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Abstract 

To use modern hardware effectively, compilers need ex- 
tensive control-flow information. Unfortunately, the fre- 
quent method invocations in object-oriented languages 
obscure control flow. In this paper, we describe and eval- 
uate a range of analysis techniques to convert method 
invocations into direct calls for statically-typed object- 
oriented languages and thus improve control-flow in- 
formation in object-oriented languages. We present 
simple algorithms for type hierarchy analysis, aggre- 
gate analysis, and interprocedural and intraprocedu- 
ral type propagation. These algorithms are also fast, 

O(lprocedures] * Cprocedurea np * up) worst case time 
(linear in practice) for our slowest analysis, where np 
is the size of procedure p and vP is the number of vari- 
ables in procedure p, and are thus practical for use in a 
compiler. When they fail, we introduce cause analysis 
to reveal the source of imprecision and suggest where 
more powerful algorithms may be warranted. We show 
that our simple analyses perform almost as well as an 
oracle that resolves all method invocations that invoke 
only a single procedure. 

1 Introduction 

Computer hardware and programming languages are on 

a collision course. Modern hardware exposes an increas- 
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ing amount of implementation details to the compiler. 

The exposed detail includes the pipeline, the memory 

hierarchy, and the functional parallelism of the proces- 

sor. To achieve the processor’s potential, the compiler 

must be able to predict the program’s control-flow. 

In object-oriented languages, programmers use a type 

hierarchy and method invocations to improve code reuse 

and correctness. Unfortunately, method invocations ob- 

scure which procedure is actually being invoked. In 

dynamically-typed languages, frequent method look-up 

is costly in itself [6] but in statically-typed languages, 

it is typically not a significant cost. For both static 

and dynamic languages however, method invocations 

inhibit optimization. If analysis can resolve method in- 

vocations to direct calls, the compiler can then optimize 

effectively across method invocation sites, replacing the 

method invocation with a direct call, a tailored call, or 

an inlined call. The additional control-flow information 

provides fodder for an optimizing compiler to improve 

performance. 

In this paper, we describe and evaluate the following 

analyses for resolving method invocations in a statically- 

typed object-oriented language: 

l Type hierarchy analysis determines the procedures 

a method invocation may call by considering the 

types that implement that method. 

l Type propagation performs intraprocedural and in- 

terprocedural data-flow analysis for types. 

l Aggregate analysis detects when an object or record 

field is restricted to a single type. 

Our type hierarchy analysis is the same as previous 

work. What differentiates our type propagation and ag- 

gregate analysis from previous work is that we make 

simplifications to achieve a fast whole program analy- 

sis, 0 ((procedures\ * ~~oced“rer np *vp) time worst case 
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(linear in practice) for the slowest analysis, where np is 

the size of procedure p and Q is the number of vari- 

ables in procedure p. We also introduce a cause analysis 

algorithm that determines the reason when our analysis 

does not resolve a method invocation. Using the cause 

analysis, we present detailed experimental results that 

characterize which language and programming features 

affect the procedure(s) called at run-time from a method 

invocation site and the ability of the analysis to resolve 

the method invocations. 

method invocations and our ability to resolve them. Sec- 

tion 6 gives the reasons for our failures and successes and 

compares our analyses to an oracle. Section 7 discusses 

how our results apply to languages like C++. Section 8 

reviews related work. Section 9 concludes. 

2 Background: 
Polymorphism through subtyping 

We implemented the analyses for Modula-3 programs 

[ 191 in the SRC Modula-3 compiler version 3.5 [16]. 

Modula-3 is a statically-typed object-oriented systems 

programming language similar (for present purposes) 

to C++ and even more so to Java. We evaluated the 

analyses on ten Modula-3 programs ranging in size from 

400 to 29,000 lines of non-blank, non-comment lines of 

code (76,122 total lines). 

Statically-typed object-oriented languages support poly- 

morphism through subtyping. A type S is a subtype of 

T if it supports all the behavior of T. Thus, the program 

can use an object of type s whenever an object of type T 

is expected. In particular, a variable with declared type 

T may refer to objects that are subtypes of T, not just T. 

Our results demonstrate that these simple algorithms 

are very effective at resolving statically monomorphic 

method invocation sites, i.e., those method invocation 

sites that call a single procedure. Our techniques detect 

92% of the method invocation sites in our test suite that 

call one procedure at run time. 

Consider the Modula-3 type hierarchy in Figure 1, 

which defines a type T, and S, a subtype of T. Proce- 

dures mT, ms, and nS are defined elsewhere. S has all 

the behavior of T (in particular, the m method) but it 

may have different implementations of T’s methods (in 

this case, mS instead of mT). S may support behavior not 

supported by T (in this example, the n method). Invok- 

ing the m method on a variable with declared type T may 

invoke one of three procedures: 
Most method invocations are resolved by type- 

hierarchy analysis, but intraprocedural and interprocedu- 

ral type propagation, and aggregate analysis, also benefit 

individual programs. Our cause analysis indicates that 

the primary reason for analysis failure is polymorphism, 

i.e., the method invocations call more than one proce- 

dure at run time and thus analysis alone cannot resolve 

them. Our results show that most polymorphic method , 

invocations are due to use of heap allocated structures. 

For monomorphic sites, the primary cause of analysis 

failure is the loss of information at control-flow merges, 

records, and heap allocated structures. Although there 

is room to improve the aggregate analysis, our simple 

analysis resolves most of the few monomorphic calls that 

could be resolved by an aggregate analysis. Our analyses 

are simple, fast, and effective enough to incorporate into 

existing compilers for statically-typed object-oriented 

languages. 

1. mT, if the last object assigned to the variable had 

type T 

2. mS, if the last object assigned had type S; and 

3. error, if the last object assigned was NULL. 

In general, invoking a method on a variable (the re- 

ceiver) can call any procedure that overrides that method 

in the variable’s declared type or any subtype of its de- 

clared type. The NULL type is a subtype of all objects 

in Modula-3 and overrides all methods with an error 

procedure. 

The remainder of this paper is organized as follows. 

Sections 2 and 3 review background material and further 

motivate these analyses. Section 4 describes type hierar- 

chy analysis, type propagation, and aggregate analysis. 

Section 5 presents static and dynamic measurements of 

A polymorphic method invocation site calls more than 

one user procedure at run time. For example, consider 

invoking the print method on each element of a linked 

list in a loop. If the list links objects of different types, 

then the print method invokes different procedures 

depending on the type of the list element. 

A monomorphic method invocation site always in- 

vokes the same user procedure (or error). It may have 

the potential to be polymorphic but the polymorphism is 
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TYPE T = OBJECT 

f: T; 

METHODS 

m := mT; 

END; 

(* S is a subtype of T *) 

TYPE S = T OBJECT 

METHODS 

n a- nS; 

WE&DES 

m := mS; 

END; 

Figure 1: A Modula-3 Type Hierarchy 

never present at run time. To continue the linked list ex- 

ample, if the list links objects of only one type, then the 

print method will always invoke the same procedure. 

A method invocation is resolved if it is identified as 

being monomorphic. The goal of the analyses presented 

here is to resolve all the monomorphic sites. 

3 Motivation 

Object-orientation promises many important software 

engineering benefits. There are however significant 

obstacles to obtaining peak performance from object- 

oriented programs on modern processors. In particular, 

small methods with frequent method invocations hin- 

der compiler optimizations since the compiler does not 

know where control will go next. 

Modern hardware, on the other hand, requires a sub- 

stantial amount of control-flow information to exploit 

the hardware fully. For example, the memory latency of 

some modem machines is around 70-100 cycles [ 1 l] and 

thus the compiler needs to know which instruction will 

be executed 70 cycles in advance in order to prefetch 

data or instructions most effectively. Other hardware 

features that require extensive control-flow information 

to optimize for include multiple instruction issue per 

cycle and non-blocking loads. 

Figure 2 shows the cumulative distribution of the num- 

ber of SPARC instructions executed between method in- 

vocations for a run of M2 toM3, a Modula-3 program 

that converts Modula-2 programs to Modula-3. At point 

(x, y ) , y% of the time there are fewer than x instruc- 

80 - 

E 
8 
cii 
a 

50 100 150 200 250 
Instructions between method invocations 

Figure 2: Instruction distribution between method invo- 

cations 

tions between method invocations. The graph shows 

that more than 50% of the time there are fewer than 

60 instructions between method invocations. These in- 

structions include those for passing parameters and for 

method lookup. With such frequent unknown control 

transfers, it is unlikely that the compiler can fully exploit 

prefetch instructions or instruction level parallelism. 

There are two ways of improving the control-flow 

information in the compiler. First, program analysis 

may reduce the set of possible procedures called at each 

method invocation [l, 10, 121. This analysis is effective 

only on monomorphic method invocations. Second, a 

program may be transformed so that the performance- 

critical method invocations can be converted to direct 

calls. An example is splitting, which duplicates code in 

order to improve type information [8]. Program transfor- 

mations are effective on polymorphic and monomorphic 

method invocations. 

Since transformations may degrade performance, a 

good strategy for a compiled language is first to analyze, 

and only then to apply transformations to convert the re- 

maining, frequently executed, polymorphic method in- 

vocations. In this paper, we focus on the first part of 

the solution: to develop and evaluate a range of analysis 

techniques to resolve method invocations. 

4 Analysis 

In this section we describe each analysis technique and 

introduce cause analysis. We use the type hierarchy of 

Figure 1 to illustrate the strengths and limitations of the 

294 



analyses. We use a power set of the types for the lattice 

for our analyses; the initial type for a variable or heap or 

record field or pointer reference is the empty set. 

4.1 Type Hierarchy Analysis 

Type hierarchy analysis bounds the set of procedures 

a method invocation may call by examining the type 

hierarchy declarations for method overrides. For each 

type T and each method m in T, type hierarchy analysis 

finds all overrides of m in the type hierarchy rooted at 

T. These overrides are the procedures that may be called 

when m is invoked on a variable of type T. Since NULL 

is a subtype of all objects in Modula-3 and it overrides 

all methods, type hierarchy analysis can never narrow 

down the possibilities to just one; at best it determines a 

method is one procedure or the error procedure. 

Type hierarchy analysis does not examine what the 

program actually does, just its type and method decla- 

rations. Thus, it takes time proportional to the num- 

ber of types and methods in the program, O(ITypesl * 

IMethodsl). 

4.2 Intraprocedural Type Propagation 

Intraprocedural type propagation improves the results of 

type hierarchy analysis by using data flow analysis to 

propagate types from type events to method invocations 

within a procedure, Type events create or change type 

information. The three distinguishing type events are 

allocation (v t NEW (t)), implicit and explicit type 

discrimination operators (IsType (v, T)), and assignment 

(v t u), which includes parameter bindings at calls. 

For example, consider the following code: 

1 P := NEW (S); 

IF cond THEN 

2 0 := NEW (T); 

3 0-m 0; 

ELSE 

4 0 := P; 

5 0.m 0; 

END; 

6 o.m 0; 

Statement 2 contains a type event: an allocation. The al- 

location propagates the type T to o, and thus determines 

that the method invocation in statement 3 calls procedure 

mT. Similarly, statement 4 contains a type event: an as- 

signment. The type event propagates the type of p to o, 

and thus determines that the method invocation in state- 

ment 5 calls procedure mS. Finally, intraprocedural type 

propagation merges the types of o at the control merge 

before statement 6, yielding the type {T, S}. Thus the 

method invocation in statement 6 cannot be resolved to 

a single procedure. 

Our implementation of type propagation propagates 

types only to scalars; it assumes the conservative worst 

case (the declared type) for the allocated types of record 

fields, object fields, array references, and pointer ac- 

cesses. 

We formulate intraprocedural type propagation as a 

data-flow problem similar to reaching definitions. We 

identify and propagate pairs of variables and sets of pos- 

sible types for the variables. All variables initially have 

the empty type. A statement s with a type event gener- 

ates and kills types as follows: 

GENTYPE (v t NEW(t)) = (v, t) 

GENTYPE (ZsType(v, 7’)) = (v, TypeOflv) f~ 2”) 

GENTYPE (V t ‘1~) = (v, TwO74) 

KILLTYPE(V t NEW(t)) = (21, TypeOflv)) 

KILLTYPE(V t u) = (T TypeWW 

T denotes a set of types and t denotes a single type. 

TypeOfretums the current types of a variable. ZsType is 

an explicit type discrimination event which checks if ‘u’s 

type is in T. Type discrimination may also be implicit. 

In particular, for each IsType, there is an implicit type 

discrimination event for the false branch. 

The data-flow equations for a statement s are similar 

to the equations for reaching definitions: 

IN@) = U,~PRED(~) OUT(p) 

OUT(s) = GENTYPE(S) U (IN(s) - KILLTYPE( 

Our implementation stores the possible types of a vari- 

able as a set. Thus, the union and intersection operators 

are set union and set intersection respectively. This prob- 

lem formulation is monotone and distributive.’ Since 

Modula-3 programs are always reducible and type prop- 

agation is rapid [ 171, we use a 0 (n * V) solution, where 

n is the number of statements in a procedure and v is the 

‘With the type discrimination operations in Modula 3, a more 
precise, but non-monotone formulation is possible. As far as we 
know, no one has investigated this formulation. 
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number of variables in the procedure and each step of information becomes available about its parameters or 

the algorithm is a bit vector operation, about the return value of one of its callees. When in- 

4.3 Aggregate Analysis 

The goal of our aggregate analysis is to handle a common 

situation efficiently: monomorphic use of a general data 

structure. Consider the linked list package again. Our 

aggregate analysis detects when a program links objects 

of a single type and thus would resolve the invocation of 

the print method on the list elements. 

The aggregate analysis circumvents the difficulty of 

analyzing records and heap allocated objects by merging 

all instances of an object or record type. For example, 

terprocedural type propagation analyzes a procedure, it 

may put the callers and callees of the procedure on the 

work list and update the call graph. In particular, analy- 

sis may eliminate some call graph edges if it refines the 

type of a method receiver. Interprocedural type prop- 

agation maintains the work list in depth first order and 

terminates when the work list is empty. 

instead of this procedure. 

Interprocedural type propagation propagates types 

only to scalars, and it assumes the most conservative 

Inter-procedural type propagation also keeps track of 

which procedures are called only via method invoca- 

tions (i.e., not called directly). For these procedures, it 

eliminates NULL as a possible type for the first argu- 

ment (self). If self isNULL, then error is invoked 

v: T; 

v.f := <rhs> 

propagates the types of <rhs> to the field f of all pos- 

sible types of v. The possible types of v may be deter- 

mined by another analysis (such as type propagation) or 

may be conservatively approximated as T and its sub- 

types. 

This analysis discovers monomorphic uses of general 

data structures. However, if the program allocates two 

distinct linked lists, one with elements of type s and the 

other with type T, aggregate analysis does not recognize 

that each list is homogeneous. It infers the type {T, 

s , NULL } for the elements in both lists. 

The type of an object-typed field always includes 

NULL since all fields in Modula-3 are initialized at al- 

location, and thus the first assignment to every object- 

typed field is always NULL. In order to propagate types 

to and from a field, aggregate analysis requires that all 

assignments to that field be available for analysis. 

type (the declared type) for all data accessed through 

pointer traversal. Interprocedural type propagation does 

not propagate side effects from calls and assigns the most 

conservative type for any variable changed by the call: 

the declared type. Variables potentially changed by a 

call include variables declared in outer scopes, globals, 

parameters passed by reference, and parameter aliases. 

A distinguishing characteristic of our interprocedural 

analysis is that, unlike related work ([l, 22, 20]), our 

analysis is context insensitive. Rather than analyzing 

for every combination of call site and callee we merge 

the parameter types of all call sites of a procedure, and 

the return types of all callees at a call site. This simplifi- 

cation yields a much faster analysis (quadratic instead of 

exponential) but at the cost of some accuracy. Consider 

the following code: 

. 

We perform aggregate analysis in a single forward 

pass. For each procedure, it is O(n) time in the number 
PROCEDURE Caller1 () = 

t 
of statements in the procedure. 

:= P (NEW (T)); 

t.m 0; 

4.4 Interprocedural ‘Qpe Propagation PROCEDURE Caller2 ( ) = 

Interprocedural type propagation combines with in- 
t := P (NEW (U); 

traprocedural type propagation to resolve more method t.m 0; 

invocations. It begins by building a call graph of the 

program. The call graph has an edge from a method 
PROCEDURE P (0: T) : T = 

invocation to each possible target determined by the ear- 
RETURN o; 

lier intraprocedural analysis. The algorithm operates 

by maintaining a work list of procedures that need to 

be analyzed. A procedure needs to be analyzed if new 

A context-sensitive analysis would analyze P separately 

for each of its call sites and thus determine that the 
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Analysis Eliminates NULL Complexity 

Type Hierarchy No O(ITypesl * IMethodsl) 
Intraprocedural Type Propagation Yes OE, 7% * 5) 
Aggregate Analysis No W-L %) 

1 Interprocedural Type Propa lgation Yes 

Table 1: Summary of analyses 

method invocation in Caller1 will call mT and that in 

Cal ler2 will call mu. Our context-insensitive analysis 

instead merges the parameter types for each caller of 

P and thus does not resolve the method invocations in 

Caller1 and Caller2. We show in Section 6 that 

for our benchmark suite, the loss in precision is not 

significant. 

If interprocedural type propagation is invoked on an 

incomplete program, it makes conservative assumptions 

about the parameters of procedures that could be called 

from unavailable code, and about return values of un- 

available procedures. 

Since interprocedural type propagation may analyze 

each procedure multiple times (in particular, recursive or 

potentially recursive procedures), it may be substantially 

slower than intraprocedural type propagation. Since in- 

formation flows forward through parameters and back- 

wards from return values, the worst case complexity is 

0( 1 procedures1 * Crocedurer nP * vP), where n is the 

number of statements in procedure p and T+ the number 

of variables in procedure p. In practice, however, we 

have found it to be linear in the number of instructions, 

analyzing each procedure an average of 2 to 4 times. 

4.5 Analyzing Incomplete Programs 

An implicit assumption in the analyses described above 

is that the entire program (except for library code) is 

available for analysis. Moreover, it is assumed that the 

library code does not create subtypes of any types de- 

clared outside the library2. While we have extended our 

analyses to work with incomplete information, the re- 

sults presented here assume the entire program (except 

libraries) is available. In future work, we will evalu- 

ate the effectiveness of the analyses on incomplete pro- 

grams. 

2Libraries may introduce subtypes of types declared outside the 
library if structural equality is used for types. 

4.6 Ordering the analyses 

The ordering of our analyses can make a difference in the 

effectiveness. For instance, if type propagation occurs 

only before aggregate analyses, then type propagation 

cannot propagate the information exposed by aggregate 

analysis. We have not explored these interactions be- 

tween analyses experimentally; instead we have chosen 

the following fixed ordering. 

1. type hierarchy analysis 

2. intraprocedural type propagation 

3. interprocedural type propagation 

4. aggregate analysis 

5. interprocedural and intraprocedural type propaga- 

tion where needed 

4.7 Summary 

Table 1 summarizes the analyses. Eliminates NULL in- 

dicates whether the analysis can eliminate NULL as a 

possible type. In the Complexity column nP is the num- 

ber of statements in procedure p. These algorithms are 

simple and therefore fast, as shown in the Complexity 

column. 

5 Results 

Section 5.1 describes the benchmark programs. Sec- 

tion 5.2 evaluates the effectiveness of our analyses in 

converting method invocations to direct calls. Section 

5.3 presents the run-time improvements due to resolving 

these method invocations. 
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Name 

format 

dformat 

k-tree 

slisp 

PP 
dom 

Method invocations 
Lines Compile time Run time Description 

395 37 47,064 Text formatter 
602 95 30,775 Text formatter 
77.6 13 714,619 Builds and traverses a tree structure 

67,253 Small 1isD interpreter 1645 

2328 

6186 

223 
24 

222 

I 
458 1 A pretty printer for Modula-3 programs 

1 A system for building distributed applications 

A graDhica1 mail reader 293 

1821 

1808 

430 

4966 

” I 

Converts Modula-2 code to Modula-3 

M3 v. 3.5.1 code generator + extensions 

Window system + small application 

Table 2: Benchmark Programs 

5.1 Benchmark Programs 

For each of the benchmark programs, Table 2 gives the 

number of non-comment, non-blank lines of code, the 

number of method invocations at compile time and at 

run time (for one run of the benchmark), and a brief 

description of the programs. 

5.2 Converting Method Invocations to 
Direct Calls 

Figures 3 through 12 illustrate the percent of method 

invocations resolved by each analysis for each of the 

benchmark programs. The graphs have one bar for each 

level of analysis: 

programs and the effectiveness of the other analyses 

is relatively small. Intraprocedural and interprocedural 

type propagation removes many NULL possibilities but 

resolves few additional method invocations by them- 

selves. Thus type propagation is useful for languages 

that have well defined semantics for the NULL case (such 

as Modula-3 and Java) but is less useful for other lan- 

guages (such as C++). Type propagation will also be 

more effective if the whole program is not available since 

type hierarchy and aggregate analysis will become much 

less effective because of the incomplete type hierarchy. 

tha: type hierarchy analysis 

tha+tpa: tha plus intraprocedural type propagation 

tha+tpa+h: tha+tpa plus aggregate analysis 

tha+tpa+ip: tha plus interprocedural type propagation 

tha+tpa+ip+h: tha+tpa+ip plus aggregate analysis 

The black regions in the bars corresponds to percent- 

age of method invocations at run time that the analyses 

resolves to exactly one procedure. The gray region cor- 

responds to method invocations that analysis resolves 

to one user procedure or error. The pair above the 

bar is the corresponding number of static call sites. If 

a method invocation site is not executed at run time, it 

does not appear in these graphs. 

Aggregate analysis along with type propagation re- 

solves two method invocation sites in dom and 341 

sites in m3cg (of which 88 are executed in the bench- 

mark run). Aggregate analysis is also effective on 

trestle, resolving five method invocation sites, and 

on postcard, resolving 22 method invocation sites. 

However the resolved method invocations in trestle 

and postcard are not executed in the benchmark run 

and thus the impact of aggregate analysis does not ap- 

pearinthefigures. (Trestle andpostcard arelarge 

systems and our inputs exercised only a part of them.) 

5.3 Execution time improvement 

To judge the run-time impact of the analyses, we ran our 

non-interactive benchmarks3 before and after resolution 

of method invocations on a DEC 3000/400 workstation. 

In the first experiment, the compiler replaced method 

The figures illustrate that type hierarchy analysis and 3Because Trestle, postcard, and dom are interactive, we 
aggregate analysis are most effective analyses for these did not include them in this experiment. 

[I81 ---I 
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Figure 3: Analysis results for format 

Figure 4: Analysis results for df ormat 

Figure 5: Analysis results for k-tree 

Figure 6: Analysis results for sl isp 

Lhl ,hr+tpa dIa+,pa+h Gla+,pa+tp UI*+lpr+ip+h 

Figure 10: Analysis results for M2 toM3 
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Figure 11: Analysis results for m3 cg 

1h Ihsrqu *r+tp+h h+,p~rip “,r+,p+ip+li 

Figure 12: Analysis results for Trestle 

invocations that resolved to exactly one user procedure 

with direct calls. These are the method invocations that 

make up the black region in Figures 3 through 12. The 

compiler did not convert method invocations that re- 

solved to one user procedure or error since that would 

be inconsistent with Modula-3 language semantics. We 

found that the execution time improvement averaged 

less than 2% for the benchmarks even when the com- 

piler inlined the frequently executed resolved method 

invocations. 

In the second experiment, the compiler replaced 

method invocations that resolved to one user procedure 

or error with direct calls. Ignoring the error pos- 

sibility is inconsistent with Modula-3 semantics but it 

facilitates comparison with languages such as C++. We 

found that resolving the method invocations improved 

performance by 0 to 9%, with an average improvement 

of 3%. When the compiler inlined the frequently ex- 

ecuted resolved method invocations, the performance 

improvement ranged from 0 to 19%, with an average of 

6.5%. 

These results show that unlike dynamically-typed lan- 

guages, the direct cost of method invocations in statically 

typed-languages is small. The main cost of method in- 

vocations is indirect: method invocations obscure con- 

trol flow and thus inhibit compiler optimizations. We 

are currently implementing and evaluating several op- 

timizations that exploit the information exposed by the 

analyses described here. 

6 Cause Analysis 

In Section 6.1 we describe our cause analysis technique 

and in Section 6.2 we apply it to the benchmark pro- 

grams. 

6.1 Technique 

In the absence of control and data merges, such as calls, 

analysis coulddetermine the allocated type of every vari- 

able. However, real programs introduce potential poly- 

morphism by merging control and data as follows: 

l Control merges: 

after a conditional statement 

at a call site with multiple targets (because of 

the returns) 
at a procedure with multiple callers 
at the return of a procedure with multiple re- 

turn statements 

l Data merges: 

- at assignments through potential aliases (in- 

cludes heap allocated data, pointers, and array 

references) 

If a merge results in the loss of type information and 

the affected variable is later used to invoke a method, 

then that merge is the reason analysis failed to resolve 

the method invocation. The method invocation may ac- 

tually be polymorphic, or the analysis may not be pow- 

erful enough to resolve it. For every method invocation 

that our analyses do not resolve, our cause assignment 

algorithm finds the merges that result in the loss of type 

information for the receiver of the method invocation, 

The analyzer finds the merge by following use-defchains 

[2] to the point where information is lost. 

We use this information to expose the reason when 

our analyses fail. The reason suggests what analyses 

or transformations may be effective on the unresolved 

method invocations. For example, if a control merge 
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Source Solution 

Record field More powerful aggregate analysis 

Object field More powerful aggregate analysis 

Control merge Context sensitive analysis 

Unavailable Analyze libraries 

Table 3: Cause of information loss 

obscures a type, a context sensitive analysis may prevent 

this loss of information. The cause analysis identifies 

four sources of information loss: 

l Record: a merge of types in record fields or arrays 

(recall that the implementation propagates types 

only to scalars and to some extent to object fields), 

l Heap: a merge of types in the heap (includes object 

fields and pointer references), 

l Control Merge: a merge of types due to a control 

merge, 

l Code Unavailable: a conservative type assumed 

due to unavailability of library code. 

Table 3 suggests the techniques that may prevent the 

loss of information for each of the four causes of infor- 

mation loss. 

6.2 Results 

In Section 5.2, we demonstrated that the analyses resolve 

many method invocations to direct calls. In this section, 

we address these questions: 

1. How do our analyses compare to an “oracle” that 

resolves all monomorphic method invocations? 

2. What transformations will be effective in convert- 

ing the polymorphic method invocations to direct 

calls? 

Figure 13 addresses the first question. Each bar gives 

the run-time data for one benchmark program. The 

height of a bar corresponds to the percentage of method 

invocations that always call the same procedure in a 

run of the benchmark4. Each bar has two regions, the 

black region corresponds to the method invocations re- 

solved by analysis and the gray region corresponds to the 

unresolved monomorphic method invocations. The pair 

4 We used two runs for pp with different command-line parame- 
ters to expose the polymorphic method invocations. 

Figure 13: Monomorphic method invocations 

above each bar gives the number of static method invoca- 

tions corresponding to the two regions. The gray region 

is an upper bound on the truly monomorphic method in- 

vocations; (i.e., across all possible runs of the programs) 

and thus on how much better the oracle can do compared 

to our analyses. It is an upper bound since method in- 

vocations may be polymorphic on a different program 

execution. 

Figure 13 shows that, for all benchmarks except m3 cg 

and trestle, our analysis resolves the vast majority of 

monomorphic method invocations; the analyses perform 

almost as well as the oracle. For df ormat, format, 

m2 t om3, pp, and s 1 i sp, our analyses perform as well 

as the oracle. Across all the benchmarks, the oracle 

would resolve at most 7% more method invocation sites 

compared to our analyses. For the benchmarks where 

our analyses are less effective, Figure 14 indicates which 

analyses may be successful in resolving these method 

invocations. 

Each bar in Figure 14 breaks down an unresolved 

region in Figure 13 into four regions, one for each cause 

of analysis failure. The numbers above each bar give the 

total number of monomorphic method invocation sites. 

For m3cg the figure indicates that a more powerful 

aggregate analysis may be successful in resolving more 

method invocations. On inspection of the source code of 

m3cg, we found that an analysis would have to discover 

the semantics of a stack in order to do better than our 

aggregate analysis. It is unlikely that any analysis would 

be able to discover the semantics of a stack and thus 

resolve more method invocations. 

For trestle, the primary cause of analysis fail- 

ure is control merges. Thus a context sensitive analy- 

sis may be effective in resolving more method invoca- 
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Figure 14: Monomorphic method invocations that are unresolved 

tions. Tres t 1 e is the only benchmark where a context- 

sensitive analysis may be helpful. 

Figure 15 addresses the second question: what trans- 

formations will be effective in converting the polymor- 

phic method invocations to direct calls? Figure 15 

presents data for the method invocation sites that call 

more than one procedure in a run of the benchmark 

and thus cannot be resolved by analysis alone. These 

method invocations are a lower bound on the polymor- 

phic method invocations since in another run of the 

benchmark, additional method invocations may be poly- 

morphic. 

Figure 15 illustrates that most run-time polymorphic 

method invocations arise because more than one type 

of object is stored in a heap slot. Two techniques, ex- 

plicit type test [5, 151 and cloning combined with ag- 

gressive aggregate analysis, may be able to resolve these 

method invocations. Merges in control are another im- 

portant cause of the run-time polymorphism, especially 

for tres t 1 e, and can be resolved by code splitting and 

cloning [7, 14, 91. 

From the static counts above the bars, we see that 

while the number of run-time polymorphic sites in the 

benchmarks is usually small, they are executed rela- 

tively frequently. For example, of the 29 method in- 

vocation sites executed in a run of format, only 3 

sites are polymorphic, but they comprise more than 80% 

of the total method invocations executed. Across all 

the benchmarks, polymorphic sites are called 26 times 

more than monomorphic sites, Thus these Modula-3 

programs have relatively few polymorphic method in- 

vocation sites, but they are executed very frequently. 

This observation has an implication for optimizations: 

the number of method invocation sites where transfor- 

mation is needed is small and thus the code growth in- 

duced by transformations such as cloning is likely to be 

negligible. 

7 Applicability to Other Languages 

The analyses described here are language independent 

but their usefulness depends on the language and the 

programming style. For example, some C++ program- 

ming styles discourage the use of virtual functions un- 

less necessa$; in essence the style encourages the pro- 

grammer to attempt type-hierarchy analysis manually. 

In such situations, the impact of type-hierarchy analysis 

will be limited compared to Modula-3 programs, where 

all methods are virtual. We expect that our results will 

carry over to other statically typed object oriented lan- 

guages such as C++ $ the programs are written using 

only virtual methods. However the run-time improve- 

ment due to our analyses in C++ programs may be greater 

since method invocations are more costly in languages 

that have multiple inheritance. Since dynamically-typed 

languages encourage a fundamentally different style of 

programming, we expect that our results will not directly 

apply to them. 

‘Only virtual functions may be overridden in subtypes. 
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Figure 15: Polymorphic method invocations 

8 Related Work 

In this section, we describe the related work on un- 

derstanding and analyzing object-oriented programs and 

distinguish our contributions. 

Femandez [ 121 and Dean et al. [lo] evaluate type 

hierarchy analysis for Modula-3 and Cecil respectively. 

They find that type hierarchy analysis is a worthwhile 

technique that resolves many method invocations. Our 

work confirms these results. In addition to type hierarchy 

analysis, we evaluate a range of other techniques. 

Palsberg and Schwartzbach [20], Agesen and Holzle 

[l], and Plevyak and Chien [22] describe type inference” 

for dynamically typed object-oriented languages. Age- 

sen and Holzle’s, and Plevyak and Chien’s analyses are 

more powerful than ours since they are context sensitive 

(polyvariant). They are also more complex and expen- 

sive. Polyvariant analyses can be used in conjunction 

with transformations to resolve polymorphic method in- 

vocations. We focus solely on analysis here. Plevyak 

and Chien discuss reasons for loss of type information, 

but do not present any results. We present detailed data 

giving reasons for loss of type information. 

In work done concurrently with ours, Bacon and 

Sweeney [4] and Aigner and Hijlzle [3] evaluate tech- 

niques for resolving method invocations in C++ pro- 

grams. Bacon and Sweeney evaluate three fast anal- 

‘“Type propagation” and “type inference” are terms that have 
been used to describe the same kinds of analysis in object-oriented 
languages. 

yses, including type hierarchy analysis, for resolving 

method invocations in C++ programs. Unlike us, Bacon 

and Sweeney evaluate only flow insensitive analyses. 

Aigner and Holzle evaluate type feedback and type hi- 

erarchy analysis and find that they are both effective at 

resolving method invocations. 

Pande and Ryder [21] describe a pointer analysis al- 

gorithm for C++ programs. Plevyak and Chien’s type 

inference algorithm also does some pointer analysis [22]. 

Both algorithms consider the control flow in a program 

and are thus more powerful than our simple aggregate 

analysis, which also deals with pointer analysis. How- 

ever, they are also much slower than our aggregate analy- 

sis. On aSPARC-10, Pande and Ryder’s algorithm takes 

as much as 23 minutes to analyze programs that are less 

than 1000 lines of code (median 36 seconds). Our aggre- 

gate analysis takes 38 seconds to analyze 28,977 lines 

of code on a DEC 3000/400. We show that our simple 

analysis is effective and there is little to be gained by a 

more powerful analysis for our benchmarks. This result 

is partly due to Modula-3’s language semantics which 

restrict aliasing; a more powerful alias analysis may be 

more useful for C++ than for Modula-3, but this need 

has not yet been demonstrated. 

Chambers [6], Calder and Grunwald [5], Holzle and 

Ungar [ 151, and Grove et al. [ 131 describe transforma- 

tions for converting method invocations to direct calls, 

We focus solely on analysis here. 

Shivers [23] describes and classifies a range of anal- 

yses to discover control flow in Scheme programs. 
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Our interprocedural type propagation is similar to 

his OCFA. While Shivers focuses on powerful (and 

slow) analyses---OCFA is the least powerful analysis he 

considers-we focus on simple and fast analyses. In- 

terprocedural type propagation is the most complicated 

analysis we consider. 

Another key difference between our work and that of 

others is that we present results that give the reason when 

analysis fails, and place upper bounds on how well more 

powerful analyses or transformations can possibly do. 

9 Conclusions 

We describe and evaluate a range of analyses for object- 

oriented programs: type-hierarchy analysis, intraproce- 

dural and interprocedural type propagation, and aggre- 

gate analysis. Aggregate analysis is a new technique 

and is simpler and faster than previous work. 

We demonstrate that our techniques are extremely 

effective at resolving method invocations in Modula- 

3 programs. On average, our analyses resolve more than 

92% of the method invocation sites that are amenable 

to analysis and improve the run-time of the benchmark 

programs by up to 19%. 

For method invocations that are unresolved by our 

analyses, we determine the reason for analysis failure. 

The.failure reason suggests which other analyses and 

transformations may be effective. The primary failure 

reason in our benchmarks is polymorphism: the method 

invocations called more than one procedure at run time 

and thus are not amenable to analysis alone. Most of this 

polymorphism is due to objects of different types being 

stored in heap slots. The other significant reasons for 

analysis failure are an insufficiently powerful aggregate 

analysis and lack of a context sensitive analysis. Improv- 

ing the aggregate analysis and adding a context sensitive 

analysis would resolve at most 7% more method invo- 

cation sites. 
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