Current Multicast:
- **IP Multicast (IPMC)**
 - Performs well, but is not universally available.
- **Application Layer Multicast (ALM)**
 - Scales to the Internet, but suffers from high latency (Mesh) or network churn (Tree).

No single solution covers all the benefits!

Solution

Quilt: A patchwork of Multicast Regions where each runs a different protocol; with a Wide Area Overlay sewing them together.

Goals:
- Minimize delivery latency
- Minimize control overhead
- Resilient to node churn/failure
- Adapt to the runtime environment

Quilt: An Adaptive Multicast Infrastructure for WAN Networks

Problem

Approach

1. **Detect environment**
 - New host
 - NIC-based Environment Unique Identifier (EUID)
 - Connectivity Options
 - NAT/Firewall settings
 - Local Topology
 - IPMC support, topography
 - Measured Performance
 - Bandwidth, latency, etc.

2. **Join with EUID**
 - Bootstrap Server
 - Reply with patch info

3. **Select patch for host**
 - An environment Rule is defined to map suitable environments, described by EUID values, to each multicast protocol.
 - Rule for Wide Area Overlay: {A: 2, 4}
 - Rule for Red Patch: {C: 4, 5}
 - Rule for Green Patch: {B: 1, 2, 3}

4. **Activate assigned multicast protocol, join the patch**
 - Patch Representative
 - Runs multiple multicas
t - Bridges traffic among patches
 - Maintained by Bootstrap Server

Results

Data Center Scenario:
- Grid5000, 25 data centers, 1531 servers in total
- Quilt disseminates event messages faster than OMNI (Tree ALM) by adopting IPMC inside data centers.

Internet Scenario:
- Peerwise, 951 nodes in total
- Quilt disseminates streaming content faster than DONet (Mesh ALM) by limiting DONet only for nearby hosts, and using OMNI as Wide Area Overlay.