
X-Containers: Breaking Down Barriers to Improve
Performance and Isolation of Cloud-Native

Containers
Zhiming Shen
Cornell University

Zhen Sun
Cornell University

Gur-Eyal Sela∗
University of California, Berkeley

Eugene Bagdasaryan
Cornell University

Christina Delimitrou
Cornell University

Robbert Van Renesse
Cornell University

Hakim Weatherspoon
Cornell University

Abstract
“Cloud-native” container platforms, such as Kubernetes, have
become an integral part of production cloud environments.
One of the principles in designing cloud-native applica-
tions is called Single Concern Principle, which suggests that
each container should handle a single responsibility well.
In this paper, we propose X-Containers as a new security
paradigm for isolating single-concerned cloud-native con-
tainers. Each container is run with a Library OS (LibOS)
that supports multi-processing for concurrency and compat-
ibility. A minimal exokernel ensures strong isolation with
small kernel attack surface. We show an implementation
of the X-Containers architecture that leverages Xen para-
virtualization (PV) to turn Linux kernel into a LibOS. Do-
ing so results in a highly efficient LibOS platform that does
not require hardware-assisted virtualization, improves inter-
container isolation, and supports binary compatibility and
multi-processing. By eliminating some security barriers such
as seccomp and Meltdown patch, X-Containers have up to
27× higher raw system call throughput compared to Docker
containers, while also achieving competitive or superior per-
formance on various benchmarks compared to recent con-
tainer platforms such as Google’s gVisor and Intel’s Clear
Containers.

∗Work conducted at Cornell University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304016

CCS Concepts • Security and privacy → Virtualiza-
tion and security; • Software and its engineering →
Operating systems.

Keywords Containers; X-Containers; Cloud-Native; Li-
brary OS; exokernel

ACM Reference Format:
Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, and Hakim Weath-
erspoon. 2019. X-Containers: Breaking Down Barriers to Improve
Performance and Isolation of Cloud-Native Containers. In 2019 Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’19), April 13–17, 2019, Providence, RI, USA.ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3297858.3304016

1 Introduction
An important recent trend in cloud computing is the rise of
“cloud-native” container platforms, such as Kubernetes [38],
which have become an integral part of production envi-
ronments. Such platforms support applications designed
specifically for cloud infrastructures that consist of loosely-
coupled microservices [62] running in containers, enabling
automatic orchestration and agile DevOps practices [33]. In
cloud-native platforms, container design is similar to object
design in object-oriented (OO) software systems: each con-
tainer should have a single responsibility and handle that
responsibility well [39]. By focusing on a single concern,
cloud-native containers are easier to scale horizontally, and
replace, reuse, and upgrade transparently. Similar to the Sin-
gle Responsibility Principle in OO-languages, this has been
termed the “Single Concern Principle” [51], and is recom-
mended by Docker [8].
Running multiple containers on the same host does not

come without problems. From a security perspective, if one
container is compromised, all containers on the same Op-
erating System (OS) kernel are put under risk. Due to the
concern of application isolation, containers are generally
not allowed to install their own kernel modules, a limitation
for applications that require kernel customization. Nor can

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

121

https://doi.org/10.1145/3297858.3304016
https://doi.org/10.1145/3297858.3304016

the OS kernel be easily tuned and optimized for a particular
container since it is shared by other containers.
There have been several proposals to address the is-

sue of container isolation. Hypervisor-based container run-
times [17], such as Clear Containers [15], Kata Contain-
ers [16], and Hyper Containers [13], wrap containers with
a dedicated OS kernel running in a virtual machine (VM).
These platforms require hardware-assisted virtualization sup-
port to reduce the overhead of adding another layer of indi-
rection. However, many public and private clouds, including
Amazon EC2, do not support nested hardware virtualization.
Even in clouds like Google Compute Engine where nested
hardware virtualization is enabled, its performance overhead
is high (Section 5 and [5]). LightVM [60] wraps a container
in a paravirtualized Xen instance without hardware virtu-
alization support. Unfortunately, it introduces a significant
performance penalty in x86-64 platforms (Section 4.1 and
5). Finally, Google gVisor [12] is a user-space kernel written
in Go that supports container runtime sandboxing, but it
only offers limited system call compatibility [55] and incurs
significant performance overheads (Section 5).
The trend of running a single application in its own VM

for enhanced security has led to a renewed interest in Lib-
OSes, as suggested by the Unikernel [58] model. LibOSes
avoid the overhead of security isolation between the appli-
cation and the OS, and allow each LibOS to be carefully
optimized for the application at hand. Designing a container
architecture inspired by the exokernel+LibOS [43] model can
improve both container isolation and performance. However,
existing LibOSes, such as MirageOS [58], Graphene [69],
and OSv [53], lack features like full binary compatibility or
multi-processing support. This makes porting containerized
applications very challenging.
In this paper, we propose a new LibOS platform called

X-Containers that improves container isolation without re-
quiring hardware virtualization support. An X-Container can
support one or more user processes that all run at the same
privilege level as the LibOS. Different processes inside an
X-Container still have their own address spaces for resource
management and compatibility, but they no longer provide
secure isolation from one another; in this new security para-
digm processes are used for concurrency, while X-Containers
provide isolation between containers.We show an implemen-
tation of the X-Containers architecture that leverages Xen’s
paravirtualization (PV) architecture [32] and turns the Linux
kernel into a LibOS that supports both binary compatibility
and multi-processing.
Without hardware virtualization support, executing sys-

tem call instructions is expensive, as they are first trapped
into the exokernel and then redirected to the LibOS. The
X-Container platform automatically optimizes the binary of
an application during runtime to improve performance by
rewriting costly system calls into much cheaper function
calls in the LibOS. Furthermore, by avoiding overheads of

seccomp filters and Meltdown [57] patch, X-Containers have
up to 27× higher raw system call throughput compared to
native Docker containers running in the cloud. X-Containers
also achieve competitive or superior performance compared
to recent container platforms such as gVisor and Clear Con-
tainers, as well as other LibOSes like Unikernel and Graphene
on various benchmarks.

The X-Container architecture, however, also imposes sev-
eral limitations. For example, the change in the threat model
makes it unsuitable for running some containers that still
require process and kernel isolation. Due to the require-
ment of running a LibOS with each container, X-Containers
take longer time to boot and have bigger memory footprint.
X-Containers also face challenges of page table operation
efficiency and dynamic memory management. We discuss
these limitations in the paper.

This paper makes the following contributions:
• We present X-Containers, a new exokernel-inspired
container architecture that is designed specifically for
single-concerned cloud-native applications. We dis-
cuss the new threat model and the trade-offs it intro-
duces, the advantages and limitations of the proposed
design, including those related to running unmodified
applications in X-Containers.

• We demonstrate how the Xen paravirtualization ar-
chitecture and the Linux kernel can be turned into a
secure and efficient LibOS platform that supports both
binary compatibility and multi-processing.

• We present a technology for automatically changing
system calls into function calls to optimize applications
running on a LibOS.

• We evaluate the efficacy of X-Containers against
Docker, gVisor, Clear Container, and other LibOSes
(Unikernel and Graphene), and demonstrate competi-
tive or superior performance.

2 X-Containers as a New Security
Paradigm

2.1 Single-Concerned Containers
Cloud-native applications are designed to fully exploit the
potential of cloud infrastructures. Although legacy applica-
tions can be packaged in containers and run in a cloud, these
applications cannot take full advantage of the automated
deployment, scaling, and orchestration offered by systems
like Kubernetes, which are designed for single-concerned
containers [30, 31]. The shift to single-concerned containers
is already apparent in many popular container clouds, such
as Amazon Elastic Container Service (ECS), and Google Con-
tainer Engine, both of which propose different mechanisms
for grouping containers that need to be tightly coupled, e.g.,
using a “pod” in Google Kubernetes [21], and a “task” in Ama-
zon ECS [7]. It is important to note that single-concerned

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

122

X-Kernel

X-Container

X-LibOS

Process

Process

Linux

Container

Process

Process

Linux

VM

Linux

Process

Process

X-ContainerContainer Clear	Container

KVM
Xen-PV

LightVM

Linux

gVisor

Container

Process

Process

gVisor

VM

Process

Process

Linux

Figure 1. Comparison of different container architectures.

containers are not necessarily single-process. Many contain-
ers require to run bash scripts or third-party tools. Some
applications might spawn multiple worker processes for con-
currency [8], such as NGINX and Apache webserver.

2.2 Rethinking the Isolation Boundary
Modern operating systems (OS) that support multiple users
and processes provide various types of isolation, including
Kernel Isolation, which ensures that a process cannot com-
promise the integrity of the kernel nor read confidential
information that is kept in the kernel; and Process Isolation,
which ensures that one process cannot easily access or com-
promise another.
The cost of kernel isolation can be significant. System

call handlers are forced to perform various security checks.
The recently disclosed Meltdown attack [57] imposes kernel
page-table isolation (PTI) [4], which further increases system
call overheads. Moreover, data copies are often performed in
the I/O stack for eliminating data dependencies between the
kernel and user mode code. Meanwhile, there is a trend to
push more and more functionality into the OS kernel, mak-
ing it increasingly harder to defend against attacks on the
kernel [46]. Modern monolithic OS kernels like Linux have
become a large code base with complicated services, device
drivers, and system call interfaces, resulting in a mounting
number of newly discovered security vulnerabilities [19].
Process isolation is similarly problematic [49]. For one,

this type of isolation typically depends on kernel isolation
due to the way in which it is implemented and enforced.
But perhaps more importantly, processes are not intended
solely for security isolation. They are often used for resource
sharing and concurrency support, and to support thismodern
OSes provide interfaces that transcend isolation, including
shared memory, shared file systems, signaling, user groups,
and debugging hooks. These mechanisms lay out a big attack
surface, which causes many vulnerabilities for applications
that rely on processes for security isolation.

In this work, we are revisiting the question of what func-
tionality belongs in the kernel, and where the security bound-
aries should be built. An exokernel architecture [43] is es-
sential for ensuring a minimal kernel attack surface while
providing good performance. Beyond that, processes are use-
ful for resource management and concurrency, but security

isolation could be decoupled from the process model. Indeed,
due to the coarse granularity of the process model, applica-
tions often implement their own security properties in the
application logic, isolating different users within the same
application. Many popular containerized applications (for
instance Redis) mainly use either a single-threaded event-
driven model or multi-threading instead of multi-processing
for serving different clients. These applications implement
client isolation inside the application logic through mecha-
nisms such as a strongly-typed language runtime, role-based
access control, authentication, and encryption.
In this paper, we propose the X-Container as a new para-

digm for isolating single-concerned containers. In the X-
Container architecture, each single-concerned container
runs with its own LibOS called X-LibOS, and can have multi-
ple processes—for resource management and concurrency—
but not isolation. Inter-container isolation is guarded by
the X-Kernel, an exokernel that ensures both a small ker-
nel attack surface (i.e., a small number of well-documented
system calls) and a small Trusted Computing Base (TCB).
The X-Containers architecture is different from existing con-
tainer architectures, as shown in Figure 1. gVisor [12] has
a user-space kernel isolated in its own address space. Clear
Container [15] and LightVM [60] run each container in its
own virtual machine (using KVM and Xen-PV resp.), but
they don’t reduce the cost of kernel and process isolation.

2.3 Threat Model and Design Trade-offs
X-Containers are single-concerned cloud-native containers
that are either single-process, or use multiple processes for
concurrency. Processes within the same X-Container are
mutually trusting, and additionally trust the X-LibOS, and
underlying X-Kernel. The most significant threat in this
case comes from external probes designed to corrupt the
application logic. This threat is countered by application
and OS logic and is identical for standard containers and
X-Containers. Another class of external threat may attempt
to break through the isolation barrier of a container. In the
case of standard containers, this isolation barrier is provided
by the underlying general purpose OS kernel, which has
a large TCB, and due to the large number of system calls,
a large attack surface. X-Containers, in contrast, rely on a
small X-Kernel that is specifically dedicated to providing iso-
lation. The X-Kernel has a small TCB and a small number of
system calls that lead to a smaller number of vulnerabilities
in practice.
Running an application over a LibOS removes security

isolation between a process and the OS kernel, but it does
not affect other security mechanisms implemented in the
application logic. For example, internal sand-boxing and
protection are also possible by leveraging programming lan-
guage type safety and verification tools for isolation, similar
to Software-Isolated Processes [50], Software-based Fault
Isolation [70], Nooks [68], and SPIN [37].

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

123

The X-Containers model involves multiple trade-offs.
Intra-container isolation is significantly reduced for improv-
ing performance and inter-container isolation. While many
cloud-native applications are compatible with X-Container’s
security model, there exist some applications that still rely
on strong process and kernel isolation, and some widely-
used security and fault-tolerance mechanisms are no longer
working, for example:

• A regular OpenSSH server isolates different users in
their own shell processes. Similarly, when using SSL
certificates, NGINX stores them in the parent process
running as root, isolated from worker processes run-
ning with fewer privileges. Running these applications
directly in X-Containers cannot provide the same se-
curity guarantees.

• Applications using processes for fault tolerance expect
that a crashed process does not affect others. However,
in X-Containers, a crashed process might compromise
the X-LibOS and the whole application.

• Kernel-supported security features such as seccomp,
file permissions, and network filter are no longer effec-
tive in securing a particular thread or process within
the container.

We can modify the application for some of these scenarios
to work in X-Containers. For example, applications that still
rely on process isolation and fault-tolerance can put each
process in its own X-Container. However, this can increase
overheads of inter-process communications.

3 X-Container Design
3.1 Challenges of Running Containers with LibOSes
Designing an exokernel-inspired container architecture can
improve both container isolation and performance. However,
there are two features that are necessary for supporting
containers, but are particularly challenging for LibOSes:

• Binary compatibility: A container packages an ap-
plication with all dependencies including third-party
tools and libraries. A LibOS without binary level com-
patibility can make the porting of many containers
infeasible. Even for containers that have the source
code of all dependencies, substantial changes in im-
plementation, compilation, debugging, and testing can
potentially introduce security or compatibility issues
that are not acceptable in production environments.
Further, incompatibility causes the loss of opportu-
nities to leverage existing, mature development and
deployment infrastructures that have been optimized
and tested for years.

• Concurrent multi-processing: While binary com-
patibility ensures support for spawning multiple pro-
cesses, concurrent multi-processing refers to the capa-
bility of runningmultiple processes in different address
spaces concurrently. As an example of the distinction,

User Mode Linux (UML) [42] supports spawning mul-
tiple processes, but they can only run a single process
at a time even when multiple CPU cores are avail-
able [24]. Without concurrent multi-processing, the
performance of many applications would be dramati-
cally impacted due to the reduced concurrency.

To the best of our knowledge, no existing LibOS pro-
vides both of these features. Unikernel [58] and related
projects, such as Dune [35, 36], EbbRT [66], OSv [53], and
ClickOS [61], only support single-process applications, and
involve substantial source code and compilation changes.
Graphene [69] supports concurrent multiprocessing, but pro-
vides only one third of the Linux system calls.

3.2 Why Use Linux as the X-LibOS?
We believe that the best way to develop an X-LibOS that
is fully compatible with Linux is to leverage Linux itself
for the primitives needed in the LibOS. Starting from the
Linux kernel when designing the X-LibOS enables binary
compatibility and multiprocessing. Additionally, although
the Linux kernel is widely referred to as a “general-purpose”
OS kernel, in fact it is highly customizable and supports
different layers of abstraction [52]. It has hundreds of boot-
ing parameters, thousands of compilation configurations,
and many fine-grained runtime tuning knobs. Since most
kernel functions can be configured as kernel modules and
loaded during runtime, a customized Linux kernel can be
very small and highly optimized. For example, for single-
threaded applications, such as many event-driven applica-
tions, disabling Symmetric Multi-Processing (SMP) support
can optimize spinlock operations [1], which greatly improves
performance. Depending on the workload, applications can
set different policies in the Linux scheduler [54]. Compared
to user-level load balancers like HAProxy, kernel-level load
balancing solutions based on IPVS (IP Virtual Server) have
better performance and scalability [44]. Many applications
do not currently reach the Linux kernel’s full potential, ei-
ther because of lack of control over kernel configurations,
or because the kernel is shared across multiple diverse appli-
cations, complicating the process of tuning its many config-
uration parameters. Turning the Linux kernel into a LibOS
and dedicating it to a single application can unlock its full
potential.

3.3 Why Use Xen as the X-Kernel?
There have been previous attempts to turn an existing
feature-rich monolithic OS kernel into a LibOS [64, 65]. How-
ever, these projects also use a monolithic OS kernel to serve
as the host kernel. For example, the Linux Kernel Library
(LKL) project [65] compiles the kernel code into an object
file that can be linked directly into a Linux application. How-
ever, LKL does not support running multiple processes. This
technical obstacle comes from the design choice of relying
on the host kernel, instead of the LibOS itself, to handle page

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

124

Table 1. Comparison of Linux and Xen.

Linux Xen
Number of Syscalls or Hypercalls 300+ 40+
Lines of Code 17+ Million 2+ Million
Number of CVE Reports in 2018 170 22
Number of CVE Reports in 2017 454 62

table mapping and scheduling. The same design choice was
made by Drawbridge [34, 64], which turns theWindows 7 OS
kernel into a LibOS running on Windows and only supports
a single address space.

Graphene [69] is based on Linux, and addressed the chal-
lenge of supporting multiple processes by having processes
use IPC calls to maintain the consistency of multiple LibOS
instances, at a significant performance penalty. In addition,
it is difficult for Graphene to support full compatibility with
all Linux interfaces, such as shared memory, due to lack of
control over memory mapping.
Rather than trying to run the Linux kernel as a LibOS

inside a Linux process, X-Containers leverage the already
mature support for running Linux in Xen’s paravirtualization
(PV) architecture [32] (Section 4.1). There are five reasons
that make Xen ideal for implementing an X-Kernel with
binary compatibility and concurrent multi-processing.

• Compared to Linux, Xen is a much smaller kernel with
simpler interfaces. Although it is hard to directly com-
pare the security of two different systems, the number
of reports in Common Vulnerabilities and Exposures
(CVE) [9] allow for an empirical comparison between
the standard Linux kernel and Xen. Table 1 shows that
the Linux kernel has an order of magnitude more vul-
nerabilities than Xen, roughly consistent with the ratio
in code size and number of system calls.

• Xen provides a clean separation of functions in kernel
mode (Xen) and user mode (Linux). In the Xen PV archi-
tecture, all operations that require root privileges are
handled by Xen, while the Linux kernel is re-structured
to run with fewer privileges. This clean separation
eliminates the requirement of any hardware virtual-
ization support.

• Xen supports portability of guest kernels. Xen hides the
complexity of the underlying hardware, so that guest
kernels only need to provide PV device drivers, which
are portable across different platforms.

• Multi-processing support is implemented in guest kernels.
Xen only provides facilities for managing page tables
and context switching, while memory and process
management policies are completely implemented in
the guest kernel. This makes it much easier to support
concurrent multi-processing when turning the guest
kernel into a LibOS.

Table 2. Pros and cons of the X-Container architecture.

Container gVisor Clear
Container LightVM X-Container

Inter-container
Isolation Poor Good Good Good Good

System call
Performance Limited Poor Limited Poor Good

Portability Good Good Limited Good Good
Compatibility Good Limited Good Good Good
Intra-container
Isolation Good Good Good Good Reduced

Memory
Efficiency Good Good Limited Limited Limited

Spawning Time Short Short Moderate Moderate Moderate
Software
Licensing Clean Clean Clean Clean Needs

Discussion

• There is a mature ecosystem around Xen infrastructures.
The Linux community maintains support for Xen PV
architectures, which is critical for providing binary
compatibility even for future versions of Linux. In
addition, there are many mature technologies in Xen’s
ecosystem enabling features such as live migration,
fault tolerance, and checkpoint/restore, which are hard
to implement with traditional containers.

3.4 Limitations and Open Questions
In this paper, we focus on addressing some of the key chal-
lenges of turning the Xen PV architecture into an efficient
X-Containers platform. As shown in Table 2, there are some
challenges remaining for future work, as discussed below.

Memorymanagement: In the Xen PV architecture, the sep-
aration of policy and mechanism in page table management
greatly improves compatibility and avoids the overhead of
shadow page table [2]. However, it still incurs overheads for
page table operations (Section 5.4). This affects workloads
like Apache webserver which frequently create and destroy
memory mappings. Furthermore, the memory footprint of
an X-Container is larger than a Docker container due to the
requirement of running an X-LibOS (Section 5.7). To reduce
memory footprint, multiple X-Containers can share read-
only binary pages (supported since Xen 4.0) of X-LibOS, but
it can be complicated when running different versions of
X-LibOSes. Another challenge comes from dynamic memory
management. In our prototype, each X-Container is config-
ured with a static memory size. Dynamic memory allocation
and over-subscription face problems of determining correct
memory requirement and the efficiency of changing memory
allocation with ballooning [48, 63].

Spawning speed of new instances: An important benefit
of containers is that they can be spawned much faster than
an ordinary VM. X-Containers require extra time for boot-
strapping the whole software stack including the X-LibOS
(Section 5.7). This overhead mainly comes from Xen’s “xl”
toolstack for creating new VMs. We are implementing a

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

125

new version of X-Containers integrated with the “runV” run-
time [23] from HyperContainer [13], which can bring the
toolstack overhead down to 460ms. LightVM has proposed a
solution to further reduce this overhead to 4ms [60], which
can be also applied to X-Containers.

GPL license contamination: The Linux kernel uses the
GNU General Public License (GPL) [11], which requires that
software using GPL-licensed modules must carry a license
no less restrictive. While there exist no official rules on dis-
tinguishing two separate programs and one program with
two parts, a widely used criteria is based on whether the
components are linked together in a shared address space,
and whether they communicate through function calls [26].
This raises concerns for running proprietary software in X-
Containers. It is a question that deserves more discussion,
but we believe that GPL contamination should not be ap-
plied to software running in X-Containers if the identical
software binary is legally viable when running on ordinary
Linux systems.

4 Implementation
We have implemented a prototype of the X-Containers plat-
form based on Xen 4.2 and Linux kernel 4.4.44. We leveraged
Xen-Blanket [71] drivers to run the platform efficiently in
public clouds. We focused on applications running in x86-
64 long mode. For Linux, the patch included 264 lines of C
code and 1566 lines of assembly, which are mostly in the
architecture-dependent layer and transparent to other lay-
ers in the kernel. For Xen, the C code patch size was 686
lines and the assembly code patch size was 153 lines. In this
section, we present the implementation of X-Containers.

4.1 Background: Xen Paravirtualization
The Xen PV architecture enables running multiple concur-
rent Linux VMs (PV guests) on the same physical machine
without support for hardware-assisted virtualization, but it
requires guest kernels to be modestly modified to work with
the underlying hypervisor. Below, we review key technolo-
gies in Xen’s PV architecture and its limitations on x86-64
platforms.

In the PV architecture, Xen runs in kernel mode, and both
the host OS (a.k.a “Domain-0”) and guest OS (a.k.a Domain-U)
run with fewer privileges. All sensitive system instructions
that could affect security isolation, such as installing new
page tables and changing segment selectors, are executed
by Xen. Guest kernels request those services via hypercalls,
which are validated by Xen before being served. Exceptions
and interrupts are virtualized through efficient event chan-
nels. For device I/O, instead of emulating hardware, Xen
defines a simpler split driver model. The Domain-U installs
a front-end driver, which is connected to a corresponding
back-end driver in the Driver Domain which gets access to
real hardware, and data is transferred using shared memory

(asynchronous buffer descriptor rings). Importantly, while
Domain-0 runs a Linux kernel and has the supervisor privi-
lege to control other domains, it does not run any applica-
tions, and can effectively isolate device drivers in unprivi-
leged Driver Domains. Therefore, bugs in Domain-0 kernel
are much harder to exploit, and in their majority do not affect
security isolation of other VMs.
Xen’s PV interface has been supported by the mainline

Linux kernel—it was one of the most efficient virtualization
technologies on x86-32 platforms. However, the PV archi-
tecture faces a fundamental challenge on x86-64 platforms.
Due to the elimination of segment protection in x86-64 long
mode, we can only run the guest kernel and user processes in
user mode. To protect the guest kernel from user processes,
the guest kernel needs to be isolated in another address space.
Each system call needs to be forwarded by the Xen hyper-
visor as a virtual exception, and incurs a page table switch
and a TLB flush. This causes significant overheads, and is
one of the main reasons why 64-bit Linux VMs opt to run
with hardware-assisted full virtualization instead of PV.

4.2 Eliminating Kernel Isolation
We modified the application binary interface (ABI) of the
Xen PV architecture so that it no longer provides isolation be-
tween the guest kernel (i.e., the X-LibOS) and user processes.
X-LibOS is mapped into user processes’ address space with
the same page table privilege level and segment selectors, so
that kernel access no longer incurs a switch between (guest)
user mode and (guest) kernel mode, and system calls can be
performed with function calls.

This leads to a complication: Xen needs to know whether
the CPU is in guest user mode or guest kernel mode for
correct syscall forwarding and interrupt delivery. Since all
user-kernel mode switches are handled by Xen, this can eas-
ily be done via a flag. However, in X-LibOS, with lightweight
system calls (Section 4.4) guest user-kernel mode switches
do not involve the X-Kernel anymore. Instead, the X-Kernel
determines whether the CPU is executing kernel or user
process code by checking the location of the current stack
pointer. As in the normal Linux memory layout, X-LibOS is
mapped into the top half of the virtual memory address space
and is shared by all processes. The user process memory is
mapped to the lower half of the address space. Thus, the
most significant bit in the stack pointer indicates whether it
is in guest kernel mode or guest user mode.
In the Xen PV architecture, interrupts are delivered as

asynchronous events. There is a variable shared by Xen and
the guest kernel that indicates whether there is any event
pending. If so, the guest kernel issues a hypercall into Xen to
have those events delivered. In the X-Container architecture,
the X-LibOS can emulate the interrupt stack frame when it
sees any pending events and jump directly into interrupt
handlers without trapping into the X-Kernel first.

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

126

To return from an interrupt handler, one typically uses the
iret instruction to reset code and stack segments, flags, the
stack and instruction pointers, while also atomically enabling
interrupts. However, in the Xen PV architecture virtual inter-
rupts can only be enabled by writing to a memory location,
which cannot be performed atomically with other operations.
To guarantee atomicity and security when switching privi-
lege levels, Xen provides a hypercall for implementing iret.
To implement iret completely in user mode, the code must
support reentrancy so that virtual interrupts can be enabled
before restoring all registers.
We implement iret by considering two cases. When re-

turning to a place running on the kernel mode stack, the
X-LibOS pushes return address on the destination stack, and
switches the stack pointer before enabling interrupts so pre-
emption is safe. Then the code jumps to the return address
by using a lightweight ret instruction. When returning to
the user mode stack, the user mode stack pointer might not
be valid, so X-LibOS saves register values in the kernel stack
for system call handling, enables interrupts, and then exe-
cutes the more expensive iret instruction.1 Similar to iret,
the sysret instruction, which is used for returning from a
system call handler, is optimized without trapping in the
kernel by leveraging spare registers (rcx and r11) which are
clobbered according to the syscall ABI.

4.3 Concurrent Multi-Processing Support
X-Containers inherit support for concurrent multi-
processing from the Xen PV architecture. Xen provides an
abstraction of paravirtualized CPUs, and the Linux kernel
can leverage this abstraction in the architecture-dependent
layer using customized code for handling interrupts,
maintaining page tables, flushing TLBs, etc. The Linux
kernel has full control over how processes are scheduled
with virtual CPUs, and Xen determines how virtual CPUs
are mapped to physical CPUs for execution.

For security isolation, in paravirtualized Linux the “global”
bit in the page table is disabled so that switching between
different processes causes a full TLB flush. This is not needed
for X-LibOS, thus themappings for the X-LibOS andX-Kernel
both have the global bit set in the page table. Switching
between different processes running on the same X-LibOS
(by updating the CR3 register) does not trigger a full TLB
flush, which greatly improves the performance of address
translation.When switching between different X-Containers,
a full TLB flush is performed by updating the CR4 register to
drop all TLB entries regardless of the global bit.
Because the kernel code is no longer protected, kernel

routines would not need a dedicated stack if the X-LibOS
only supported a single process. However, since the X-LibOS
supports multiple forked processes with overlapping address
spaces, using user-mode stack for kernel routines causes

1A potential stack overflow can happen, which we leave for future work.

problems after context switch. Therefore, we still use dedi-
cated kernel stacks in the kernel context, and when perform-
ing a system call, a switch from user stack to kernel stack is
necessary.

4.4 Automatic Lightweight System Calls
In the x86-64 architecture, user mode programs perform
system calls using the syscall instruction, which transfers
control to a routine in kernel mode. The X-Kernel immedi-
ately transfers control to the X-LibOS, guaranteeing binary
level compatibility so that existing applications can run on
the X-LibOS without any modification.

Because the X-LibOS and the process both run in the same
privilege level, it is more efficient to invoke system call han-
dlers using function call instructions. X-LibOS stores a system
call entry table in the vsyscall page, which is mapped to
a fixed virtual memory address in every process. Updating
X-LibOS will not affect the location of the system call en-
try table. Using this entry table, applications can optimize
their libraries and binaries for X-Containers by patching
the source code to change system calls into function calls,
as most existing LibOSes do. However, this significantly in-
creases deployment complexity, and it cannot handle third-
party tools and libraries whose source code is not available.

To avoid re-writing or re-compiling the application, we im-
plemented an online Automatic Binary Optimization Module
(ABOM) in the X-Kernel. It automatically replaces syscall
instructions with function calls on the fly when receiving
a syscall request from user processes, avoiding scanning
the entire binary file. Before forwarding the syscall request,
ABOM checks the binary around the syscall instruction and
sees if it matches any pattern that it recognizes. If it does,
ABOM temporarily disables interrupts and enables writing to
any memory page even if it is mapped read-only in the page
table. ABOM then performs the binary patch with atomic
lock cmpxchg instructions2. Since each cmpxchg instruction
can handle at most eight bytes, if we need to modify more
than eight bytes, we need to make sure that any intermediate
state of the binary is still valid for the sake of multicore con-
currency safety. The patch is mostly transparent to X-LibOS,
except that the page table dirty bit will be set for read-only
pages. X-LibOS can choose to either ignore those dirty pages,
or flush them to disk so that the same patch is not needed in
the future.
Figure 2 illustrates three patterns of binary code that

ABOM recognizes. To perform a system call, programs typi-
cally set the system call number in the rax or eax register
with a mov instruction, and then execute the syscall in-
struction. The syscall instruction is two bytes, and the mov
instruction is 5 or 7 bytes depending on the size of operands.

2This unsynchronized cross-modifying code (XMC) can potentially cause
some non-deterministic behavior [3], which we will address in future work.

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

127

00000000000eb6a0 <__read>:
eb6a9: b8 00 00 00 00 mov $0x0,%eax
eb6ae: 0f 05 syscall

00000000000eb6a0 <__read>:
eb6a9: ff 14 25 08 00 60 ff callq *0xffffffffff600008

0000000000010330 <__restore_rt>:
10330: 48 c7 c0 0f 00 00 00 mov $0xf,%rax
10337: 0f 05 syscall

0000000000010330 <__restore_rt>:
10330: ff 14 25 80 00 60 ff callq *0xffffffffff600080
10337: 0f 05 syscall

7-Byte	Replacement	(Case	1)

9-Byte	Replacement	(Phase-1)

0000000000010330 <__restore_rt>:
10330: ff 14 25 80 00 60 ff callq *0xffffffffff600080
10337: eb f7 jmp 0x10330

9-Byte	Replacement	(Phase-2)

000000000007f400 < syscall.Syscall>:
7f41d: 48 8b 44 24 08 mov 0x8(%rsp),%eax
7f422: 0f 05 syscall

000000000007f400 < syscall.Syscall>:
7f41d: ff 14 25 08 0c 60 ff callq *0xffffffffff600c08

7-Byte	Replacement	(Case	2)

Figure 2. Examples of binary replacement.

We replace these two instructions with a single call instruc-
tion with an absolute address stored in memory, which can
be implemented with 7 bytes. The memory address of the
entry points is retrieved from the system call entry table
stored in the vsyscall page. The binary replacement only
needs to be performed once for each place.

With 7-byte replacements, we merge two instructions into
one. There is a rare case that the program jumps directly to
the location of the original syscall instruction after setting
the rax register somewhere else or after an interrupt. After
the replacement, this will cause a jump into the last two
bytes of our call instruction, which are always “0x60 0xff”.
These two bytes cause an invalid opcode trap into the X-
Kernel. To provide binary level equivalence, we add a special
trap handler in the X-Kernel to redirect the program to the
system call handler.
9-byte replacements are performed in two phases, each

one generating results equivalent to the original binary. Since
the mov instruction takes 7 bytes, we replace it directly with
a call into the syscall handler. We leave the original syscall
instruction unchanged, in case the program jumps directly to
it, and we further optimize it with a jump into the previous
call instruction. The syscall handler in X-LibOS will check
if the instruction on the return address is either a syscall or
a specific jmp to the call instruction again. If it is, the syscall
handler modifies the return address to skip this instruction.

Our online binary replacement solution only handles the
case when the syscall instruction immediately follows a
mov instruction. For more complicated cases, it is possible
to inject code into the binary and re-direct a bigger chunk
of code. We also provide a tool to do this offline. For most
standard libraries, such as glibc, the default system call
wrappers typically use the pattern illustrated in Figure 2,

making our current solution sufficient for optimizing most
system call wrappers on the critical path (see evaluations in
Section 5.2).

4.5 Lightweight Bootstrapping of Docker Images
X-Containers do not have a VM disk image and do not go
through the same bootstrapping processes that a VM does.
When creating a new X-Container, a special bootloader is
loaded with an X-LibOS, which initializes virtual devices,
configures IP addresses, and spawns processes of the con-
tainer directly. Because X-Containers support binary level
compatibility, we can run any existing Docker image without
modification. We connect our X-Container architecture to
the Docker platform with a Docker Wrapper. An unmodified
Docker engine running in the Host X-Container is used to
pull and build Docker images. We use devicemapper as the
storage driver, which stores different layers of Docker im-
ages as thin-provisioned copy-on-write snapshot devices.
The Docker Wrapper then retrieves the meta-data from
Docker, creates the thin block device and connects it to a
new X-Container. The processes in the container are then
spawned with a dedicated X-LibOS. We are also integrating
X-Containers with the “runV” runtime [23], which supports
Open Container Initiative (OCI) and can run as a standard
backend for Docker and Kubernetes.

5 Evaluation
In this section, we address the following questions:

• How effective is the Automatic Binary Optimization
Module (ABOM)?

• What is the performance overhead of X-Containers,
and how does it compare to Docker and other con-
tainer runtimes in the cloud?

• How does the performance of X-Containers compare
to other LibOS designs?

• How does the scalability of X-Containers compare to
Docker Containers and VMs?

5.1 Experiment Setup
We conducted experiments on VMs in both Amazon Elastic
Compute Cloud (EC2) and Google Compute Engine (GCE).
In EC2, we used c4.2xlarge instances in the North Virginia
region (4 CPU cores, 8 threads, 15GB memory, and 2×100GB
SSD storage). To make the comparison fair and reproducible,
we ran the VMs with different configurations on a dedicated
host. In Google GCE, we used a customized instance type
in the South Carolina region (4 CPU cores, 8 threads, 16GB
memory, and 3×100GB SSD storage). Google does not sup-
port dedicated hosts, so we attached multiple boot disks to a
single VM, and rebooted it with different configurations.
We used the Docker platform on Ubuntu 16.04 and gVi-

sor as baselines for our evaluation. Docker containers were

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

128

Table 3. Evaluation of the Automatic Binary Optimization Module (ABOM).

Application Description Implementation Benchmark Syscall Reduction
memcached Memory caching system C/C++ memtier_benchmark 100%
Redis In-memory database C/C++ redis-benchmark 100%
etcd Key-value store Go etcd-benchmark 100%
MongoDB NoSQL Database C/C++ YCSB 100%
InfluxDB Time series database Go influxdb-comparisons 100%
Postgres Database C/C++ pgbench 99.80%
Fulentd Data collector Ruby fluentd-benchmark 99.40%
Elasticsearch Search engine JAVA elasticsearch-stress-test 98.80%
RabbitMQ Message broker Erlang rabbitmq-perf-test 98.60%
Kernel Compilation Code Compilation Various tools Linux kernel with tiny config 95.30%
Nginx Webserver C/C++ Apache ab 92.30%
MySQL Database C/C++ sysbench 44.60% (92.2% manual)

run with the default seccomp filters. gVisor used the de-
fault Ptrace platform in Amazon, and the KVM platform
in Google with nested virtualization. In Google GCE, we
also installed Clear Containers in Ubuntu 16.04 with KVM.
We also implemented Xen-Containers, a platform similar
to LightVM [60] that packages containers with a Linux ker-
nel in para-virtualized Xen instances. Xen-Containers use
exactly the same software stack (including the Domain-
0 tool stack, device drivers, and Docker wrapper) as X-
Containers. The only difference between Xen-Containers
and X-Containers is the underlying hypervisor (unmodi-
fied Xen vs. X-Kernel) and guest kernel (unmodified Linux
vs. X-LibOS). Xen-Containers are similar to Clear Containers
except that they can run in public clouds that do not support
nested hardware virtualization, such as Amazon EC2.

Due to the disclosure of Meltdown attacks on Intel CPUs,
both Amazon EC2 and Google GCE provision VMs with
patched Linux kernels by default. This patch protects the
kernel by isolating page tables used in user and kernel mode.
The same patch exists for Xen and we ported it to both Xen-
Container and X-Container. These patches can cause signifi-
cant overheads, and ultimately new Intel hardware will ren-
der them unnecessary. It is thus important to compare both
the patched and unpatched code bases. We therefore used
ten configurations: Docker, Xen-Container, X-Container,
gVisor, and Clear-Container, each with an -unpatched
version. Due to the threat model of single-concerned contain-
ers, for Clear-Containers only the host kernel is patched;
the guest kernel running in nested VMs is unpatched in our
setup.
The VMs running native Docker, gVisor, and Clear Con-

tainers had Ubuntu 16.04-LTS installed with Docker engine
17.03.0-ce and Linux kernel 4.4. We used Linux kernel 4.14 as
the guest kernel for Clear Containers since its current tool
stack is no longer compatible with Linux 4.4. The VMs run-
ning Xen-Containers had CentOS-6 installed as Domain-0
with Docker engine 17.03.0-ce and Xen 4.2, and used Linux

kernel 4.4 for running containers. X-Containers used the
same setup as Xen-Containers except that we modified Xen
and Linux as described in this paper. All configurations used
device-mapper as the back-end storage driver.
For each set of experiments, we used the same Docker

image for all configurations. When running network bench-
marks, we used separate VMs for the client and server. Unless
otherwise noted we report the average and standard devia-
tion of five runs for each experiment.

5.2 Automatic Binary Optimization
To evaluate the efficacy of ABOM, we added a counter in
the X-Kernel to calculate how many system calls were for-
warded to X-LibOS. We then ran a wide range of popular
container applications with ABOM enabled and disabled. The
applications include the top 10 most popular containerized
applications [41], and are written in a variety of program-
ming languages. For each application, we used open-source
workload generators as the clients.

Table 3 shows the applications we tested and the reduc-
tion in system call invocations that ABOM achieved. For
all but one application we tested, ABOM turns more than
92% of system calls into function calls. The exception is
MySQL, which uses cancellable system calls implemented in
the libpthread library that are not recognized by ABOM.
However, using our offline patching tool, two locations in
the libpthread library can be patched, reducing system call
invocations by 92.2%.

5.3 Macrobenchmarks
We evaluated the performance of X-Containers with four
macrobenchmarks: NGINX, Memcached, Redis, and Apache
httpd. The corresponding Docker images were nginx:1.13,
memcached:1.5.7, redis:3.2.11, and httpd:2.4, with the de-
fault configurations. For X-Containers the applications were
optimized only by ABOM, without any manual binary patch-
ing. Since Amazon EC2 and Google GCE do not support

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

129

Amazon Google
0x

1x

2x
3. Redis2. Memcached

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Amazon Google
0x

1x

2x

3x

4x

5x

Amazon Google
0x

1x

2x

 Docker Xen-Container X-Container gVisor Clear-Container

 Docker-unpatched Xen-Container-unpatched X-Container-unpatched gVisor-unpatched Clear-Container-unpatched

1. NGINX

Amazon Google
0x

1x

2x
4. Apache

Figure 3. Normalized performance of macrobenchmarks (higher is better).

bridged networks natively, the servers were exposed to
clients via port forwarding in iptables. We used a sepa-
rate VM as the client for generating workloads. For NGINX
and Apache we used the Apache ab benchmark which bench-
markswebserver throughput by sending concurrent requests.
For Memcached and Redis, we used the memtier_benchmark
which simulates multiple clients generating operations to
the database with a 1:10 SET:GET ratio.
Figure 3 shows the relative performance of the mac-

robenchmarks normalized to native Docker (patched). gVi-
sor performance suffers significantly from the overhead of
using ptrace for intercepting system calls. Clear Contain-
ers and gVisor in Google suffer a significant performance
penalty for using nested hardware virtualization (also mea-
sured by Google [5]). X-Containers improve throughput of
Memcached from 134% to 208% compared to native Docker,
achieving up to 307K Ops/sec in Amazon and 314K Ops/sec
in Google. For NGINX, X-Containers achieve 21% to 50%
throughput improvement over Docker, up to 32K Req/sec
in Amazon and 40K Req/sec in Google. For Redis, the per-
formance of X-Containers is comparable to Docker, about
68K Ops/sec in Amazon and 72K Ops/sec in Google, but
note that this is achieved with stronger inter-container iso-
lation. For Apache, X-Containers incur 28% to 45% perfor-
mance overhead (11K Req/sec in Amazon and 12K Req/sec
in Google), which is caused by context switches between
multiple worker processes. Note that Xen-Containers per-
formed worse than Docker in most cases, thus performance
gains achieved by X-Containers are due to our modifications
to Xen and Linux.

5.4 Microbenchmarks
To better understand the gains and losses in performance,
we also evaluated X-Containers with a set of microbench-
marks. We ran UnixBench and iperf in the Ubuntu 16.04
container. The System Call benchmark tests the speed of
issuing a series of nonblocking system calls, including dup,
close, getpid, getuid, and umask. The Execl benchmark
measures the speed of the exec system call, which overlays
a new binary on the current process. The File Copy bench-
marks test the throughput of copying files with a 1KB buffer.
The Pipe Throughput benchmark measures the throughput

Amazon

Single

Amazon

Concurrent

Google

Single

Google

Concurrent

0x

10x

20x

30x

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

Figure 4. Normalized system call throughput (higher is bet-
ter; legend is the same as Figure 3).

of a single process reading and writing in a pipe. The Con-
text Switching benchmark tests the speed of two processes
communicating with a pipe. The Process Creation benchmark
measures the performance of spawning new processes with
the fork system call. Finally, iperf tests the performance
of TCP transfer. We ran our tests both in Google GCE and
Amazon EC2. We ran tests both isolated and concurrently.
For concurrent tests, we ran 4 copies of the benchmark si-
multaneously. For each configuration, we saw similar trends.

Figure 4 shows the relative system call throughput normal-
ized to Docker. X-Containers dramatically improve system
call throughput (up to 27× compared to Docker, and up
to 1.6× compared to Clear Containers). This is because
X-Containers avoid the overhead of seccomp filters and Melt-
down patch for Docker, and the overhead of nested virtu-
alization for Clear Containers. The throughput of gVisor is
only 7 to 55% of Docker due to the high overhead of ptrace
and nested virtualization, so can be barely seen in the figure.
Clear Containers achieve better system call throughput than
Docker because the guest kernel is optimized by disabling
most security features within a Clear container. Also, note
that the Meltdown patch does not affect performance of X-
Containers and Clear Containers because for X-Containers
the system calls do not trap into kernel mode, and for Clear
Containers the guest kernel is always unpatched.
Figure 5 shows the relative performance for other mi-

crobenchmarks, also normalized to patched Docker. Similar
to the system call throughput benchmark, the Meltdown
patch does not affect X-Containers and Clear Containers.
In contrast, patched Docker containers and Xen-Containers
suffer significant performance penalties. X-Containers have

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

130

Execl File Copy Pipe

Throughput

Context

Switching

Process

Creation

iperf

Throughput

0x

1x

2x

3x

4x

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(a) Amazon EC2 Single

Execl File Copy Pipe

Throughput

Context

Switching

Process

Creation

iperf

Throughput

0x

1x

2x

3x

4x

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(b) Amazon EC2 Concurrent

Execl File Copy Pipe

Throughput

Context

Switching

Process

Creation

iperf

Throughput

0x

1x

2x

3x

4x

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(c) Google GCE Single

Execl File Copy Pipe

Throughput

Context

Switching

Process

Creation

iperf

Throughput

0x

1x

2x

3x

4x

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(d) Google GCE ConcurrentAmazon Google
0

1

2
3. Redis2. Memcached

R
e
la

tiv
e
 T

h
ro

u
g
h
p
u
t

Amazon Google
0
1
2
3
4
5

Amazon Google
0

1

2

 Docker Xen-Container X-Container gVisor Clear-Container
 Docker-unpatched Xen-Container-unpatched X-Container-unpatched gVisor-unpatched Clear-Container-unpatched

1. NGINX

Figure 5. Normalized performance of microbenchmarks (higher is better).

G U X
0K

10K

20K

30K

40K

T
h
ro

u
g
h
p
u
t
(R

e
q
u
e
s
ts

/S
)

(a) NGINX 1 worker

G X
0K

20K

40K

60K

80K

100K

T
h
ro

u
g
h
p
u
t
(R

e
q
u
e
s
ts

/S
)

(b) NGINX 4 workers

U X
0K

1K

2K

3K

T
h
ro

u
g
h
p
u
t
(R

e
q
u
e
s
ts

/S
)

 Shared

 Dedicated

 Dedicated&Merged

(c) 2×PHP+MySQL

Figure 6. Throughput comparison for Unikernel (U),
Graphene (G), and X-Container (X).

noticeable overheads in process creation and context switch-
ing. This is because these benchmarks involve many page
table operations that must be done in the X-Kernel.

5.5 Unikernel and Graphene
We also compared X-Containers to Graphene and Uniker-
nel. For these experiments, we used four Dell PowerEdge
R720 servers in our local cluster (two 2.9 GHz Intel Xeon
E5-2690 CPUs, 16 cores, 32 threads, 96GB memory, 4TB disk),
connected to one 10Gbit switch. We ran the wrk benchmark
with the NGINX webserver, PHP, and MySQL. Graphene ran
on Linux with Ubuntu-16.04, and was compiled without the
security isolation module (which should improve its perfor-
mance). For Unikernel, we used Rumprun [22] because it
can run the benchmarks with minor patches (running with
MirageOS [58] requires rewriting the application in OCaml).

Figure 6a compares throughput of the NGINX webserver
serving static webpages with a single worker process. As
there was only one NGINX server process running, we ded-
icated a single CPU core for X-Containers and Unikernel.
X-Containers achieve throughput comparable to Unikernel,
and over twice that of Graphene.

MySQL

App1 App2

MySQL1

App1 App2

MySQL2 MySQL1

App1 App2

MySQL2

(a) Shared (b) Dedicated (c) Dedicated & Merged

Figure 7. Alternate configurations of two applications that
use MySQL.

For Figure 6b, we ran 4 worker processes of a single NG-
INX webserver. This is not supported by Unikernel, so we
only compared with Graphene. X-Containers outperform
Graphene by more than 50%, since in Graphene, processes
use IPC calls to coordinate access to a shared POSIX library,
which incurs high overheads.

For Figure 6c we evaluated the scenario where two PHP
CGI servers were connected to MySQL databases. We en-
abled the built-in webserver of PHP, and used the wrk client
to access a page that issued requests to the database with
equal probability for read and write. Graphene does not sup-
port the PHP CGI server, so we only compared to Unikernel.
As illustrated in Figure 7, the PHP servers can have either
shared or dedicated databases, so there are three possible
configurations depending on the threat model. Figure 6c
shows the total throughput of two PHP servers with differ-
ent configurations. All VMs were running a single process
with one CPU core. With Shared and Dedicated configura-
tions, X-Containers outperform Unikernel by over 40%. Fur-
thermore, X-Containers support running PHP and MySQL
in a single container (the Dedicated & Merged configura-
tion), which is not possible for Unikernel. Using this setup,
X-Container throughput is about three times that of the
Unikernel Dedicated configuration.

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

131

0 50 100 150 200 250 300 350 400
0

10000

20000

30000

T
h
ro

u
g
h
p
u
t
(R

e
q
u
e
s
ts

/S
)

Number of Containers

 Docker

 X-Container

 Xen HVM

 Xen PV

Figure 8. Throughput scalability.

Docker X-Container
0

1

2

3

4 0.29
0.28

T
im

e
 (

S
)

 User Program

 X-LibOS Booting

 Xen Tool Stack

0.56

3.66

(a) Spawning Time
Docker X-Container

0

5

10

15

20

25
2.10

8.80

11.16

1.931.0

M
e
m

o
ry

 F
o
o
tp

ri
n
t
(M

B
)

 Free

 X-LibOS

 Extra

 micropython

3.56

(b) Memory Footprint

Figure 9. Spawning time and memory footprint.

5.6 Scalability
We evaluated scalability of the X-Containers architecture by
running up to 400 containers on one physical machine. For
this experiment, we used an NGINX server with a PHP-FPM
engine. We used the webdevops/PHP-NGINX Docker image
and configured NGINX and PHP-FPM with a single worker
process. We ran the wrk benchmark to measure the total
throughput of all containers. Each container had a dedicated
wrk thread with 5 concurrent connections—thus the total
number of wrk threads and concurrent connections increased
linearly with the number of containers.

Each X-Container was configuredwith 1 vCPU and 128MB
memory. We also evaluated Xen HVM and Xen PV configura-
tions that ran Docker containers in regular Xen HV and PV
instances respectively. Each Xen VM had 1 vCPU and 512MB
memory. Note that 512MB is the recommended minimum
memory size for Ubuntu 16.04. When using smaller mem-
ory size like 256MB, the VMs can still boot, but the network
starts dropping packets. Since the physical machine only had
96GB memory, we can run 200 VMs at most.

Figure 8 shows the aggregated throughput of all containers
or VMs. Docker achieves higher throughput for small num-
bers of containers since context switching between Docker
containers is cheaper than between X-Containers and be-
tween Xen VMs. However, as the number of containers in-
creases, the performance of Docker drops faster. This is be-
cause each NGINX+PHP container runs 4 processes: with
N containers, the Linux kernel running Docker containers
is scheduling 4N processes, while X-Kernel is scheduling N

vCPUs, each running 4 processes. This hierarchical sched-
uling turns out to be a more scalable way of co-scheduling
many containers. With N = 400, X-Containers outperform
Docker by 18%. Note that in this experiment, we avoided
over-subscribing memory. If memory becomes a bottleneck,
due to the lack of dynamic memory allocation, X-Containers
will have higher overhead than Docker.

5.7 Spawning Time and Memory Footprint
We evaluated the overhead of X-Containers on spawning
time and memory footprint, comparing to the same version
of Docker engine as we used for X-Containers running on an
unmodified Linux kernel. These experimentswere performed
in Amazon EC2 c4.2xlarge instances.

To measure the spawning time, we instrumented the sys-
tem to record timestamps of some critical events. We then
spawned a Ubuntu 16.04 container and ran the date com-
mand to print out a timestamp as the point of finishing
spawning the container. Figure 9a shows the detailed break-
down of the time spent on different phases when spawning
a new container. Docker takes 558ms to finish spawning,
which we counted as all for “User Program” although some
of them is actually spent in kernel for security and resource
configurations. For X-Containers, it takes 277ms to boot a
new X-LibOS, and another 287ms for spawning the user pro-
gram. We spawn the user program faster than Docker since
we skip most of the security and resource configurations.
However, the overhead of Xen’s “xl” toolstack adds another
3.66 seconds to the total spawning time. We are integrating
X-Containers with the “runV” runtime [23] which brings the
toolstack overhead down to 460ms.
To evaluate the memory footprint, we used the

micropython container, which runs a python script to check
memory utilization from the /proc file system. Figure 9b
shows the breakdown of memory usage. The micropython
process itself consumes 1 to 2 MB memory. However, the
docker stats command reports 3.56MB extra memory
consumption (counted from cgroups) used for page cache
and container file system. For X-Containers, the “Extra”
11.16MB memory includes page cache for the whole sys-
tem and all other user processes such as the initial bash
and switch_root tools. The 8.8MB memory for “X-LibOS”
includes kernel code and text segments, kernel stack, page
tables, and slab memory. Note that there is some “free” mem-
ory in an X-Container that can be reduced by ballooning, but
cannot be totally eliminated due to the minimal requirement
of the Linux kernel.

6 Related Work
6.1 Application Containers
OS-level virtualization [67] provides a lightweight mech-
anism of running multiple OS instances. Docker [10],
LXC [18], OpenVZ [20], and Solaris Zones [6] are different

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

132

implementations of OS-level virtualization. Generally, these
solutions provide poor kernel customization support, and
application isolation is a concern due to the sharing of a large
OS kernel. Although there are mitigations such as seccomp
and SELinux which allow specification of system call filters
for each container, in practice it is difficult to define a good
policy for arbitrary, previously unknown applications [12].
Various runtimes have been proposed to address the

problem of security isolation in containers. Clear Con-
tainers [15], Kata Containers [16], Hyper Containers [13],
VMware vSphere Integrated Containers [25], and Hyper-
V containers [14] all leverage hardware virtualization sup-
port to wrap containers with a dedicated OS kernel run-
ning in a VM. However, deploying these platforms in virtual-
ized clouds requires nested hardware virtualization support,
which is not available everywhere, and can cause significant
performance penalties even when it is available [5]. Google
gVisor [12] is a user-space kernel written in Go that supports
container runtime sandboxing, but it provides limited com-
patibility [55] and incurs significant performance overhead.

LightVM with TinyX [60] creates minimalistic Linux VM
images targeted at running a single application container.
Similar to X-Containers, LightVM leverages the Xen hyper-
visor to reduce the TCB running in kernel mode, and can
leverage Xen-Blanket [71] to run in public clouds. However,
this can introduce significant performance overheads, as
we saw in Section 5. LightVM focuses on improving Xen’s
toolstack for scalability and performance, which can be inte-
grated with X-Containers.
SCONE [29] implements secure containers using Intel

SGX, assuming a threat model different from X-Container’s
where even the host OS or hypervisor cannot be trusted. Due
to hardware limitations, SCONE cannot support full binary
compatibility and multi-processing.

6.2 Library OS
The insight of a Library OS [28, 40, 43, 56, 64] is to keep
the kernel small and link applications to a LibOS containing
functions that are traditionally performed in the kernel. Most
Library OSes [27, 43, 47, 64, 65] focus exclusively on single-
process applications, which is not sufficient for multi-process
container environments, and cannot support more compli-
cated cloud applications that rely on Linux’s rich primitives.
Graphene [69] is a Library OS that supports multiple Linux
processes, but provides only one third of the Linux system
calls. Moreover, multiple processes use IPC calls to access
a shared POSIX implementation, which limits performance
and scalability. Most importantly, the underlying host kernel
of Graphene is a full-fledged Linux kernel, which does not
reduce the TCB and attack surface.
Unikernel [58] and related projects, such as EbbRT [66],

OSv [53], ClickOS [61], and Dune [35, 36], proposed compil-
ing an application with a Library OS into a lightweight VM,
using the VM hypervisor as the exokernel. These systems

also only support single-process applications, and require
re-writing or re-compiling the application. In contrast, X-
Containers supports binary level compatibility and multiple
processes. In addition, X-Container supports all debugging
and profiling features that are available in Linux.
Usermode Kernel [45] is an idea similar to X-Containers

that runs parts of the Linux kernel in userspace in VMs.
However, some parts of the Usermode Kernel still run in
a higher privilege level than user mode processes, and it
is not integrated with application container environments.
Moreover, Usermode Kernel currently only works for x86-32
architectures. Kernel Mode Linux (KML) [59] allows exe-
cuting user programs inside kernel space. However, KML
requires hardware virtualization in order to isolate different
applications.

As a final point, none of the previous work on containers
and LibOSes are specifically designed for cloud-native ap-
plications, either incurring high performance overheads, or
sacrificing compatibility. As more applications switch from
monolithic designs to large graphs of loosely-coupled mi-
croservices, it is important for container technologies to also
evolve to fully exploit the potential of cloud-native systems.

7 Conclusion
In this paper, we propose X-Containers as a new security
paradigm for isolating single-concerned cloud-native con-
tainers: minimal exokernels can securely isolate mutually
untrusting containers, and LibOSes allow for customization
and performance optimization. X-Containers introduce new
trade-offs in container design: intra-container isolation is
significantly reduced for improving performance and inter-
container isolation. We demonstrate an implementation of
the X-Containers architecture that uses Xen as the X-Kernel
and Linux as the X-LibOS, achieving binary compatibility
and concurrent multi-processing without the requirement of
hardware virtualization support. We show that X-Containers
offer significant performance improvements in cloud envi-
ronments, and discuss the advantages and limitations of the
current design, including those pertaining to running un-
modified applications in X-Containers.

Availability
The code of the X-Containers project is publicly available at
http://x-containers.org.

Acknowledgments
We thank our anonymous reviewers and shepherd, Nadav
Amit, for their useful comments and suggestions. This work
was in part supported by the National Science Foundation
(NSF) CSR-1422544, NSF NeTS CSR-1704742, the U.S. De-
partment of Commerce, National Institute of Standards and
Technology (NIST) award number 70NANB17H181, Cisco,
and Huawei.

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

133

http://x-containers.org

References
[1] 2005. SMP alternatives. https://lwn.net/Articles/164121/
[2] 2015. X86 Paravirtualised Memory Management. https://wiki.xen.

org/wiki/X86_Paravirtualised_Memory_Management
[3] 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual.

Volume 3: System programming Guide (2016).
[4] 2018. Kernel page-table isolation. https://en.wikipedia.org/wiki/

Kernel_page-table_isolation
[5] 2018. Performance of Nested Virtualization – Google Com-

pute Engine. https://cloud.google.com/compute/docs/instances/
enable-nested-virtualization-vm-instances#performance

[6] 2018. Solaris Containers. https://en.wikipedia.org/wiki/Solaris_
Containers

[7] 2019. Amazon ECS Task Definitions. https://docs.aws.amazon.com/
AmazonECS/latest/developerguide/task_definitions.html

[8] 2019. Best practices for writing Dockerfiles. https://docs.docker.com/
develop/develop-images/dockerfile_best-practices/

[9] 2019. CVE: list of cybersecurity vulnerabilities. https://cve.mitre.org/
[10] 2019. Docker. https://www.docker.com/
[11] 2019. GNU General Public License. https://www.gnu.org/copyleft/

gpl.html
[12] 2019. gVisor: Container Runtime Snadbox. https://github.com/google/

gvisor
[13] 2019. Hyper Containers. https://hypercontainer.io
[14] 2019. Hyper-V Containers. https://docs.microsoft.com/

en-us/virtualization/windowscontainers/manage-containers/
hyperv-container

[15] 2019. Intel Clear Containers. https://clearlinux.org/containers
[16] 2019. Kata Containers. https://katacontainers.io
[17] 2019. Kubernetes Frakti. https://github.com/kubernetes/frakti
[18] 2019. Linux LXC. https://linuxcontainers.org/
[19] 2019. List of Security Vulnerabilities in the Linux Kernel. https:

//www.cvedetails.com/vulnerability-list/vendor_id-33/product_
id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html

[20] 2019. OpenVZ Containers. https://openvz.org/Main_Page
[21] 2019. Pods in Kubernetes. https://kubernetes.io/docs/concepts/

workloads/pods/pod/
[22] 2019. Rumprun Unikernel. https://github.com/rumpkernel/rumprun
[23] 2019. runV: Hypervisor-based Runtime for OCI. https://github.com/

hyperhq/runv
[24] 2019. User Mode Linux FAQ. http://uml.devloop.org.uk/faq.html
[25] 2019. vSphere Integrated Containers. https://www.vmware.com/

products/vsphere/integrated-containers.html
[26] 2019. What is the difference between an “aggregate” and other kinds of

“modified versions”? https://www.gnu.org/licenses/gpl-faq.en.html#
MereAggregation

[27] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. 1986. Mach: A new
kernel foundation for UNIX development. (1986).

[28] T. E. Anderson. 1992. The case for application-specific operating sys-
tems. In [1992] Proceedings Third Workshop on Workstation Operating
Systems. 92–94. https://doi.org/10.1109/WWOS.1992.275682

[29] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’16). USENIX As-
sociation, GA, 689–703. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/arnautov

[30] A. Balalaie, A. Heydarnoori, and P. Jamshidi. 2016. Microservices Ar-
chitecture Enables DevOps: Migration to a Cloud-Native Architecture.
IEEE Software 33, 3 (May 2016), 42–52. https://doi.org/10.1109/MS.
2016.64

[31] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Mi-
grating to Cloud-Native Architectures Using Microservices: An Expe-
rience Report. In Advances in Service-Oriented and Cloud Computing.
Springer International Publishing, Cham, 201–215.

[32] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the Art of Virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP ’03). ACM, New
York, NY, USA, 164–177. https://doi.org/10.1145/945445.945462

[33] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software
Architect’s Perspective. Addison-Wesley Professional.

[34] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding
Applications from an Untrusted Cloud with Haven. In Proceedings of
the 11th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’14). USENIX Association, Berkeley, CA, USA, 267–283.
http://dl.acm.org/citation.cfm?id=2685048.2685070

[35] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access to
Privileged CPU Features. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (OSDI’12). USENIX
Association, Berkeley, CA, USA, 335–348. http://dl.acm.org/citation.
cfm?id=2387880.2387913

[36] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In Proceed-
ings of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI’14). USENIX Association, Berkeley, CA, USA,
49–65. http://dl.acm.org/citation.cfm?id=2685048.2685053

[37] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. 1995. Extensibility Safety
and Performance in the SPIN Operating System. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95).
ACM, New York, NY, USA, 267–283. https://doi.org/10.1145/224056.
224077

[38] Eric A. Brewer. 2015. Kubernetes and the Path to Cloud Native. In
Proceedings of the Sixth ACM Symposium on Cloud Computing (SoCC
’15). ACM, New York, NY, USA, 167–167. https://doi.org/10.1145/
2806777.2809955

[39] Brendan Burns and David Oppenheimer. 2016. Design Patterns
for Container-based Distributed Systems. In 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 16). USENIX Associa-
tion, Denver, CO. https://www.usenix.org/conference/hotcloud16/
workshop-program/presentation/burns

[40] David R. Cheriton and Kenneth J. Duda. 1994. A Caching Model
of Operating System Kernel Functionality. In Proceedings of the 1st
USENIX Conference on Operating Systems Design and Implementation
(OSDI ’94). USENIX Association, Berkeley, CA, USA, Article 14. http:
//dl.acm.org/citation.cfm?id=1267638.1267652

[41] DATADOG. 2018. 8 Surprising Facts About Real Docker Adoption.
https://www.datadoghq.com/docker-adoption/

[42] Jeff Dike. 2000. A user-mode port of the Linux kernel. In Annual Linux
Showcase & Conference.

[43] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An
Operating System Architecture for Application-level Resource Man-
agement. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (SOSP ’95). ACM, New York, NY, USA, 251–266.
https://doi.org/10.1145/224056.224076

[44] Nick Gauthier. 2017. Kernel Load-Balancing for Docker
Containers Using IPVS. https://blog.codeship.com/
kernel-load-balancing-for-docker-containers-using-ipvs/

[45] Sharath George. 2008. Usermode Kernel: running the kernel in userspace
in VM environments. Master’s thesis. University of British Columbia.
https://doi.org/10.14288/1.0051274

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

134

https://lwn.net/Articles/164121/
https://wiki.xen.org/wiki/X86_Paravirtualised_Memory_Management
https://wiki.xen.org/wiki/X86_Paravirtualised_Memory_Management
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://cloud.google.com/compute/docs/instances/enable-nested-virtualization-vm-instances#performance
https://cloud.google.com/compute/docs/instances/enable-nested-virtualization-vm-instances#performance
https://en.wikipedia.org/wiki/Solaris_Containers
https://en.wikipedia.org/wiki/Solaris_Containers
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://cve.mitre.org/
https://www.docker.com/
https://www.gnu.org/copyleft/gpl.html
https://www.gnu.org/copyleft/gpl.html
https://github.com/google/gvisor
https://github.com/google/gvisor
https://hypercontainer.io
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://clearlinux.org/containers
https://katacontainers.io
https://github.com/kubernetes/frakti
https://linuxcontainers.org/
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html
https://openvz.org/Main_Page
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://github.com/rumpkernel/rumprun
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
http://uml.devloop.org.uk/faq.html
https://www.vmware.com/products/vsphere/integrated-containers.html
https://www.vmware.com/products/vsphere/integrated-containers.html
https://www.gnu.org/licenses/gpl-faq.en.html#MereAggregation
https://www.gnu.org/licenses/gpl-faq.en.html#MereAggregation
https://doi.org/10.1109/WWOS.1992.275682
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1145/945445.945462
http://dl.acm.org/citation.cfm?id=2685048.2685070
http://dl.acm.org/citation.cfm?id=2387880.2387913
http://dl.acm.org/citation.cfm?id=2387880.2387913
http://dl.acm.org/citation.cfm?id=2685048.2685053
https://doi.org/10.1145/224056.224077
https://doi.org/10.1145/224056.224077
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/2806777.2809955
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/burns
http://dl.acm.org/citation.cfm?id=1267638.1267652
http://dl.acm.org/citation.cfm?id=1267638.1267652
https://www.datadoghq.com/docker-adoption/
https://doi.org/10.1145/224056.224076
https://blog.codeship.com/kernel-load-balancing-for-docker-containers-using-ipvs/
https://blog.codeship.com/kernel-load-balancing-for-docker-containers-using-ipvs/
https://doi.org/10.14288/1.0051274

[46] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012.
Enhanced Operating System Security Through Efficient and Fine-
grained Address Space Randomization. In Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12). USENIX, Bellevue,
WA, 475–490. https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/giuffrida

[47] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Jean Wolter,
and Sebastian Schönberg. 1997. The Performance of µ-kernel-based
Systems. In Proceedings of the Sixteenth ACM Symposium on Operat-
ing Systems Principles (SOSP ’97). ACM, New York, NY, USA, 66–77.
https://doi.org/10.1145/268998.266660

[48] Jin Heo, X. Zhu, P. Padala, and Z. Wang. 2009. Memory overbooking
and dynamic control of Xen virtual machines in consolidated environ-
ments. In 2009 IFIP/IEEE International Symposium on Integrated Network
Management. 630–637. https://doi.org/10.1109/INM.2009.5188871

[49] Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion
Hodson, James Larus, Steven Levi, Bjarne Steensgaard, David Tarditi,
and Ted Wobber. 2007. Sealing OS Processes to Improve Dependability
and Safety. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007 (EuroSys ’07). ACM, New York,
NY, USA, 341–354. https://doi.org/10.1145/1272996.1273032

[50] Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking
the Software Stack. SIGOPS Oper. Syst. Rev. 41, 2 (April 2007), 37–49.
https://doi.org/10.1145/1243418.1243424

[51] Bilgin Ibryam. 2017. Principles of Container-Based Application Design.
Redhat Consulting Whitepaper (2017). https://www.redhat.com/en/
resources/cloud-native-container-design-whitepaper

[52] Sandra K Johnson, Gerrit Huizenga, and Badari Pulavarty. 2005. Per-
formance Tuning for Linux Servers. IBM.

[53] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. 2014. OSv: Optimizing the Operating Sys-
tem for Virtual Machines. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference (USENIX ATC’14). USENIX
Association, Berkeley, CA, USA, 61–72. http://dl.acm.org/citation.
cfm?id=2643634.2643642

[54] R. Krishnamurthy and G. N. Rouskas. 2015. On the impact of scheduler
settings on the performance of multi-threaded SIP servers. In 2015
IEEE International Conference on Communications (ICC). 6175–6180.
https://doi.org/10.1109/ICC.2015.7249307

[55] Nicolas Lacasse. 2018. Open-sourcing gVisor, a sandboxed con-
tainer runtime. https://cloudplatform.googleblog.com/2018/05/
Open-sourcing-gVisor-a-sandboxed-container-runtime.html

[56] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R.
Fairbairns, and E. Hyden. 2006. The Design and Implementation of
an Operating System to Support Distributed Multimedia Applications.
IEEE J.Sel. A. Commun. 14, 7 (Sept. 2006), 1280–1297. https://doi.org/
10.1109/49.536480

[57] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. 2018. Meltdown. ArXiv e-prints (Jan. 2018).
arXiv:1801.01207

[58] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). ACM, New York, NY, USA, 461–472. https:
//doi.org/10.1145/2451116.2451167

[59] Toshiyuki Maeda. 2003. Kernel Mode Linux. https://www.linuxjournal.
com/article/6516

[60] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) Than Your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP ’17). ACM,

New York, NY, USA, 218–233. https://doi.org/10.1145/3132747.3132763
[61] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,

Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and
the Art of Network Function Virtualization. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’14). USENIX Association, Berkeley, CA, USA, 459–473. http:
//dl.acm.org/citation.cfm?id=2616448.2616491

[62] Sam Newman. 2015. Building microservices: designing fine-grained
systems. " O’Reilly Media, Inc.".

[63] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa
Uysal, Zhikui Wang, Sharad Singhal, and Arif Merchant. 2009. Auto-
mated Control of Multiple Virtualized Resources. In Proceedings of the
4th ACM European Conference on Computer Systems (EuroSys ’09). ACM,
New York, NY, USA, 13–26. https://doi.org/10.1145/1519065.1519068

[64] Donald E. Porter, Silas Boyd-Wickizer, JonHowell, ReubenOlinsky, and
Galen C. Hunt. 2011. Rethinking the Library OS from the Top Down.
In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
XVI). ACM, New York, NY, USA, 291–304. https://doi.org/10.1145/
1950365.1950399

[65] O. Purdila, L. A. Grijincu, and N. Tapus. 2010. LKL: The Linux kernel
library. In 9th RoEduNet IEEE International Conference. 328–333.

[66] Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2016. EbbRT: A Framework for Building Per-
Application Library Operating Systems. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, GA, 671–688. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/schatzberg

[67] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. 2007. Container-based Operating System Virtualiza-
tion: A Scalable, High-performance Alternative to Hypervisors. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007 (EuroSys ’07). ACM, New York, NY, USA, 275–
287. https://doi.org/10.1145/1272996.1273025

[68] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Im-
proving the Reliability of Commodity Operating Systems. In Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (SOSP ’03). ACM, New York, NY, USA, 207–222. https:
//doi.org/10.1145/945445.945466

[69] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,
William Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni,
Daniela Oliveira, and Donald E. Porter. 2014. Cooperation and Security
Isolation of Library OSes for Multi-process Applications. In Proceedings
of the Ninth European Conference on Computer Systems (EuroSys ’14).
ACM, New York, NY, USA, Article 9, 14 pages. https://doi.org/10.1145/
2592798.2592812

[70] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. 1993. Efficient Software-based Fault Isolation. In Proceedings
of the Fourteenth ACM Symposium on Operating Systems Principles
(SOSP ’93). ACM, New York, NY, USA, 203–216. https://doi.org/10.
1145/168619.168635

[71] Dan Williams, Hani Jamjoom, and Hakim Weatherspoon. 2012. The
Xen-Blanket: Virtualize Once, Run Everywhere. In Proceedings of the
7th ACM European Conference on Computer Systems (EuroSys ’12). ACM,
New York, NY, USA, 113–126. https://doi.org/10.1145/2168836.2168849

Session: Cloud II ASPLOS’19, April 13–17, 2019, Providence, RI, USA

135

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/giuffrida
https://doi.org/10.1145/268998.266660
https://doi.org/10.1109/INM.2009.5188871
https://doi.org/10.1145/1272996.1273032
https://doi.org/10.1145/1243418.1243424
https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper
https://www.redhat.com/en/resources/cloud-native-container-design-whitepaper
http://dl.acm.org/citation.cfm?id=2643634.2643642
http://dl.acm.org/citation.cfm?id=2643634.2643642
https://doi.org/10.1109/ICC.2015.7249307
https://cloudplatform.googleblog.com/2018/05/Open-sourcing-gVisor-a-sandboxed-container-runtime.html
https://cloudplatform.googleblog.com/2018/05/Open-sourcing-gVisor-a-sandboxed-container-runtime.html
https://doi.org/10.1109/49.536480
https://doi.org/10.1109/49.536480
http://arxiv.org/abs/1801.01207
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://www.linuxjournal.com/article/6516
https://www.linuxjournal.com/article/6516
https://doi.org/10.1145/3132747.3132763
http://dl.acm.org/citation.cfm?id=2616448.2616491
http://dl.acm.org/citation.cfm?id=2616448.2616491
https://doi.org/10.1145/1519065.1519068
https://doi.org/10.1145/1950365.1950399
https://doi.org/10.1145/1950365.1950399
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1145/945445.945466
https://doi.org/10.1145/945445.945466
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/2168836.2168849

	Abstract
	1 Introduction
	2 X-Containers as a New Security Paradigm
	2.1 Single-Concerned Containers
	2.2 Rethinking the Isolation Boundary
	2.3 Threat Model and Design Trade-offs

	3 X-Container Design
	3.1 Challenges of Running Containers with LibOSes
	3.2 Why Use Linux as the X-LibOS?
	3.3 Why Use Xen as the X-Kernel?
	3.4 Limitations and Open Questions

	4 Implementation
	4.1 Background: Xen Paravirtualization
	4.2 Eliminating Kernel Isolation
	4.3 Concurrent Multi-Processing Support
	4.4 Automatic Lightweight System Calls
	4.5 Lightweight Bootstrapping of Docker Images

	5 Evaluation
	5.1 Experiment Setup
	5.2 Automatic Binary Optimization
	5.3 Macrobenchmarks
	5.4 Microbenchmarks
	5.5 Unikernel and Graphene
	5.6 Scalability
	5.7 Spawning Time and Memory Footprint

	6 Related Work
	6.1 Application Containers
	6.2 Library OS

	7 Conclusion
	Acknowledgments
	References

