Objects and Classes

CS211
Fall 2000

Much of Java Looks Like C

= Goal was to make a
programming language that
people would pick up easily

= There are lots of C and
C++ programmers, so
make it much like C

Arithmetic & relational
operators are the same:
+ -, % /and <, >, <=, >=

1Ty

Assignment is the same:
a=b;

Conditional & looping
statements are the same:
if/else, while, for, do, break,
continue, switch

Arrays are the same:
ali] and biilli]

What's Different?

= Java allows method .
overloading
« C++ does this, but C
does not
« C++ also allows
operator overloading;
Java does not
= The Java numeric types all =
conform to IEEE standards

« C numeric types can -
vary depending on
platform .
= Java does not have explicit
pointers

In Java, there is a separate
String class
« A String is not the same

as an array of
characters and it is not
terminated by the NUL
character

Java does automatic

Garbage Collection

Many other differences...

Java is claimed to be safer,
more portable, and easier
to use than C++

Object Oriented Programming

= Thisis a style of
programming based on the
ideas of

« Objects
. Classes
« Inheritance

= Javais based on these
ideas

= Currently, this is the best of
known programming styles

An object is a software
bundle of data and related
operations (the operations
are called methods in Java)

A class is a template that
defines objects of a certain
kind

Using one class, | can
create several objects,
where each is an instance
of this class

Simple Inheritance

= Classes can be defined in]
terms of other classes
« Ifanewclass B is
based on a previous
class A then
4 Bis a subclass of A
1 Alis a superclass of B

= In general, the variables
and operations of a class
are available to its
subclasses .

Some classes in Java
« String

« Vector

« Stack

« Hashtable

Stack is a subclass of
Vector which is a subclass
of Object

All Java classes are
subclasses of Object

Java Programs

= A Java program consists of a number of interacting

classes

« All methods and all variables reside within some

class

= When an application runs

« You specify a class

« The “system” looks for and runs the method that

looks like

4 public static void main(String[] args)

Java Programs: Applets

» When a Java Applet runs
« The web page specifies a class
« The “system” looks for these methods
a public void init()
v Runs when Applet is first loaded
a public void start()
v Runs when Applet appears on screen
4 public void stop()
v Runs when Applet is off screen
4 public void destroy()
v Runs when Applet is terminating

Object Basics

= Primitive types in Java:
« byte, short, int, long
« float, double
« char
« boolean

= Everything else is an
Object
. Each objectis an
instance of a Java class
« There are many
predefined Java classes

= Operators (with one
exception) work only on
primitive types
« What's the exception?

= Each Java variable holds
one of two things:

« a primitive type or
. areference to an object

A Simple Example Class

When
Thing t = new Thing();
is executed, an object is
created that looks like this

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v; }

public int getValue () { return value; } Thing l«— class name
/I Plus other methods value .
} count «— attributes
getValue()
setvalue() |«— Methods

Warning: The picture suggests that each object getsits own
copy of each method. This provides some good intuition, but
isnot really true...

Some Terminology

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v; }
public int getValue () { return value; }
/I Plus other methods

= private?

= static?

= static members vs.
instance members?

= function vs. procedure?

= accessor methods vs.
modifier methods?

Objects vs. References

When = Pictorially, we represent
Thing t = new Thing (); this as

is executed, the variable s
t———» Theobject

does not contain the object

= Instead, it contains a

reference to the object . . .
= In fact, it's more like this

t| address 22543

22543

The object

= In other words, t contains
the address of the place in
memory where the object is
stored

Object vs. Reference Example

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v; }
public int getValue () { return value; }

/I A constructor
public Thing () { count++; }

1l Plus other methods

What happens?

Thing t1;

Thing t2;

t1 = new Thing ();

t2=1t1;

t2.setvalue(4);
System.out.printin(t2.getValue());
2 = new Thing ();
System.out.printin(tl.getValue());
System.out.printin(Thing.count);

Null

assignment?

Thing t1;
Il What has happened here?
t1 = new Thing();

What happens after the declaration, but before the

The variable t1 exists, but it contains no reference

« It holds the special value null
« null can be assigned to any object variable
« null can be used in “=="tests

Equality

= The “==" operator in Java
tests whether two variables
contain the same value
« For primitive types, this
is what we want
. For objects, this
compares “addresses”

= Need an “equals()" method
that compares the contents
of the object

What happens?

Thing t1 = new Thing ();
Thing t2 = new Thing ();
tl.setvValue(44);
t2.setValue(44);
System.out.printin(tl ==1t2);

An Improved Thing class

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v; }
public int getValue () { return value; }
II'A constructor
public Thing () { count++; }

1 Equality test

public boolean equals (Thing other) {
return value == other.value;

}

/I Plus other methods

= Every class automatically
has an equals() method
« The default equals()
method is inherited from
Object
a This is usually not what
you actually want
4 You often need to write
your own equals()

Assignment vs. Copying (Cloning)

= What happens if we really
want to make a copy of an
object?

= Can't do it this way:
Thing t1 = new Thing();
/I Do stuff with t1; now make a copy
Thing t2 = new Thing();
t2=1t1;

= Instead we use the
“clone()" method:
Thing t2 = tl.clone();

= Can use inherited (from
Object) clone() if class
Thing implements Cloneable

16

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v;

public int getValue () { return value; }

public Thing () { count++; }

public boolean equals (Thing other) {
return value == other.value;

}

public Thing clone () {
Thing thing = new Thing();
thing.value = getValue();
return thing;

Another “must-have” Method

= Methods that appear in

many classes

« equals()

« clone()

« toString()
controls what an
instance of your class
looks like when printed

= All these methods have
default versions that are
defined in the class Object

= A toString() method for
Thing:

public String toString () {
return “[Thing " + value + “I";

}

Parameter Passing

= In Java, all parameters are
passed by copying their
values
« For primitive types, this
creates a new copy
« For objects, this makes
of copy of the object's
reference

= An example “change”
method
public void change (int j, Thing t) {
j = 4; tsetvalue(5);
}

= What does the following
code do?
Thing t1 = new Thing();
tl.setValue(1);
inti=10;
change(i,t1);

= What happens if change(
) sets t to null?

