-

oriented programs on modern processors. In particular,

small methods with frequent method invocations hin-

der compiler optimizations since the compiler does not

know where control will go next.

Modern hardware, on the other hand, requires a sub-

stantial amount of control-flow information to exploit

the hardware fully. For example, the memory latency of

some modem machines is around 70-100 cycles [1 l] and

thus the compiler needs to know which instruction will

be executed 70 cycles in advance in order to prefetch

data or instructions most effectively. Other hardware

features that require extensive control-flow information

to optimize for include multiple instruction issue per

cycle and non-blocking loads.

Figure 2 shows the cumulative distribution of the num-

ber of SPARC instructions executed between method in-

vocations for a run of M2 toM3, a Modula-3 program

that converts Modula-2 programs to Modula-3. At point

(x, y) , y% of the time there are fewer than x instruc-

80 -

E
8
cii
a

50 100 150 200 250
Instructions between method invocations

Figure 2: Instruction distribution between method invo-

cations

tions between method invocations. The graph shows

that more than 50% of the time there are fewer than

60 instructions between method invocations. These in-

structions include those for passing parameters and for

method lookup. With such frequent unknown control

transfers, it is unlikely that the compiler can fully exploit

prefetch instructions or instruction level parallelism.

There are two ways of improving the control-flow

information in the compiler. First, program analysis

may reduce the set of possible procedures called at each

method invocation [l, 10, 121. This analysis is effective

only on monomorphic method invocations. Second, a

program may be transformed so that the performance-

critical method invocations can be converted to direct

calls. An example is splitting, which duplicates code in

order to improve type information [8]. Program transfor-

mations are effective on polymorphic and monomorphic

method invocations.

Since transformations may degrade performance, a

good strategy for a compiled language is first to analyze,

and only then to apply transformations to convert the re-

maining, frequently executed, polymorphic method in-

vocations. In this paper, we focus on the first part of

the solution: to develop and evaluate a range of analysis

techniques to resolve method invocations.

4 Analysis

In this section we describe each analysis technique and

introduce cause analysis. We use the type hierarchy of

Figure 1 to illustrate the strengths and limitations of the

294

analyses. We use a power set of the types for the lattice

for our analyses; the initial type for a variable or heap or

record field or pointer reference is the empty set.

4.1 Type Hierarchy Analysis

Type hierarchy analysis bounds the set of procedures

a method invocation may call by examining the type

hierarchy declarations for method overrides. For each

type T and each method m in T, type hierarchy analysis

finds all overrides of m in the type hierarchy rooted at

T. These overrides are the procedures that may be called

when m is invoked on a variable of type T. Since NULL

is a subtype of all objects in Modula-3 and it overrides

all methods, type hierarchy analysis can never narrow

down the possibilities to just one; at best it determines a

method is one procedure or the error procedure.

Type hierarchy analysis does not examine what the

program actually does, just its type and method decla-

rations. Thus, it takes time proportional to the num-

ber of types and methods in the program, O(ITypesl *

IMethodsl).

4.2 Intraprocedural Type Propagation

Intraprocedural type propagation improves the results of

type hierarchy analysis by using data flow analysis to

propagate types from type events to method invocations

within a procedure, Type events create or change type

information. The three distinguishing type events are

allocation (v t NEW (t)), implicit and explicit type

discrimination operators (IsType (v, T)), and assignment

(v t u), which includes parameter bindings at calls.

For example, consider the following code:

1 P := NEW (S);

IF cond THEN

2 0 := NEW (T);

3 0-m 0;

ELSE

4 0 := P;

5 0.m 0;

END;

6 o.m 0;

Statement 2 contains a type event: an allocation. The al-

location propagates the type T to o, and thus determines

that the method invocation in statement 3 calls procedure

mT. Similarly, statement 4 contains a type event: an as-

signment. The type event propagates the type of p to o,

and thus determines that the method invocation in state-

ment 5 calls procedure mS. Finally, intraprocedural type

propagation merges the types of o at the control merge

before statement 6, yielding the type {T, S}. Thus the

method invocation in statement 6 cannot be resolved to

a single procedure.

Our implementation of type propagation propagates

types only to scalars; it assumes the conservative worst

case (the declared type) for the allocated types of record

fields, object fields, array references, and pointer ac-

cesses.

We formulate intraprocedural type propagation as a

data-flow problem similar to reaching definitions. We

identify and propagate pairs of variables and sets of pos-

sible types for the variables. All variables initially have

the empty type. A statement s with a type event gener-

ates and kills types as follows:

GENTYPE (v t NEW(t)) = (v, t)

GENTYPE (ZsType(v, 7’)) = (v, TypeOflv) f~ 2”)

GENTYPE (V t ‘1~) = (v, TwO74)

KILLTYPE(V t NEW(t)) = (21, TypeOflv))

KILLTYPE(V t u) = (T TypeWW

T denotes a set of types and t denotes a single type.

TypeOfretums the current types of a variable. ZsType is

an explicit type discrimination event which checks if ‘u’s

type is in T. Type discrimination may also be implicit.

In particular, for each IsType, there is an implicit type

discrimination event for the false branch.

The data-flow equations for a statement s are similar

to the equations for reaching definitions:

IN@) = U,~PRED(~) OUT(p)

OUT(s) = GENTYPE(S) U (IN(s) - KILLTYPE(

Our implementation stores the possible types of a vari-

able as a set. Thus, the union and intersection operators

are set union and set intersection respectively. This prob-

lem formulation is monotone and distributive.’ Since

Modula-3 programs are always reducible and type prop-

agation is rapid [171, we use a 0 (n * V) solution, where

n is the number of statements in a procedure and v is the

‘With the type discrimination operations in Modula 3, a more
precise, but non-monotone formulation is possible. As far as we
know, no one has investigated this formulation.

295

number of variables in the procedure and each step of information becomes available about its parameters or

the algorithm is a bit vector operation, about the return value of one of its callees. When in-

4.3 Aggregate Analysis

The goal of our aggregate analysis is to handle a common

situation efficiently: monomorphic use of a general data

structure. Consider the linked list package again. Our

aggregate analysis detects when a program links objects

of a single type and thus would resolve the invocation of

the print method on the list elements.

The aggregate analysis circumvents the difficulty of

analyzing records and heap allocated objects by merging

all instances of an object or record type. For example,

terprocedural type propagation analyzes a procedure, it

may put the callers and callees of the procedure on the

work list and update the call graph. In particular, analy-

sis may eliminate some call graph edges if it refines the

type of a method receiver. Interprocedural type prop-

agation maintains the work list in depth first order and

terminates when the work list is empty.

instead of this procedure.

Interprocedural type propagation propagates types

only to scalars, and it assumes the most conservative

Inter-procedural type propagation also keeps track of

which procedures are called only via method invoca-

tions (i.e., not called directly). For these procedures, it

eliminates NULL as a possible type for the first argu-

ment (self). If self isNULL, then error is invoked

v: T;

v.f := <rhs>

propagates the types of <rhs> to the field f of all pos-

sible types of v. The possible types of v may be deter-

mined by another analysis (such as type propagation) or

may be conservatively approximated as T and its sub-

types.

This analysis discovers monomorphic uses of general

data structures. However, if the program allocates two

distinct linked lists, one with elements of type s and the

other with type T, aggregate analysis does not recognize

that each list is homogeneous. It infers the type {T,

s , NULL } for the elements in both lists.

The type of an object-typed field always includes

NULL since all fields in Modula-3 are initialized at al-

location, and thus the first assignment to every object-

typed field is always NULL. In order to propagate types

to and from a field, aggregate analysis requires that all

assignments to that field be available for analysis.

type (the declared type) for all data accessed through

pointer traversal. Interprocedural type propagation does

not propagate side effects from calls and assigns the most

conservative type for any variable changed by the call:

the declared type. Variables potentially changed by a

call include variables declared in outer scopes, globals,

parameters passed by reference, and parameter aliases.

A distinguishing characteristic of our interprocedural

analysis is that, unlike related work ([l, 22, 20]), our

analysis is context insensitive. Rather than analyzing

for every combination of call site and callee we merge

the parameter types of all call sites of a procedure, and

the return types of all callees at a call site. This simplifi-

cation yields a much faster analysis (quadratic instead of

exponential) but at the cost of some accuracy. Consider

the following code:

.

We perform aggregate analysis in a single forward

pass. For each procedure, it is O(n) time in the number
PROCEDURE Caller1 () =

t
of statements in the procedure.

:= P (NEW (T));

t.m 0;

4.4 Interprocedural ‘Qpe Propagation PROCEDURE Caller2 () =

Interprocedural type propagation combines with in-
t := P (NEW (U);

traprocedural type propagation to resolve more method t.m 0;

invocations. It begins by building a call graph of the

program. The call graph has an edge from a method
PROCEDURE P (0: T) : T =

invocation to each possible target determined by the ear-
RETURN o;

lier intraprocedural analysis. The algorithm operates

by maintaining a work list of procedures that need to

be analyzed. A procedure needs to be analyzed if new

A context-sensitive analysis would analyze P separately

for each of its call sites and thus determine that the

296

Analysis Eliminates NULL Complexity

Type Hierarchy No O(ITypesl * IMethodsl)
Intraprocedural Type Propagation Yes OE, 7% * 5)
Aggregate Analysis No W-L %)

1 Interprocedural Type Propa lgation Yes

Table 1: Summary of analyses

method invocation in Caller1 will call mT and that in

Cal ler2 will call mu. Our context-insensitive analysis

instead merges the parameter types for each caller of

P and thus does not resolve the method invocations in

Caller1 and Caller2. We show in Section 6 that

for our benchmark suite, the loss in precision is not

significant.

If interprocedural type propagation is invoked on an

incomplete program, it makes conservative assumptions

about the parameters of procedures that could be called

from unavailable code, and about return values of un-

available procedures.

Since interprocedural type propagation may analyze

each procedure multiple times (in particular, recursive or

potentially recursive procedures), it may be substantially

slower than intraprocedural type propagation. Since in-

formation flows forward through parameters and back-

wards from return values, the worst case complexity is

0(1 procedures1 * Crocedurer nP * vP), where n is the

number of statements in procedure p and T+ the number

of variables in procedure p. In practice, however, we

have found it to be linear in the number of instructions,

analyzing each procedure an average of 2 to 4 times.

4.5 Analyzing Incomplete Programs

An implicit assumption in the analyses described above

is that the entire program (except for library code) is

available for analysis. Moreover, it is assumed that the

library code does not create subtypes of any types de-

clared outside the library2. While we have extended our

analyses to work with incomplete information, the re-

sults presented here assume the entire program (except

libraries) is available. In future work, we will evalu-

ate the effectiveness of the analyses on incomplete pro-

grams.

2Libraries may introduce subtypes of types declared outside the
library if structural equality is used for types.

4.6 Ordering the analyses

The ordering of our analyses can make a difference in the

effectiveness. For instance, if type propagation occurs

only before aggregate analyses, then type propagation

cannot propagate the information exposed by aggregate

analysis. We have not explored these interactions be-

tween analyses experimentally; instead we have chosen

the following fixed ordering.

1. type hierarchy analysis

2. intraprocedural type propagation

3. interprocedural type propagation

4. aggregate analysis

5. interprocedural and intraprocedural type propaga-

tion where needed

4.7 Summary

Table 1 summarizes the analyses. Eliminates NULL in-

dicates whether the analysis can eliminate NULL as a

possible type. In the Complexity column nP is the num-

ber of statements in procedure p. These algorithms are

simple and therefore fast, as shown in the Complexity

column.

5 Results

Section 5.1 describes the benchmark programs. Sec-

tion 5.2 evaluates the effectiveness of our analyses in

converting method invocations to direct calls. Section

5.3 presents the run-time improvements due to resolving

these method invocations.

297

Name

format

dformat

k-tree

slisp

PP
dom

Method invocations
Lines Compile time Run time Description

395 37 47,064 Text formatter
602 95 30,775 Text formatter
77.6 13 714,619 Builds and traverses a tree structure

67,253 Small 1isD interpreter 1645

2328

6186

223
24

222

I
458 1 A pretty printer for Modula-3 programs

1 A system for building distributed applications

A graDhica1 mail reader 293

1821

1808

430

4966

” I

Converts Modula-2 code to Modula-3

M3 v. 3.5.1 code generator + extensions

Window system + small application

Table 2: Benchmark Programs

5.1 Benchmark Programs

For each of the benchmark programs, Table 2 gives the

number of non-comment, non-blank lines of code, the

number of method invocations at compile time and at

run time (for one run of the benchmark), and a brief

description of the programs.

5.2 Converting Method Invocations to
Direct Calls

Figures 3 through 12 illustrate the percent of method

invocations resolved by each analysis for each of the

benchmark programs. The graphs have one bar for each

level of analysis:

programs and the effectiveness of the other analyses

is relatively small. Intraprocedural and interprocedural

type propagation removes many NULL possibilities but

resolves few additional method invocations by them-

selves. Thus type propagation is useful for languages

that have well defined semantics for the NULL case (such

as Modula-3 and Java) but is less useful for other lan-

guages (such as C++). Type propagation will also be

more effective if the whole program is not available since

type hierarchy and aggregate analysis will become much

less effective because of the incomplete type hierarchy.

tha: type hierarchy analysis

tha+tpa: tha plus intraprocedural type propagation

tha+tpa+h: tha+tpa plus aggregate analysis

tha+tpa+ip: tha plus interprocedural type propagation

tha+tpa+ip+h: tha+tpa+ip plus aggregate analysis

The black regions in the bars corresponds to percent-

age of method invocations at run time that the analyses

resolves to exactly one procedure. The gray region cor-

responds to method invocations that analysis resolves

to one user procedure or error. The pair above the

bar is the corresponding number of static call sites. If

a method invocation site is not executed at run time, it

does not appear in these graphs.

Aggregate analysis along with type propagation re-

solves two method invocation sites in dom and 341

sites in m3cg (of which 88 are executed in the bench-

mark run). Aggregate analysis is also effective on

trestle, resolving five method invocation sites, and

on postcard, resolving 22 method invocation sites.

However the resolved method invocations in trestle

and postcard are not executed in the benchmark run

and thus the impact of aggregate analysis does not ap-

pearinthefigures. (Trestle andpostcard arelarge

systems and our inputs exercised only a part of them.)

5.3 Execution time improvement

To judge the run-time impact of the analyses, we ran our

non-interactive benchmarks3 before and after resolution

of method invocations on a DEC 3000/400 workstation.

In the first experiment, the compiler replaced method

The figures illustrate that type hierarchy analysis and 3Because Trestle, postcard, and dom are interactive, we
aggregate analysis are most effective analyses for these did not include them in this experiment.

[I81 ---I

298

Figure 3: Analysis results for format

Figure 4: Analysis results for df ormat

Figure 5: Analysis results for k-tree

Figure 6: Analysis results for sl isp

Lhl ,hr+tpa dIa+,pa+h Gla+,pa+tp UI*+lpr+ip+h

Figure 10: Analysis results for M2 toM3

299

Figure 11: Analysis results for m3 cg

1h Ihsrqu *r+tp+h h+,p~rip “,r+,p+ip+li

Figure 12: Analysis results for Trestle

invocations that resolved to exactly one user procedure

with direct calls. These are the method invocations that

make up the black region in Figures 3 through 12. The

compiler did not convert method invocations that re-

solved to one user procedure or error since that would

be inconsistent with Modula-3 language semantics. We

found that the execution time improvement averaged

less than 2% for the benchmarks even when the com-

piler inlined the frequently executed resolved method

invocations.

In the second experiment, the compiler replaced

method invocations that resolved to one user procedure

or error with direct calls. Ignoring the error pos-

sibility is inconsistent with Modula-3 semantics but it

facilitates comparison with languages such as C++. We

found that resolving the method invocations improved

performance by 0 to 9%, with an average improvement

of 3%. When the compiler inlined the frequently ex-

ecuted resolved method invocations, the performance

improvement ranged from 0 to 19%, with an average of

6.5%.

These results show that unlike dynamically-typed lan-

guages, the direct cost of method invocations in statically

typed-languages is small. The main cost of method in-

vocations is indirect: method invocations obscure con-

trol flow and thus inhibit compiler optimizations. We

are currently implementing and evaluating several op-

timizations that exploit the information exposed by the

analyses described here.

6 Cause Analysis

In Section 6.1 we describe our cause analysis technique

and in Section 6.2 we apply it to the benchmark pro-

grams.

6.1 Technique

In the absence of control and data merges, such as calls,

analysis coulddetermine the allocated type of every vari-

able. However, real programs introduce potential poly-

morphism by merging control and data as follows:

l Control merges:

after a conditional statement

at a call site with multiple targets (because of

the returns)
at a procedure with multiple callers
at the return of a procedure with multiple re-

turn statements

l Data merges:

- at assignments through potential aliases (in-

cludes heap allocated data, pointers, and array

references)

If a merge results in the loss of type information and

the affected variable is later used to invoke a method,

then that merge is the reason analysis failed to resolve

the method invocation. The method invocation may ac-

tually be polymorphic, or the analysis may not be pow-

erful enough to resolve it. For every method invocation

that our analyses do not resolve, our cause assignment

algorithm finds the merges that result in the loss of type

information for the receiver of the method invocation,

The analyzer finds the merge by following use-defchains

[2] to the point where information is lost.

We use this information to expose the reason when

our analyses fail. The reason suggests what analyses

or transformations may be effective on the unresolved

method invocations. For example, if a control merge

300

Source Solution

Record field More powerful aggregate analysis

Object field More powerful aggregate analysis

Control merge Context sensitive analysis

Unavailable Analyze libraries

Table 3: Cause of information loss

obscures a type, a context sensitive analysis may prevent

this loss of information. The cause analysis identifies

four sources of information loss:

l Record: a merge of types in record fields or arrays

(recall that the implementation propagates types

only to scalars and to some extent to object fields),

l Heap: a merge of types in the heap (includes object

fields and pointer references),

l Control Merge: a merge of types due to a control

merge,

l Code Unavailable: a conservative type assumed

due to unavailability of library code.

Table 3 suggests the techniques that may prevent the

loss of information for each of the four causes of infor-

mation loss.

6.2 Results

In Section 5.2, we demonstrated that the analyses resolve

many method invocations to direct calls. In this section,

we address these questions:

1. How do our analyses compare to an “oracle” that

resolves all monomorphic method invocations?

2. What transformations will be effective in convert-

ing the polymorphic method invocations to direct

calls?

Figure 13 addresses the first question. Each bar gives

the run-time data for one benchmark program. The

height of a bar corresponds to the percentage of method

invocations that always call the same procedure in a

run of the benchmark4. Each bar has two regions, the

black region corresponds to the method invocations re-

solved by analysis and the gray region corresponds to the

unresolved monomorphic method invocations. The pair

4 We used two runs for pp with different command-line parame-
ters to expose the polymorphic method invocations.

Figure 13: Monomorphic method invocations

above each bar gives the number of static method invoca-

tions corresponding to the two regions. The gray region

is an upper bound on the truly monomorphic method in-

vocations; (i.e., across all possible runs of the programs)

and thus on how much better the oracle can do compared

to our analyses. It is an upper bound since method in-

vocations may be polymorphic on a different program

execution.

Figure 13 shows that, for all benchmarks except m3 cg

and trestle, our analysis resolves the vast majority of

monomorphic method invocations; the analyses perform

almost as well as the oracle. For df ormat, format,

m2 t om3, pp, and s 1 i sp, our analyses perform as well

as the oracle. Across all the benchmarks, the oracle

would resolve at most 7% more method invocation sites

compared to our analyses. For the benchmarks where

our analyses are less effective, Figure 14 indicates which

analyses may be successful in resolving these method

invocations.

Each bar in Figure 14 breaks down an unresolved

region in Figure 13 into four regions, one for each cause

of analysis failure. The numbers above each bar give the

total number of monomorphic method invocation sites.

For m3cg the figure indicates that a more powerful

aggregate analysis may be successful in resolving more

method invocations. On inspection of the source code of

m3cg, we found that an analysis would have to discover

the semantics of a stack in order to do better than our

aggregate analysis. It is unlikely that any analysis would

be able to discover the semantics of a stack and thus

resolve more method invocations.

For trestle, the primary cause of analysis fail-

ure is control merges. Thus a context sensitive analy-

sis may be effective in resolving more method invoca-

301

Figure 14: Monomorphic method invocations that are unresolved

tions. Tres t 1 e is the only benchmark where a context-

sensitive analysis may be helpful.

Figure 15 addresses the second question: what trans-

formations will be effective in converting the polymor-

phic method invocations to direct calls? Figure 15

presents data for the method invocation sites that call

more than one procedure in a run of the benchmark

and thus cannot be resolved by analysis alone. These

method invocations are a lower bound on the polymor-

phic method invocations since in another run of the

benchmark, additional method invocations may be poly-

morphic.

Figure 15 illustrates that most run-time polymorphic

method invocations arise because more than one type

of object is stored in a heap slot. Two techniques, ex-

plicit type test [5, 151 and cloning combined with ag-

gressive aggregate analysis, may be able to resolve these

method invocations. Merges in control are another im-

portant cause of the run-time polymorphism, especially

for tres t 1 e, and can be resolved by code splitting and

cloning [7, 14, 91.

From the static counts above the bars, we see that

while the number of run-time polymorphic sites in the

benchmarks is usually small, they are executed rela-

tively frequently. For example, of the 29 method in-

vocation sites executed in a run of format, only 3

sites are polymorphic, but they comprise more than 80%

of the total method invocations executed. Across all

the benchmarks, polymorphic sites are called 26 times

more than monomorphic sites, Thus these Modula-3

programs have relatively few polymorphic method in-

vocation sites, but they are executed very frequently.

This observation has an implication for optimizations:

the number of method invocation sites where transfor-

mation is needed is small and thus the code growth in-

duced by transformations such as cloning is likely to be

negligible.

7 Applicability to Other Languages

The analyses described here are language independent

but their usefulness depends on the language and the

programming style. For example, some C++ program-

ming styles discourage the use of virtual functions un-

less necessa$; in essence the style encourages the pro-

grammer to attempt type-hierarchy analysis manually.

In such situations, the impact of type-hierarchy analysis

will be limited compared to Modula-3 programs, where

all methods are virtual. We expect that our results will

carry over to other statically typed object oriented lan-

guages such as C++ $ the programs are written using

only virtual methods. However the run-time improve-

ment due to our analyses in C++ programs may be greater

since method invocations are more costly in languages

that have multiple inheritance. Since dynamically-typed

languages encourage a fundamentally different style of

programming, we expect that our results will not directly

apply to them.

‘Only virtual functions may be overridden in subtypes.

302

i:l Record n Heap
--

Control Merge H Code Unavailable

Figure 15: Polymorphic method invocations

8 Related Work

In this section, we describe the related work on un-

derstanding and analyzing object-oriented programs and

distinguish our contributions.

Femandez [121 and Dean et al. [lo] evaluate type

hierarchy analysis for Modula-3 and Cecil respectively.

They find that type hierarchy analysis is a worthwhile

technique that resolves many method invocations. Our

work confirms these results. In addition to type hierarchy

analysis, we evaluate a range of other techniques.

Palsberg and Schwartzbach [20], Agesen and Holzle

[l], and Plevyak and Chien [22] describe type inference”

for dynamically typed object-oriented languages. Age-

sen and Holzle’s, and Plevyak and Chien’s analyses are

more powerful than ours since they are context sensitive

(polyvariant). They are also more complex and expen-

sive. Polyvariant analyses can be used in conjunction

with transformations to resolve polymorphic method in-

vocations. We focus solely on analysis here. Plevyak

and Chien discuss reasons for loss of type information,

but do not present any results. We present detailed data

giving reasons for loss of type information.

In work done concurrently with ours, Bacon and

Sweeney [4] and Aigner and Hijlzle [3] evaluate tech-

niques for resolving method invocations in C++ pro-

grams. Bacon and Sweeney evaluate three fast anal-

‘“Type propagation” and “type inference” are terms that have
been used to describe the same kinds of analysis in object-oriented
languages.

yses, including type hierarchy analysis, for resolving

method invocations in C++ programs. Unlike us, Bacon

and Sweeney evaluate only flow insensitive analyses.

Aigner and Holzle evaluate type feedback and type hi-

erarchy analysis and find that they are both effective at

resolving method invocations.

Pande and Ryder [21] describe a pointer analysis al-

gorithm for C++ programs. Plevyak and Chien’s type

inference algorithm also does some pointer analysis [22].

Both algorithms consider the control flow in a program

and are thus more powerful than our simple aggregate

analysis, which also deals with pointer analysis. How-

ever, they are also much slower than our aggregate analy-

sis. On aSPARC-10, Pande and Ryder’s algorithm takes

as much as 23 minutes to analyze programs that are less

than 1000 lines of code (median 36 seconds). Our aggre-

gate analysis takes 38 seconds to analyze 28,977 lines

of code on a DEC 3000/400. We show that our simple

analysis is effective and there is little to be gained by a

more powerful analysis for our benchmarks. This result

is partly due to Modula-3’s language semantics which

restrict aliasing; a more powerful alias analysis may be

more useful for C++ than for Modula-3, but this need

has not yet been demonstrated.

Chambers [6], Calder and Grunwald [5], Holzle and

Ungar [151, and Grove et al. [131 describe transforma-

tions for converting method invocations to direct calls,

We focus solely on analysis here.

Shivers [23] describes and classifies a range of anal-

yses to discover control flow in Scheme programs.

303

Our interprocedural type propagation is similar to

his OCFA. While Shivers focuses on powerful (and

slow) analyses---OCFA is the least powerful analysis he

considers-we focus on simple and fast analyses. In-

terprocedural type propagation is the most complicated

analysis we consider.

Another key difference between our work and that of

others is that we present results that give the reason when

analysis fails, and place upper bounds on how well more

powerful analyses or transformations can possibly do.

9 Conclusions

We describe and evaluate a range of analyses for object-

oriented programs: type-hierarchy analysis, intraproce-

dural and interprocedural type propagation, and aggre-

gate analysis. Aggregate analysis is a new technique

and is simpler and faster than previous work.

We demonstrate that our techniques are extremely

effective at resolving method invocations in Modula-

3 programs. On average, our analyses resolve more than

92% of the method invocation sites that are amenable

to analysis and improve the run-time of the benchmark

programs by up to 19%.

For method invocations that are unresolved by our

analyses, we determine the reason for analysis failure.

The.failure reason suggests which other analyses and

transformations may be effective. The primary failure

reason in our benchmarks is polymorphism: the method

invocations called more than one procedure at run time

and thus are not amenable to analysis alone. Most of this

polymorphism is due to objects of different types being

stored in heap slots. The other significant reasons for

analysis failure are an insufficiently powerful aggregate

analysis and lack of a context sensitive analysis. Improv-

ing the aggregate analysis and adding a context sensitive

analysis would resolve at most 7% more method invo-

cation sites.

10 Acknowledgments

We would like to thank Ole Agesen, Darko Stefanovic,

and the anonymous referees for comments on drafts of

this paper.

References

111

PI

[31

[41

151

t61

171

181

[91

[lOI

[I 11

[I21

Ole Agesen and Urs Holzle. Type feedback vs. concrete type
inference: A comparison of optimization techniques for

object-oriented languages. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 91-107, Austin, Texas, October 1995.

ACM.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

Gerald Aigner and Urs HSlzle. Eliminating virtual function
calls in C++ programs. In European conference on

object-orientedprogramming, Linz, Austria, July 1996.

David Bacon and Peter Sweeney. Fast static analysis of C++

virtual function calls. In 0OPSL.A ‘96 Conference
Proceedings: Object-Oriented Programming Systems,

Languages, and Applications, San Jose, CA, October 1996.

ACM, ACM Press.

Brad Calder and Dirk Grunwald. Reducing indirect function

call overhead in C++ programs. In Conference Record ofthe

Twenty-First ACM Symposium on Principles of Programming

Languages, pages 397-408, Portland, Oregon, January 1994.

Craig Chambers. The design and evaluation of the SELF
compiler, an optimizing compiler for object-oriented

programming languages. PhD thesis, Stanford University,

CA, March 1992.

Craig Chambers and David Ungar. Customization:

Optimizing compiler technology for SELF, a
dynamically-typed object-oriented programming language. In

Proceedings of the ACM SIGPLAN ‘89 Conference on

Programming Language Design and Implementation, pages
146-160, Portland, Oregon, June 1989. ACM SIGPUN

Notices 24,7 (July 1989).

Craig Chambers and David Ungar. Iterative type analysis and
extended message splitting: Optimizing dynamically-typed
object-oriented programs. In Proceedings of the ACM

SIGPLAN ‘90 Conference on Programming Language Design

and Implementation, pages 150-164, White Plains, New

York, June 1990. ACM SIGPLAN Notices 25,6 (June 1990).

Craig Chambers and David Ungar. Making pure object
oriented languages practical. In Proceedings of the

Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages l-l 5. Phoenix, Arizona,
October 199 1. ACM SIGPUN Notices 26, 11 (November

1991).

Jeffery Dean, David Grove, and Craig Chambers.
Optimization of object-oriented programs using static class
hierarchy analysis. In Proceedings of European Conference

on Object-Oriented Programming, Aarhus, Denmark, August
1995.

Digital Equipment Corporation. DEC3000

300/400/500/600/800 Models: System Programmer k

Manual, first printing edition, September 1993.

Mary F. Femandez. Simple and effective link-time

optimization of Modula-3 programs. In Proceedings of
Conference on Programming Language Design and

Implementation, La Jolla, CA, June 1995. SIGPLAN, ACM

304

Press.

[131 David Grove, Jeffery Dean, Charles Garrett, and Craig
Chambers. Profile-guided receiver class prediction. In

Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications, pages
108-123, Austin, Texas, October 1995. ACM.

[141 Mary Wolcott Hall. Managing InterproceduralOptimizations.
PhD thesis, Rice University, Houston, Texas, April 1991.

[151 Urs HSlzle and David Ungar. Optimizing
dynamically-dispatched calls with run-time type feedback. In

Proceedings of the ACM SIGPLAN ‘94 Conference on
Programming Language Design and Implementation, pages

326-336. ACM, June 1994.

[161 Bill Kalsow and Eric Muller. SK Mod&a-3 Version 3.5.
Systems Research Center, Digital Equipment Corporation,
Palo Alto, CA, 1995.

[171 J. B. Kam and J. D. Ullman. Global data flow analysis and
iterative algorithms. Journal ofthe ACM, 7(3):305-318,1976.

[181 Farshad Nayeri, Benjamin Hurwitz, and Frank Manola.

Generalizing dispatching in a distributed object system. In

Proceedings of European Conference on Object-Oriented
Programming, Bologna, Italy, July 1994.

[191 Greg Nelson, editor. Systems Programming with Mod&z-3.

Prentice Hall, New Jersey, 199 1.

[20] Jens Palsberg and Michael I. Schwartzbach. Object-oriented
type inference. In Proceedings of the Conference on

Object-Oriented Programming Systems, Languages. and
Applications, pages 146-162, Pheonix, Arizona, October

199 1. SIGPLAN, ACM Press.

[21] Hemant Pande and Barbara G Ryder. Static type
determination and aliasing for C++. Technical Report
LCSR-TR-250, Rutgers University, July 1995.

[22] J. Plevyak and A. Chien. Precise concrete type inference for
object-oriented languages. In Proceedings of conference on

object-oriented programming systems, languages, and
applications, pages 324-340. ACM, October 1994.

[23] Olin Shivers. Control-jlow analysis of higher-order

languages. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, May 199 1.

305

