
1

Objects and Classes

CS211

Fall 2000

2

Much of Java Looks Like C

■ Goal was to make a
programming language that
people would pick up easily

■ There are lots of C and
C++ programmers, so
make it much like C

■ Arithmetic & relational
operators are the same:
+, -, *, / and <, >, <=, >=

■ Assignment is the same:
a = b;

■ Conditional & looping
statements are the same:
if/else, while, for, do, break,
continue, switch

■ Arrays are the same:
a[i] and b[i][j]

3

What’s Different?

■ Java allows method
overloading

● C++ does this, but C
does not

● C++ also allows
operator overloading;
Java does not

■ The Java numeric types all
conform to IEEE standards

● C numeric types can
vary depending on
platform

■ Java does not have explicit
pointers

■ In Java, there is a separate
String class

● A String is not the same
as an array of
characters and it is not
terminated by the NUL
character

■ Java does automatic
Garbage Collection

■ Many other differences…

■ Java is claimed to be safer,
more portable, and easier
to use than C++

4

Object Oriented Programming

■ This is a style of
programming based on the
ideas of

● Objects
● Classes
● Inheritance

■ Java is based on these
ideas

■ Currently, this is the best of
known programming styles

■ An object is a software
bundle of data and related
operations (the operations
are called methods in Java)

■ A class is a template that
defines objects of a certain
kind

■ Using one class, I can
create several objects,
where each is an instance
of this class

5

Simple Inheritance

■ Classes can be defined in
terms of other classes

● If a new class B is
based on a previous
class A then

▲ B is a subclass of A

▲ A is a superclass of B

■ In general, the variables
and operations of a class
are available to its
subclasses

■ Some classes in Java
● String
● Vector
● Stack

● Hashtable

■ Stack is a subclass of
Vector which is a subclass
of Object

■ All Java classes are
subclasses of Object

6

Java Programs

■ A Java program consists of a number of interacting
classes

● All methods and all variables reside within some
class

■ When an application runs

● You specify a class

● The “system” looks for and runs the method that
looks like

▲public static void main(String[] args)

2

7

Java Programs: Applets

■ When a Java Applet runs

● The web page specifies a class
● The “system” looks for these methods

▲public void init()
▼Runs when Applet is first loaded

▲public void start()
▼Runs when Applet appears on screen

▲public void stop()
▼Runs when Applet is off screen

▲public void destroy()
▼Runs when Applet is terminating

8

Object Basics

■ Primitive types in Java:
● byte, short, int, long
● float, double
● char

● boolean

■ Everything else is an
Object

● Each object is an
instance of a Java class

● There are many
predefined Java classes

■ Operators (with one
exception) work only on
primitive types

● What’s the exception?

■ Each Java variable holds
one of two things:

● a primitive type or
● a reference to an object

9

A Simple Example Class

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v; }
public int getValue () { return value; }
// Plus other methods

}

When
Thing t = new Thing();

is executed, an object is
created that looks like this

Thing

value
count

getValue()
setValue()

class name

attributes

methods

Warning: The picture suggests that each object gets its own
copy of each method. This provides some good intuition, but

is not really true…
10

■ private?

■ static?

■ static members vs.
instance members?

■ function vs. procedure?

■ accessor methods vs.
modifier methods?

Some Terminology

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v; }
public int getValue () { return value; }
// Plus other methods

}

11

Objects vs. References

When
Thing t = new Thing ();

is executed, the variable s
does not contain the object

■ Instead, it contains a
reference to the object

■ In other words, t contains
the address of the place in
memory where the object is
stored

■ Pictorially, we represent
this as

■ In fact, it’s more like this

The objectt

The object

t address 22543

22543

12

What happens?

Thing t1;
Thing t2;

t1 = new Thing ();
t2 = t1;
t2.setValue(4);
System.out.println(t2.getValue());
t2 = new Thing ();
System.out.println(t1.getValue());
System.out.println(Thing.count);

Object vs. Reference Example

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v; }
public int getValue () { return value; }

// A constructor
public Thing () { count++; }

// Plus other methods
}

3

13

Null

■ What happens after the declaration, but before the
assignment?

Thing t1;

// What has happened here?

t1 = new Thing();

■ The variable t1 exists, but it contains no reference
● It holds the special value null

● null can be assigned to any object variable

● null can be used in “==” tests

14

Equality

■ The “==” operator in Java
tests whether two variables
contain the same value

● For primitive types, this
is what we want

● For objects, this
compares “addresses”

■ Need an “equals()” method
that compares the contents
of the object

What happens?

Thing t1 = new Thing ();

Thing t2 = new Thing ();
t1.setValue(44);
t2.setValue(44);
System.out.println(t1 == t2);

15

■ Every class automatically
has an equals() method

● The default equals()
method is inherited from
Object

▲ This is usually not what
you actually want

▲ You often need to write
your own equals()

An Improved Thing class

public class Thing {
private int value;
public static int count;
public void setValue (int v) { value = v; }
public int getValue () { return value; }
// A constructor
public Thing () { count++; }

// Equality test
public boolean equals (Thing other) {

return value == other.value;
}
// Plus other methods

}

16

Assignment vs. Copying (Cloning)

■ What happens if we really
want to make a copy of an
object?

■ Can’t do it this way:
Thing t1 = new Thing();

// Do stuff with t1; now make a copy
Thing t2 = new Thing();
t2 = t1;

■ Instead we use the
“clone()” method:

Thing t2 = t1.clone();

■ Can use inherited (from
Object) clone() if class
Thing implements Cloneable

public class Thing {

private int value;
public static int count;
public void setValue (int v) { value = v;
}

public int getValue () { return value; }
public Thing () { count++; }
public boolean equals (Thing other) {

return value == other.value;
}
public Thing clone () {

Thing thing = new Thing();

thing.value = getValue();
return thing;

}
}

17

Another “must-have” Method

■ Methods that appear in
many classes

● equals()
● clone()

● toString()
controls what an
instance of your class
looks like when printed

■ All these methods have
default versions that are
defined in the class Object

■ A toString() method for
Thing:

public String toString () {

return “[Thing ” + value + “]”;
}

18

Parameter Passing

■ In Java, all parameters are
passed by copying their
values

● For primitive types, this
creates a new copy

● For objects, this makes
of copy of the object’s
reference

■ An example “change”
method
public void change (int j, Thing t) {

j = 4; t.setValue(5);
}

■ What does the following
code do?

Thing t1 = new Thing();

t1.setValue(1);
int i = 10;

change(i,t1);

■ What happens if change(
) sets t to null?

