
Implicit Neural Representations with
Levels-of-Experts

Zekun Hao˚:

hz472@cornell.edu

Arun Mallya˚

˚NVIDIA
amallya@nvidia.com

Serge Belongie:

:Cornell University
sjb344@cornell.edu

Ming-Yu Liu˚

mingyul@nvidia.com

Abstract

Coordinate-based networks, usually in the forms of MLPs, have been successfully
applied to the task of predicting high-frequency but low-dimensional signals using
coordinate inputs. To scale them to model large-scale signals, previous works
resort to hybrid representations, combining a coordinate-based network with a
grid-based representation, such as sparse voxels. However, such approaches lack
a compact global latent representation in its grid, making it difficult to model a
distribution of signals, which is important for generalization tasks. To address the
limitation, we propose the Levels-of-Experts (LoE) framework, which is a novel
coordinate-based representation consisting of an MLP with periodic, position-
dependent weights arranged hierarchically. For each linear layer of the MLP,
multiple candidate values of its weight matrix are tiled and replicated across the
input space, with different layers replicating at different frequencies. Based on
the input, only one of the weight matrices is chosen for each layer. This greatly
increases the model capacity without incurring extra computation or compromising
generalization capability. We show that the new representation is an efficient and
competitive drop-in replacement for a wide range of tasks, including signal fitting,
novel view synthesis, and generative modeling.

1 Introduction

There has been a growing interest in representing low-dimensional but high-frequency signals, such
as images, videos, and 3D scenes, with fully-connected neural networks. A common paradigm is
to use a coordinate-based multilayer perceptron (MLP) that takes coordinate positions as input and
predicts the data value at the specified location [32, 46, 51]. Compared to explicit representations
such as point clouds and voxel grids, this kind of implicit neural representation (INR) is memory
efficient and can model a distribution of signals for conditional synthesis tasks [3, 28, 36, 39, 45]
thanks to its ability to learn a compact and meaningful latent space.

However, scaling up an INR to better represent higher-resolution signals or a distribution of signals,
like a distribution of images, is challenging because the mapping can be highly nonlinear. To increase
the model capacity to deal with the complexity, we can either make the MLP wider by increasing
the dimensions of activations or deeper by stacking more layers. Unfortunately, both options will
dramatically increase the computation needed at each data point. Recently, Rebain et al. [42] have
shown that this results in an undesirable trade-off because the representation power gain diminishes
quickly with increased width or depth. We further explore and analyze this issue in Section 4.2.

Many recent works bypass this scaling problem by using a hybrid representation [5, 9, 11, 12, 21,
26, 27, 35, 40, 42, 43, 49, 50]. A discrete data structure, such as sparse voxels, decomposes the
space into grids. Within each grid, a lightweight MLP conditioned on the grid embedding produces
local detail at a scale finer than the grid resolution. However, such an approach has two major
limitations: (1) The reliance on smooth interpolation of grid embeddings [26, 27, 35, 40, 49] or

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

W
ei

g
h

t
M

ap

FC1

FC2

FC3

FC4

D
y
n

am
ic

 W
ei

g
h

t
M

L
P

y1

p1 p2

(b) Examples of different weight tiling patterns

(i) Gray code

(iii) Different #weights per tile (iv) Smooth interpolation

(ii) Random order

(a) MLP with position-dependent weights

p

FC1

FC2

FC3

FC4

y2

FC1

FC2

FC3

FC4

Figure 1: The Levels-of-Experts (LoE) framework. (a) A position-dependent MLP with 1D input,
y “ fpx, θpxqq (activation functions omitted for brevity). In this example, each fully-connected (FC)
layer has two candidate weight matrices (marked in blue and orange, shade denotes layer depth),
arranged in a periodical and hierarchical manner. According to the input location, one of the weight
copies is selected for each layer. (b) A variety of hierarchical tiling patterns can be used with LoE.
They are not confined to (i) a specific alignment, and can have varying (ii) orders of granularity, or
(iii) length of the repetend, and (iv) can be generalized to a smooth interpolation across the weight
matrices. Thus, each layer at a different level, or scale, has a number of experts with their own weight
matrices, specializing at different regions of the input space.

output-domain tiling and blending [5, 21, 30, 50] to encourage continuity across the grid boundaries
can negatively impact computation efficiency; and, (2) As the underlying signal is described by
multiple distributed features stored in a grid, which are associated with fixed locations, it lacks a
global, compact latent representation unless it employs another expensive model to generate the grid
embedding itself [6, 40, 44]. Still, this is only possible in limited cases, e.g., regular grid, without any
sparsity, pruning, or hashing.

Our approach extends the idea of hybrid representation by storing the weights of an MLP on a
multi-resolution tiled grid. Conceptually, for each of the linear layers, we assign multiple independent
copies of its weights, arranged in a tiling pattern and repeated to fill the space as visualized in Figure 1.
This partitions the space so that each copy of weights only needs to handle inputs within certain
periodical intervals, essentially making the weights of the MLP position-dependent. We refer to
this proposed framework as Levels-of-Experts (LoE). Each layer at a different depth, level, has a
number of experts with their own weight matrices, specializing in different partitions of the input
space, depending on the tiling pattern used.

Similar to Fourier features [32, 51], we use different grid resolutions for each layer or depth, so that
the weight of different layers repeats at different frequencies. This arrangement has several desired
properties: (i) While the weight of each layer is repeating, the learnable combined parameterization
of all the layers helps avoid repetition over the input range of interest, and (ii) A large number
of uniquely parameterized intervals of the combined model can be obtained and tailored to the
underlying problem. In fact, in Section 4.1, we show that our model can fit a scene even without
any input position encoding – the position-dependent weight can itself serve as a form of positional
encoding! We show that when compared to dividing the space to use different MLPs [42, 43], our
layer-level tiling approach can reduce output discontinuities without relying on computationally
expensive smooth interpolation or blending, while at the same time improving the representation
power. Finally, compared to non-repeating grid embeddings [26, 27, 49], our approach encourages the
learning of generalizeable mapping, as shown in Sections 4.1 and 4.2, and also improves parameter
efficiency, particularly benefiting generative modeling tasks, as shown in Section 4.4.

Our model has a computational cost comparable to a regular MLP of identical architecture, at the
same time being more expressive. Although the parameter count, and thus representation power, is
greatly amplified by the use of position-dependent weights, only a single copy of weights is active at
each input. In practice, this can be implemented efficiently with an off-the-shelf fused gather-GEMM-

2

scatter operator [2] with little speed loss. Our method is a drop-in replacement in many applications
without the need for any further modifications. To summarize, we make the following contributions:

1. We introduce a novel hybrid implicit neural representation that is parameterized by a hierarchy
of position-dependent and periodic weights (Section 3).

2. We extensively study the effect of various design decisions including the periodicity and
hierarchy of weights, weight interpolation methods, and the use of input encodings (Section 4).

3. We demonstrate the efficiency and representation power of our architecture on challenging
tasks including high-resolution image fitting, video fitting, novel-view synthesis, and image
generation (Section 4).

2 Related Work

Implicit neural representations (INRs). INRs represent a signal with a pointwise (coordinate-based)
neural network that takes a coordinate as the input and predicts the data value at the location specified
by the input coordinate. With INRs, one can query continuous locations independently and efficiently,
which is a desired property for many learning, graphics, and vision tasks [52]. INRs have been used
in representing images [3, 46, 48, 51], shapes [14, 31, 39, 46, 51], and scenes [4, 32, 37, 38, 47].
Earlier INRs were based on MLPs with ReLU activations [39, 48] and often failed to represent high-
frequency detail in the underlying signal. Recent works have greatly addressed the issue by leveraging
better input encoding designs [32, 51], activation functions [41, 46], or network architectures [10, 25].
Our approach, a position dependent MLP architecture, is orthogonal to these approaches and can
potentially be used in conjunction with them to achieve better results.

Hybrid representations. Several works propose combining INRs with explicit discrete structure
representations to improve both the computation and memory efficiency for modeling large and
complex signals. Such a hybrid approach often partitions the input space into smaller regions based on
the adopted discrete structure representation, which results in local parameterization, or decomposes
the input space to low-rank subspaces [6, 7]. Various discrete structure representations for local
parameterization have been explored, including regular grids [5, 21, 35, 40, 43], sparse voxels [16, 26],
voronoi cells [42], octrees [27, 49], convex parts [9], and learned shape elements [11, 12]. We can even
use another neural network to predict the parameterization, which enables generalization [6, 40, 44].
With the hybrid approach, one first obtains a local feature with the discrete structure and the coordinate,
which is then inputted to the pointwise MLP to get the data value.

Note that the discrete nature of the hybrid representation calls for special and often costly designs to
ensure smooth transitioning across the subdivision boundaries. One popular approach is to smoothly
interpolate the grid feature [26, 27, 35, 40, 49] before handing it off to the MLP. Such an approach
only requires one MLP evaluation per sample, but the cost of interpolation can be high for high-
dimensional features on a high-dimensional grid. Several approaches [5, 21, 30, 50] allow the MLP
to predict signals beyond the grid boundaries so that multiple predictions of the same coordinate
from nearby grids can be evaluated and smoothly blended in the output domain, but they are more
expensive to compute. There are also hybrid representations that completely abandoned smooth
interpolation and achieved considerable speedup [43]. However, it requires distillation from a larger,
pretrained network to mitigate discontinuity artifacts. Our approach is also a hybrid approach. It
enjoys computation and memory efficiency but does not suffer from the boundary interpolation issue.

Neural networks with input-dependent weights. Our method can be regarded as a special type of
hybrid representation that use a multi-level tiled grid to parameterize the weights of the pointwise
MLP. Depending on where the input coordinate lies on each level of the grid, a different combination
of weights is used for the network. Reiser et al. [43] shares the same high-level idea of having
coordinate-dependent network weights, but they learn completely disjoint networks for different grid
locations, while we use a hierarchical and periodical structure. We will show the importance of our
hierarchical and periodical structure in obtaining a smooth and expressive representation.

In a broader context, neural networks with data-dependent weights have been used for modeling 3D
animation [8, 19] as a form of a collection of experts and for solving differential equations [34] to
represent solutions. Our work is different as we use a layer-wise hierarchical parameterization and is
designed for hybrid neural implicit representation.

3

3 Method

A typical coordinate-based multi-layer perceptron (MLP) can be described as a stack of layers,

f̂ : p Ñ pgk ˝ ϕ ˝ gk´1 ˝ ¨ ¨ ¨ ˝ ϕ ˝ g1 ˝ γqppq, (1)

where p is the input coordinate at which the MLP is being evaluated, γ is an input mapping, such as
the sine-cosine positional encoding [32], ϕ is a non-linear activation function, and gi : x Ñ Wix`bi

is the ith linear layer, which performs an affine transformation on the input x, parameterized by
a weight matrix Wi and a bias vector bi. During training, Wi and bi are optimized via gradient
descent to fit the MLP to the data.

In our Levels-of-Experts (LoE) approach, instead of regarding each Wi as a single learnable matrix,
we additionally model it as a function ψip¨q of the input coordinate p. The resulting dynamic-weight
linear layer has the form, hi : px,pq Ñ ψippqx ` bi, where x are the inputs to the layer, and p are
the location at which the MLP is being evaluated. By replacing the traditional linear layers gi in the
MLP with dynamic-weight layers hi, we obtain an MLP with input-dependent weights,

f : p Ñ phkppq ˝ ϕ ˝ hk´1ppq ˝ ¨ ¨ ¨ ˝ ϕ ˝ h1ppq ˝ γqppq. (2)

As the resulting position-dependent weight matrix has a much higher dimension compared to its
input and output vectors and will be evaluated at a large number of query points, it is important for
the weight generation functions ψippq to be fast, inexpensive, and yet expressive. This rules out the
popular weight-prediction networks used in hypernetwork-based approaches [15], in which one has
to predict a high-dimensional weight per position. Instead, we use a simple, lightweight function,
specifically a coordinate interpolation-based method. Multiple candidate values for the weight matrix
are stored in a regular grid (tile) and interpolated in a cyclic manner based on the input coordinates.

Consider the case where we have a grid containing N matrices tWi
0, . . . ,W

i
N´1u, where i is the

layer depth, and N is a nonnegative integer. We are only interested in the case that N ą 1 as
N “ 1 reduces to the original pointwise MLP formulation. Given a 1D coordinate p “ ppq, the
input-dependent weight for layer i, Wi, is computed as

Wi “ ψippq “ ψippq “

n´1
ÿ

j“0

Bj,N pαip` βiqWi
j . (3)

where αi and βi are hyperparameters that adjust the scale and translation of the grid for each layer
and Bj,N is the blending function that computes the blending coefficient for the j-th candidate. The
blending coefficient can take many different forms. For linear and nearest interpolations, they are
defined as follows:

Blinear
j,N pqq “ maxp0, 1 ´ |pq ` 1 ´ jq mod N ´ 1|q (4)

Bnearest
j,N pqq “

"

1 tqu mod N “ j

0 otherwise.
(5)

Note that here mod denotes positive remainder operation: a mod b “ a´ btab u. We also note that the
above equations can easily be extended to multi-dimensional coordinate spaces.

For linear interpolation, regardless of the tile resolution, only 2 of the blending coefficients are
non-zero for each coordinate in our 1D example. On the other hand, the nearest interpolation scheme
only has a single non-zero coefficient for each coordinate. This sparsity allows a fast and efficient
implementation of performing the dynamic-weight linear layer computation for batched inputs: for
each candidate weight matrix, Wi

j where we only gather input vectors that have Bj,N ą 0 at a time,
perform matrix multiplication and scaling, and finally scatter the results to the output matrix.

Empirically, we find it helpful to have different layers of our MLP with different spatial frequencies
on the grid. This can be easily achieved by using a different set of αi and βi per layer. Using different
frequencies at different layers gives an inductive bias to the MLP to capture different repetition
patterns. It also serves as a form of regularization that encourages the learning of smooth mapping
via weight sharing at different locations. We show this is particularly useful in reducing artifacts for
novel view synthesis tasks (see Section 4.3).

A non-exhaustive list of potential grid arrangements—a grid arrangement corresponds to a set of
tpαi, βiqu—are presented in Fig. 1. We note it is even possible to use a randomized tiling pattern by

4

transforming the grid with a random affine transformation, while still seeing a significant performance
gain compared to a regular MLP, as evident by the Random Affine experiment in Table 1. Unless
otherwise mentioned, we arrange the grids in a progressively growing fashion throughout the paper.
We start with the first grid (corresponding to the first MLP layer) covering the full input space without
repetition, and progressively subdivide the grids using additional layers. This is shown in Fig. 1(a).
This arrangement partitions the input space into uniform-sized grids, with each one having a unique
combination of weight matrices. A comparison of different grid arrangements is included in the
supplementary material.

4 Experiments

In this section, we validate LoE on 4 challenging tasks. In the first two experiments, we fit our
model to high-resolution image and video data, evaluate its performance, and study the effect of
various design components. Then in Section. 4.3, we evaluate our model on the indirectly supervised,
novel-view synthesis task and study its inductive bias. Finally, in Section. 4.4, we demonstrate its
generalization capability by training a generative adversarial network (GAN). All the code will be
made publicly available.

4.1 Fitting to a High-resolution Image

We study the effect of our hierarchical weight tiling on model capacity and computational efficiency
by fitting networks to a high-resolution image of size 8192ˆ8192 [27] pixels. An image is considered
as a set of pixels tppi,Θppiqqu represented by their 2-D coordinates pi “ pxi, yiq and RGB colors
Θppiq P R3. The model p Ñ fppq takes the coordinate as input and predicts the color at the given
coordinate. The goal is to fit the model to the data by minimizing the loss: L2 “

ř

i }fppiq´Θppiq}2.

Table 1 compares our model with several baseline methods and ablations. Our main method signifi-
cantly outperforms baseline methods that do not use position-dependent weights. Despite sharing the
same network architecture and computational cost, an MLP using the sine-cosine positional encoding
(PE) as the input mapping [32] performed 12dB worse than our model. We also compare with a
hybrid model that learns an input coordinate embedding (CE) [3] for the MLP. Their fitting quality is
significantly lower than ours at the same parameter count while incurring a higher computational
cost. This suggests that learning a position-dependent weight is more effective than learning a grid of
embeddings.

We believe that the effectiveness of our method partially comes from the use of a hierarchical and
periodic tiling pattern, which encourages the learning of periodic, spatially-shared features. In Table 1,
the interleaved model uses a periodic weight tiling scheme but lacks the multi-scale arrangement
(Fig. 2(d)). Effectively, multiple independent MLPs are learned, each handling a pixel-skipped subset
of the image. This only improves the performance slightly compared to the PE MLP baseline. On the
other extreme, in the chunked experiment, we partition the input space into uniformly sized chunks
and use independent MLPs to handle each chunk. Although the fitting quality is improved, there are
large variations in errors across different chunks, as shown in Fig. 2(c). In fact, the chunk boundaries
are visible in the fitted image, indicating continuity issues.

Our method achieves the best performance by having the tiled weights repeat at a wide range of
intervals. This allows a more efficient data representation by exploiting periodicity at a wide range of
frequencies and allows a more adaptive distribution of model capacity and fitting error that is less
dependent on the geometry of the data. We also compare our piecewise constant weight parameter-
ization against the smooth, piecewise linear variant, implemented by the bilinear interpolation of
weights, shown in Fig. 2(b). Despite having 4 times the computational cost, the fitting quality of the
smooth variant is only slightly better (+0.61dB) than the faster, piecewise constant version while
also sharing a similarly homogeneous error distribution. This indicates that by using the piecewise
constant parameterization, the full performance of the tiled weight models can be enjoyed at only a
fraction of the cost. Surprisingly, the tiled weight model is able to achieve reasonable performance
even without the use of any input position encoding. In the Constant Input (no PE) experiment shown
in Table 1, we feed a constant vector to the first layer instead of the coordinate encoding. In fact, the
position-dependent tiled weight itself is already a form of positional encoding. It is able to identify a
large number of unique intervals in the input space (up to

ś

i ni, where ni is the number of candidate

5

(a) Ours (e) Fixed Weight(c) Chunked (d) Interleaved(b) Ours + Bilinear

Ground Truth

0

16

Magnified view

E
rr

o
r

M
ap

s
(P

S
N

R
)

S
im

p
li

fi
ed

T
il

e
P

at
te

rn
s

(32.3)(33.8)(43.1)(44.9)(44.2)

Figure 2: Comparison of errors while fitting to a 64MP image. Our method with discontinuous
weights (a) has low and uniformly distributed error comparable to (b), the more expensive version
that bilinearly interpolates the weights. (c) and (d) use an ensemble of networks without hierarchical
weight tiling, resulting in high error variation, discontinuities, and low fitting quality.

Table 1: Comparison of parameter count, computational cost in number of multiply-accumulates
(MACs) per sample, and fitting quality on the 64MP color image of Pluto shown above [27]. All the
models use the same number of layers and hidden channels. The model size of our method is chosen
to be comparable to ACORN [27]. For the coordinate embedding (CE) baseline, we evaluate multiple
grid resolutions and report the best result.

Parameters MACs PSNR (dB) SSIM

PE MLP [32] 0.59M 0.57M 32.34 0.869
PE + CE [3] 9.37M 0.65M 39.65 0.967

Shown in Periodic Multi-
Fig. 2 Tiling scale

(d) ✓ ✗ Interleaved 9.37M 0.57M 33.80 0.876
(c) ✗ ✗ Chunked 9.37M 0.57M 43.13 0.980

✓ ✓ Random Affine 9.37M 0.57M 42.08 0.973
✓ ✓ Constant Input (no PE) 8.92M 0.56M 39.48 0.955

(b) ✓ ✓ Ours Bilinear 9.37M 2.28M 44.85 0.985
(a) ✓ ✓ Ours 9.37M 0.57M 44.24 0.983

weights of layer i). Related ideas of using periodical weights in a coordinate-based network are also
found in MFN [10] and BACON [25].

4.2 Fitting to a Video

We fit our model to a video [46] with 300 frames and a resolution of 512 ˆ 512. In this case, each
pixel in the video is associated with a 3D coordinate pi “ pxi, yi, tiq. The quantitative results are
shown in Table 2, and visual comparisons in Fig. 3. Compared to fixed-weight models such as PE
MLP or SIREN [46], the capacity of our model grows favorably with increased input dimensions,
without incurring extra computation. For higher-dimensional problems, we can simply use higher
dimensional weight tiles. In this case, we use a combination of 23 and 43 tiles, which amplifies the
number of parameters by 8ˆ and 64ˆ compared to a regular linear layer with the same number of
channels. This cannot be done in a fully implicit model without greatly increasing the computation.
For example, in the SIREN-L experiment, we attempt to increase the model capacity of SIREN by
quadrupling the hidden channel count. The resulting model needs 15ˆ more computation, yet the
quality is still lacking. This confirms the diminishing return phenomenon associated with coordinate
MLPs [42]. Compared to embedding-based hybrid representations such as coordinate embedding
(CE), which in this case include a dense 643 ˆ 64 grid that store the position-dependent features and

6

trilinearly interpolated, the conclusion in Sec.4.1 still holds that our approach performs significantly
better under the same parameter count.

Table 2: Comparison of model size, computation
and fitting quality on a short video. All of the
models have 4 hidden layers and 256 hidden chan-
nels, except for SIREN-L, which has 1024 hidden
channels.

Params. MACs PSNR(dB)

PE [32] 279K 0.28M 27.33
PE + CE [3] 17.1M 0.29M 35.83
SIREN [46] 265K 0.26M 29.13
SIREN-L 4.21M 4.20M 37.71
Ours 16.9M 0.28M 39.98

(a) GT (b) Ours (d) PE(c) SIREN

29.1339.98 27.33

Figure 3: Visual comparison of video fitting re-
sults. Numbers indicates PSNR (dB). All the mod-
els have the same computational cost.

4.3 Novel View Synthesis

So far our LoE model has demonstrated improved quality in fitting to high-resolution signals via
direct supervision. Here, we examine if the model has the desirable inductive bias to work in an under-
constrained setting with indirect supervision. We evaluate our method on a novel view synthesis
task, where the network models color c and opacity σ at each 3D location and under different
view directions. This kind of volumetric 3D representation is also known as neural radiance fields
(NeRF) [32]. Given an image, each pixel in the image can be associated with a ray rptq “ o`td. The
color of the pixel can be obtained by sampling points ti along the ray, querying the neural network at
these points to obtain color and opacity ci, σi “ fprptiq,dq, and perform volumetric rendering via
numerical integration [29]:

Cprq “

N
ÿ

i“1

Tip1 ´ expp´σiδiqqci, where Ti “ exp

˜

´

i´1
ÿ

j“1

σjδj

¸

, and δi “ ti`1 ´ ti. (6)

The training is done by minimizing the photometric loss between the rendered colors and ground
truth pixel values: L2 “

ř

k }Cprkq ´ Ck}2.

We compare our method with baselines on the Tanks and Temples dataset [23, 26], which contains
133 training images at a resolution of 1920ˆ1080. All the models compared have 4 hidden layers and
256 hidden channels. We present the quantitative results in Table 3 and include a visual comparison in
Fig. 4. As shown in the zoom-in view, the use of hierarchical, position-dependent weights significantly
sets the otherwise identical PE MLP baseline apart by reproducing much better detail.

It has been observed that when the input space is partitioned into grids, and independent MLPs are
learned for each grid location, there will exhibit significant free space artifacts in the result [43]. Our
model does not have such a problem, despite similarly having position-dependent weights. To gain
a better understanding, we experimented with a model that lacked hierarchical arrangement in its
weight grids. Despite having a lot more parameters, the ablated model, which indeed suffering from
free space artifacts, performed far worst than the baseline PE MLP (Fig. 5). This shows that the use
of hierarchically tiled weights is important for providing a good inductive bias for the task.

4.4 Image Generation with GANs

In this section, we demonstrate the generalization capability of the LoE model on the challenging
image generation task. The coordinate-based models are used as the generators for the generative
adversarial networks (GAN) [13]. More specifically, the model fpp, zq takes both a coordinate p
and a noise vector z as input, and map them to a color value. To generate an image, a fixed z is used
and the network is queried at every pixel location p P P. We denote the process of generating a full
image as Gpzq “ tfpp, zq|p P Pu. Images of different appearances can be generated by sampling
the noise vector from a fixed distribution z „ pz. An additional discriminator network D is used to
provide the training signal. We use hinge loss [24] as the GAN objective.

7

Ours GT PE MLP GT Ours PE MLP

Figure 4: Visual comparison of novel view synthesis results from our model as well as the baseline
model. Below each image there are local crops that better show the detail. Our model produces
extremely sharp detail compared to the baseline while having the same computational cost. Both
models share the same model architecture, with the only difference being the use of hierarchical
weight tiling.

Table 3: Comparison of novel view synthesis
quality on the Family scene. All the models have
the same computational cost of 315KMACs per
sample.

#Params. PSNR(dB)Ò SSIMÒ

PE MLP [32] 317K 30.50 0.900
No Hier. 17.8M 27.73 0.861
Ours 17.8M 31.46 0.936

Ours No multiscale

Figure 5: Free-space artifacts in the ablated model
that uses tiled weights but lacks the multiscale
arrangement. The weight grids in all the layers are
aligned and repeated at the same interval.

Figure 6: Comparison of image generation results on FFHQ dataset. Images in the top row are
generated by our model. Images in the bottom row are generated by a baseline model with coordinate
embedding. Both models have comparable parameter counts and computational costs.

To reduce computation and encourage easy reproduction, we use a simplified setting with lightweight
components. For the generator, we use an 8-layer network with residual connections. The noise
vector is directly fed into the first layer. For the discriminator, we use a multi-resolution patch
discriminator [20] with spectral normalization [33]. The model is trained on the Flickr Faces-HQ
(FFHQ) dataset [22] at a resolution of 256 ˆ 256. For the baseline method, we use a coordinate
embedding of 256ˆ256 resolution and 256 channels in order to obtain a parameter count comparable
to the LoE model. Please refer to the supplementary material for full implementation detail and
larger-scale experiments.

We report the model size, computational cost and image quality measured in Fréchet inception
distance (FID) [18] in Table 4, and provide a gallery of sample images in Fig. 6. Our method not only
achieves a better FID but also produces images free of fixed noise pattern artifacts (shown in Fig. 7).

8

Figure 7: Examples of the fixed noise pattern artifacts in
the images generated with the baseline PE + CE method.
Our method does not suffer from this issue.

Table 4: Comparison of image genera-
tion quality on FFHQ dataset.

#Params MACs FID

PE + CE [3] 19.9M 1.39M 23.5
Ours 19.6M 1.26M 18.3

5 Discussion

In this work, we demonstrated a new type of hybrid implicit representation, called Levels-of-Experts
(LoE), which is parameterized by hierarchical and periodic, position-dependent weights that are
arranged on levels of repeating grids. The new representation offers great versatility, improving
the performance on a wide range of tasks. Our method provides greatly increased model capacity
compared to fully implicit models while at the same time having a comparably low computational
footprint and the same ease of use. Compared to previous grid-based hybrid representations, the LoE
model demonstrates good parameter efficiency and generalization capability.

Limitations. The nearest-interpolation variant of our model has undefined derivatives and discontinu-
ities when crossing the grid boundaries. Even though the smooth interpolation variants can be used in
these scenarios, compared to SIREN, it does not have smooth, high-order derivatives, limiting its use
in applications such as solving differential equations. Similar to previous works, our method required
prior knowledge of the underlying signal in order to choose suitable grid scales.
Broader Impact. Our model is orthogonal to various other approaches of improving or extending the
increasingly popular implicit neural representations (INRs), such as better activation functions [41],
better input encoding [51], the use of hypernetworks [15, 46, 47], or combination with other pre- or
post-processing CNNs [6, 40]. Our method can enable higher fidelity data (image, video, volume,
etc.) synthesis, representation, and compression at reduced computational costs compared to prior
works. Like prior works, our method can be misused to negative ends, including for deepfakes.

9

References
[1] Scikit-image: Image processing in python. https://scikit-image.org/.

[2] CUTLASS: CUDA templates for linear algebra subroutines. https://github.com/NVIDIA/cutlass,
2019.

[3] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempitsky, and Denis Korzhenkov.
Image generators with conditionally-independent pixel synthesis. In CVPR, 2021.

[4] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P.
Srinivasan. Mip-NeRF: A multiscale representation for anti-aliasing neural radiance fields. In ICCV, 2021.

[5] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard
Newcombe. Deep local shapes: Learning local SDF priors for detailed 3D reconstruction. In ECCV, 2020.

[6] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16123–16133, 2022.

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In
European Conference on Computer Vision (ECCV), 2022.

[8] Javier Dehesa, Andrew Vidler, Julian Padget, and Christof Lutteroth. Grid-functioned neural networks. In
ICML, 2021.

[9] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi.
CvxNet: Learnable convex decomposition. In CVPR, 2020.

[10] Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks. In
ICLR, 2020.

[11] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Local deep implicit
functions for 3D shape. In CVPR, 2020.

[12] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas Funkhouser.
Learning shape templates with structured implicit functions. In ICCV, 2019.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. In NeurIPS, 2014.

[14] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regularization
for learning shapes. In ICML, 2020.

[15] David Ha, Andrew Dai, and Quoc V Le. HyperNetworks. In ICLR, 2016.

[16] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu. GANcraft: Unsupervised 3D Neural
Rendering of Minecraft Worlds. In ICCV, 2021.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In NeurIPS, 2017.

[19] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks for character control. ACM
TOG, 2017.

[20] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In CVPR, 2017.

[21] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, Thomas Funkhouser,
et al. Local implicit grid representations for 3D scenes. In CVPR, 2020.

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In CVPR, 2019.

10

https://scikit-image.org/
https://github.com/NVIDIA/cutlass

[23] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

[24] Jae Hyun Lim and Jong Chul Ye. Geometric GAN. arXiv preprint arXiv:1705.02894, 2017.

[25] David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. Bacon: Band-limited coordinate
networks for multiscale scene representation. In CVPR, 2022.

[26] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields.
In NeurIPS, 2020.

[27] Julien N.P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon Wetzstein.
ACORN: Adaptive coordinate networks for neural representation. ACM TOG, 2021.

[28] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and
Daniel Duckworth. NeRF in the Wild: Neural radiance fields for unconstrained photo collections. In
CVPR, 2021.

[29] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 1(2):99–108, 1995.

[30] Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and Manmohan
Chandraker. Modulated periodic activations for generalizable local functional representations. In ICCV,
2021.

[31] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3D reconstruction in function space. In CVPR, 2019.

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[33] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In ICLR, 2018.

[34] Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural networks
(FBPINNs): a scalable domain decomposition approach for solving differential equations. arXiv preprint
arXiv:2107.07871, 2021.

[35] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM TOG, 2022.

[36] Michael Niemeyer and Andreas Geiger. GIRAFFE: Representing scenes as compositional generative
neural feature fields. In CVPR, 2021.

[37] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumetric
rendering: Learning implicit 3D representations without 3D supervision. In CVPR, 2020.

[38] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture fields:
Learning texture representations in function space. In ICCV, 2019.

[39] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF:
Learning continuous signed distance functions for shape representation. In CVPR, 2019.

[40] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional
occupancy networks. In ECCV, 2020.

[41] Sameera Ramasinghe and Simon Lucey. Beyond periodicity: Towards a unifying framework for activations
in coordinate-MLPs. arXiv preprint arXiv:2111.15135, 2021.

[42] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, and Andrea Tagliasacchi. DeRF:
Decomposed radiance fields. In CVPR, 2021.

[43] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. KiloNeRF: Speeding up neural radiance
fields with thousands of tiny MLPs. In ICCV, 2021.

[44] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li. PIFu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In ICCV, 2019.

[45] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. GRAF: Generative radiance fields for
3D-aware image synthesis. In NeurIPS, 2020.

11

[46] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. In NeurIPS, 2020.

[47] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Continuous
3D-structure-aware neural scene representations. In NeurIPS, 2019.

[48] Kenneth O Stanley. Compositional pattern producing networks: A novel abstraction of development.
Genetic Programming and Evolvable Machines, 2007.

[49] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec
Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of detail: Real-time rendering with
implicit 3D shapes. In CVPR, 2021.

[50] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan,
Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8248–8258,
2022.

[51] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high
frequency functions in low dimensional domains. NeurIPS, 2020.

[52] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari,
James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual computing and beyond.
Eurographics, 2022.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Included in Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Included

in Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We include all
the details needed to reproduce the results in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Fully specified in the supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] The error bars are included in the supplemental
material.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Included in the supplemental
material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] In the supplemental material. All the

data we used are publicly available.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include code snippets in the supplemental material.

12

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] All the data are permissively licensed.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The particularly relevant, publicly available
FFHQ dataset is originally obtained from permissively licensed sources.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We did not crowdsource or use human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

Supplementary Material for
Implicit Neural Representations with Levels-of-Experts

A Comparison of Different Hierarchical Grid Layouts

In the main paper, we have shown that our levels-of-experts framework supports a wide variety of
grid layouts (Sec. 3), and arranging the grids in a multi-scale fashion improves the performance
(Sec. 4.1 and Sec. 4.3). This section further investigates the performance implications of different
hierarchical grid layouts on a 2D toy experiment, where we fit the model to a 512 ˆ 512 image.

Here we only consider the case of nearest interpolation (piecewise constant) parameterization of the
position-dependent weights. In 2D, consider an input coordinate p P r0, 1s2, and a 2 ˆ 2 weight tile
for the i-th layer tWi

0,0,W
i
0,1,W

i
1,0,W

i
1,1u, the position-dependent weight ψippq can be computed

as follows:
ψippq “ Wi

txu mod 2,tyu mod 2, (7)

where
„

x
y

ȷ

“ Aip ` bi. (8)

An affine transformation Ai and bi is selected for each layer to allow the weight grids to cover a
wide range of spatial frequencies.

We study the effect of different arrangements of Ai and bi via controlled experiments. As shown in
Table 5, our models outperform the PE MLP baseline over a wide range of hierarchical grid layouts.
In this paper, for consistency, we mainly use coarse-to-fine arrangements in all the experiments,
similar to the Quad Tree arrangement in this case. However, we also want to point out that the
performance of the LoE model can be further improved by tuning the grid layouts, as evident by the
better performance achieved with the Fine to Coarse arrangement in this case.

Architectures. For all the experiments, we use a 10-layer network with 64 hidden channels, which
consists of 9 position-dependent linear layers i “ 1, . . . , 9 and a final linear layer. All of the position-
dependent linear layers use a 2 ˆ 2 weight tile. We use Leaky ReLU (0.2 negative slope) activation
function between all the layers. We use positional encoding [32] with L “ 8 frequencies as the input
mapping.

Training Details. We use the mean squared error as the reconstruction loss. We use Adam optimizer
with pβ1, β2q “ p0.9, 0.995q and a learning rate of 0.005. We train all the models for 10k iterations,
with the learning rate decayed to 0.0005 after the first 5k iterations. We initialize the bias vectors to
zeros and initialize the weights using the uniform distribution variant of Kaiming initialization [17].
We sample the full image in each iteration (i.e. no subsampling).

Dataset. We use the “camera” test image from the scikit-image Python package [1], which is a
grayscale image with a resolution of 512 ˆ 512. This image is CC0 licensed.

Runtime & Hardware. Each experiment takes approximately 7 minutes on a NVIDIA Titan V
GPU.

14

Fine to Coarse

Gray Code

Quad Tree

Random Affine

Random Permute

Baseline

P
S

N
R

Iterations

Figure 8: PSNR vs training iterations curve for the 2D toy experiment.

Table 5: Comparison of different hierarchical arrangements of weight grids for a network with 9
position-dependent linear layers and 2 ˆ 2 weight tiles. The PE MLP baseline is also included in the
first row. I denotes the 2 ˆ 2 identity matrix.

Visualization Ai bi PSNR(dB)

PE
M

L
P

0I 0 31.38

Q
ua

d
Tr

ee

2iI 0 40.55

G
ra

y
C

od
e

"

2I i “ 1

2i´1I i ą 1

„

0.5
0.5

ȷ

40.55

Fi
ne

to
C

oa
rs

e

210´iI 0 42.40

R
an

do
m

Pe
rm

ut
e

2arrrisI,
arr = [3,8,1,9,6,2,5,4,7]

0 37.89

R
an

do
m

A
ffi

ne

„

ai bi
ci di

ȷ

,

ai, bi, ci, di „ N p0, 162q

„

mi

ni

ȷ

,

mi, ni „ Up0, 1q

38.36

15

B Details for the Image Fitting Experiments

Architectures. For all the experiments, we use 8-layer networks with [512, 384, 256, 256, 256,
256, 256, 3] respective output channels. We use Leaky ReLU with a negative slope of 0.2 as the
activation function between each layer. We use positional encoding with L “ 13 frequencies as
the input mapping for all the experiments. For the coordinate embedding baseline, we bilinearlly
interpolate a learnable 128-channel 256 ˆ 256 embedding and feed it to the first layer of the MLP,
concatenated with the encoded input coordinates. For experiments using position-dependent weights,
we use 4 ˆ 4 weight tiles for the first 7 layers and use a regular linear layer for the last layer. The
per-layer affine transformation coefficients for these experiments can be found in Table 6. They are
defined in the same way as in Sec. A.

Table 6: Per-layer affine transformation coefficients of weight grids for image fitting experiments that
use position-dependent weights. All the models have 7 position-dependent linear layers (i “ 1, . . . , 7)
and use 4 ˆ 4 weight tiles. The input 2D coordinates have a range of p P r0, 1s2. : This prevents the
grid pitch from becoming finer than the pixel pitch.

Ai bi

Interleaved 8192I 0

Chunked 4I 0

Random Affine
„

ai bi
ci di

ȷ

,

ai, bi, ci, di „ N p0, 2562q

„

mi

ni

ȷ

,

mi, ni „ Up0, 1q

Constant Input (no PE)
"

4I i “ 1

p4i´1 ˆ 2qI i ą 1
: 0

Ours Bilinear Ò (same as above) 0

Ours Ò 0

Training Details. We use Adam optimizer with pβ1, β2q “ p0.9, 0.999q and a learning rate of
0.001. For each iteration, we randomly sample 262144 pixels from the image. We train the models
for a total of 200k iterations. We decay the learning rate with a multiplier of 0.1 after 100k iterations.
We follow the same network initialization scheme described in Sec. A.

Runtime & Hardware. All the experiments are run on a single NVIDIA Tesla V100 GPU (with
power consumption capped at 163W). The training time is 8 hours for PE, 9 hours for PE + CE, 39
hours for Ours Bilinear, and 10 hours for the rest of the models.

Dataset. In this experiment, we use the public domain image of the dwarf planet Pluto1

(NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex
Parker). The original image is 8000 ˆ 8000 pixels. We resize it to 8192 ˆ 8192 following the
published implementation of [27].

Uncertainties of the Quantitative Results. We report uncertainties of the quantitative results
in Table 7, which extends Table 1 in the main paper, with standard deviations over multiple runs
included.

C Details for the Video Fitting Experiments

Architectures. For all the experiments, we use 6-layer networks with 256 hidden channels, with
the exception of the SIREN-L experiment, which has 1024 hidden channels. We use Leaky ReLU

1https://solarsystem.nasa.gov/resources/933/true-colors-of-pluto/

16

https://solarsystem.nasa.gov/resources/933/true-colors-of-pluto/

Table 7: Quantitative results for the image fitting experiment. Standard deviations over multiple runs
are parenthesized.

PSNR dB (STD) Ò SSIM (STD) Ò

PE MLP [32] 32.34 (0.02) 0.869 (6e-4)
PE + CE [3] 39.65 (0.21) 0.967 (1e-3)

Interleaved 33.80 (0.01) 0.876 (7e-5)
Chunked 43.13 (0.01) 0.980 (7e-5)
Random Affine 42.08 (0.78) 0.973 (5e-3)
Constant Input (no PE) 39.48 (0.06) 0.955 (4e-4)
Ours Bilinear 44.85 (0.02) 0.985 (1e-4)
Ours 44.24 (0.17) 0.983 (4e-4)

with a negative slope of 0.2 as the activation function between each layer. We use positional encoding
with L “ log2 512 “ 9 frequencies as the input mapping for PE, PE + CE and LoE experiments. For
the PE + CE baseline, similar to the image fitting experiment, we use a 64-channel 64 ˆ 64 ˆ 64
embedding that is trilinearlly interpolated and fed to the first layer.

For the LoE experiment, we use 2 ˆ 2 ˆ 2 weight tiles for the first layer, 4 ˆ 4 ˆ 4 tiles for the
next 4 layers, and use a regular linear layer for the last layer. The grid resolution for the 5 position-
dependent layers are 2, 8, 32, 128, and 512, respectively. Their corresponding affine coefficients are
Ai “ grid resolution ˆ I and bi “ 0. The 3D input coordinates are normalized to p P r0, 1s3.

Training Details. We use Adam optimizer with pβ1, β2q “ p0.9, 0.999q. For PE, PE + CE, and
LoE experiments, we use a learning rate of 0.001. For SIREN experiments, we use a learning rate of
5e-5 for stable training. For each iteration, we randomly sample 160000 pixels from the video. We
train the models for a total of 200k iterations, decaying the learning rate with a multiplier of 0.1 after
100k iterations. For SIREN experiments, we follow the initialization scheme in [46]. For the rest of
the experiments, we follow the same network initialization scheme described in Sec. A.

Runtime & Hardware. All the experiments are run on a single NVIDIA Tesla V100 GPU (with
power consumption capped at 163W). The training of PE, PE + CE, and SIREN experiments require
3 hours, while the LoE model requires 4 hours due to the inefficient implementation of the dynamic
weight layer. The SIREN-L experiment requires 26 hours of training.

Dataset. The original video is permissively licensed and can be found here2. We use the cropped
and downsampled version from [46].

Uncertainties of the Quantitative Results. We additionally report the standard deviations of the
quantitative results in Table 8, which corresponds to Table 2 in the main paper.

Additional Results. We include the result videos from all the methods in the supplemental material
package.

D Details for the Novel View Synthesis Experiment

Architectures. We use an identical network architecture skeleton, as shown in Fig. 9, in all the
experiments. We use Leaky ReLU with a negative slope of 0.2 as the activation function between
each layer. We use a positional encoding with L “ 10 frequencies as the input mapping for the
coordinates (γppq). We follow the standard settings [32] and use a positional encoding with L “ 4
for the ray directions (γdpdq).

2https://www.pexels.com/video/the-full-facial-features-of-a-pet-cat-3040808/

17

https://www.pexels.com/video/the-full-facial-features-of-a-pet-cat-3040808/

Table 8: Quantitative results of the video fitting experiment, with standard deviations reported in the
parenthesis.

PSNR dB (STD)

PE [32] 27.33 (0.01)
PE + CE [3] 35.83 (0.20)
SIREN [46] 29.13 (0.004)
SIREN-L 37.71 (0.01)
Ours 39.98 (0.12)

256 256 256 256 256

128 3
𝛾 𝐩
63

𝜎
1

1

𝐜
3

𝛾𝑑 𝐝
24

Figure 9: Network architecture for the novel view synthesis experiment. Numbers denote output
channels. Yellow blocks denote inputs, while green blocks denote outputs.

For the LoE experiment as well as the No Hierarchy ablation, we replace the first 5 layers with
position-dependent linear layers and use 4 ˆ 4 ˆ 4 weight tiles in these layers. The grid layouts are
shown below in Table 9. For all the experiments, we use identical network architectures for both
coarse and fine networks.

Table 9: Affine transformation coefficients for novel view synthesis experiments.
Ai bi

No Hier. 64I 0

Ours 4iI 0

Training Details. We use Adam optimizer with pβ1, β2q “ p0.9, 0.999q. We use an initial learning
rate of 5e-5, and decay it exponentially following the published implementation of [32]. We follow
the same network initialization scheme described in Sec. A. For each iteration, we randomly sample
16384 rays. For each ray, we sample 96 coarse samples and 192 important samples. Each model is
trained for a total of 500k iterations.

Runtime & Hardware. All the models are trained using 8ˆ NVIDIA A40 GPUs. The LoE model,
and the ablation model requires 26 hours of training, while the PE MLP baseline requires 19 hours.

Dataset. We use the preprocessed version of Tanks and Temples dataset [23, 26] for training, which
includes 133 training images and 19 test images with a resolution of 1920 ˆ 1080. The dataset is
CC-NC licensed. We isotropically scale the scene so that everything is bounded within r´0.5, 0.5s3

in the world coordinate.

Uncertainties of the Quantitative Results. We additionally report the standard deviations of the
quantitative results in Table 10, which corresponds to Table 3 in the main paper.

Additional Results. We also include result images evaluated from test views in the supplemental
material package.

18

Table 10: Quantitative results for the novel view synthesis experiment. Standard deviations are
reported in the parenthesis.

PSNR dB (STD) Ò SSIM (STD) Ò

PE MLP [32] 30.50 (0.09) 0.900 (1e-3)
No Hier. 27.73 (0.66) 0.861 (0.012)
Ours 31.46 (0.04) 0.936 (1e-3)

E Details for the Image Generation Experiment

Architectures. In the image generation experiment, we adopt a linearly arranged network with
residual connections, as shown in Fig. 10. We use a positional encoding with 8 frequencies as the
input mapping, and apply Leaky ReLU to the activations. For the PE + CE baseline, we use a
256-channel 256 ˆ 256 embedding. For the LoE experiment, we use position-dependent weights
on the first linear layer of 7 intermediate residual blocks, with the grid resolutions and tile sizes
marked in the figure. The definition of these parameters follows Sec. C. The above setting yields
approximately the same parameter counts and computational costs, enabling fair comparison. This
network architecture is inspired by the "residual" setting used in [3] but greatly simplified and scaled
down to accelerate the experiments.

Res

512

Res

512

Res

512

Res

512

Res

256
3

𝛾 𝐩
34

RGB
3

Res

256

Res

256

Res

256

𝐳
256

CE
256

Tile Size
Grid Resolution

4
4

4
8

4
16

4
32

4
64

4
128

4
256

Figure 10: Network architecture for the GAN experiment. Blocks labeled with "Res" are residual
blocks. Numbers on the blocks denote output channels. The coordinate embedding (CE) input is
used only for the CE experiment, while the position-dependent weight tiling, with tile sizes and grid
resolutions noted under each block, is only used in the LoE experiment.

For the discriminator network, we use simple 5-layer patch discriminators [20] constructed with
kernel size 3 and stride 2 convolution layers and Leaky ReLU activation functions. We use two
such discriminators at two different scales: full image and 1/2 downsampled image. We use spectral
normalization [33] on the discriminator weights.

We use hinge loss [24] as the GAN objective. The overall losses for the discriminator and the
generator are as follows:

LD “ ´Ex„pdata
rmin p0,´1 `D pxqqs ´ Ez„pz rmin p0,´1 ´D pG pzqqqs (9)

LG “ ´Ez„pzD pG pzqq (10)

Table 11: Image generation quality on FFHQ dataset, with standard deviations over two runs provided
in the parenthesis.

FID (STD)

PE + CE [3] 23.5 (0.7)
Ours 18.3 (1.6)

19

Training Details. We use Adam optimizer with pβ1, β2q “ p0.9, 0.999q and a learning rate of
1e-4. We follow the same network initialization scheme described in Sec. A for the generators and
discriminators. We use a batch size of 4 images per GPU, yielding a combined batch size of 32
images per iteration. Each model is trained for 1M iterations.

Runtime & Hardware. Both models require approximately 60 hours of training on 8ˆ NVIDIA
A100 GPUs.

Dataset & Evaluation Metrics. The models are trained on the Flickr Faces-HQ (FFHQ)
dataset [22], which contains permissively licensed images from Flickr that were intended for free use
and redistribution by their respective authors. In our experiments, we downsample the images from
1024ˆ 1024 to 256ˆ 256. We report FID scores that are evaluated with a sample size of 50k images.

Uncertainties of the Quantitative Results. We additionally report the standard deviations of the
FID scores in Table 11, which corresponds to Table 4 in the main paper.

Additional Results. We include additional examples of generated images in Fig. 11.

20

(a) Levels-of-Experts

(b) Coordinate Embedding

Figure 11: Additional image generation results from our method (a) and baseline method (b).

21

	Introduction
	Related Work
	Method
	Experiments
	Fitting to a High-resolution Image
	Fitting to a Video
	Novel View Synthesis
	Image Generation with GANs

	Discussion
	Comparison of Different Hierarchical Grid Layouts
	Details for the Image Fitting Experiments
	Details for the Video Fitting Experiments
	Details for the Novel View Synthesis Experiment
	Details for the Image Generation Experiment

