# Efficient Grasping from RGBD Images: Learning Using a New Rectangle Representation

Yun Jiang, Stephen Moseson, Ashutosh Saxena Cornell University

#### Problem

#### Goal:

- Figure out a way to pick up the object.
  - Approach
  - ▶ Grip
  - ▶ Pick up



Question: where and how to grasp?

## How to Perceive Objects

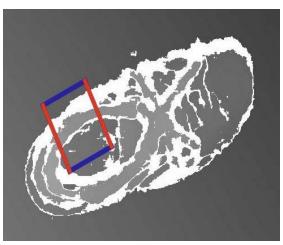
- ▶ RGBD cameras give RGB image plus depth information
  - > Stereo cameras (\$1000): Bumblebee



Kinect Camera (\$140)









RGB image

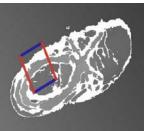
Depth map

3D point cloud

#### Our Formulation

Input: RGBD image





- Output: a proper grasp -- the configuration of the gripper at the final grasp stage
  - ▶ 3D location, 3D orientation, opening width.



## Traditional Approaches

### Control/Planning

- Force and form closure (Nguyen 1986, Lakshminarayana 1978)
- Requires full 3D knowledge of grippers and objects

#### Disadvantages:

- Complete 3D model is not always available
  - Noise sensors.
- Difficult to model friction.
- Search in enormous configuration space

Does not apply to deformable grippers!



# Learning Approaches

### Learning

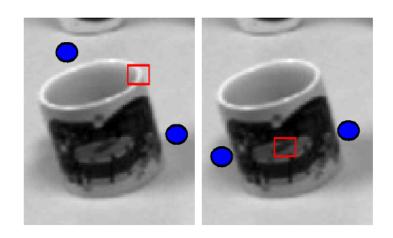
- provides generalization on novel objects
- Robust to noise and variations of environment



(Saxena et al., NIPS 2006)

#### Previous learning approaches

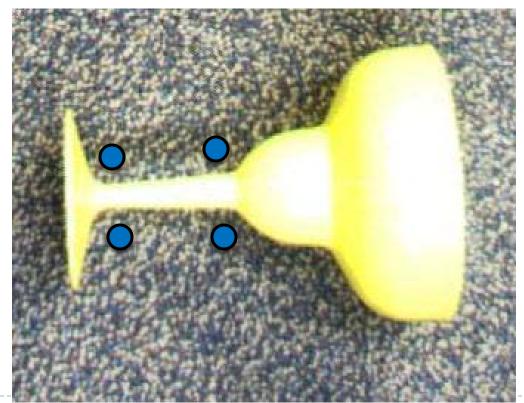
- Representation problem
  - ▶ 3D orientation of gripper not represented well.



(Le at al., ICRA 2010)

# Representation

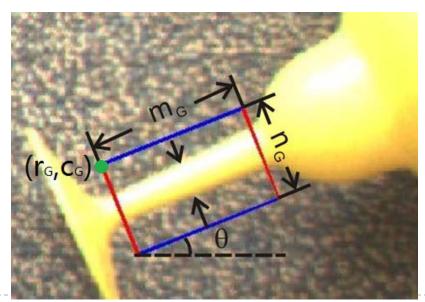
- Should contain full 7-dimensional gripper configuration (3D location, 3D orientation, gripper opening width)
- Specifically model gripper's physical size



## New Representation

#### Grasping Rectangle

- Contains full 7-dimensional gripper configuration
- Specifically model gripper's physical size.
- Strictly constraints the boundary of features.





Efficient Grasping from RGBD Image: Learning Using a New Rectangle Representation

#### Define the Score Function

- $\phi(G)$ : the feature vector for a possible grasp G
- Score of grasp G:

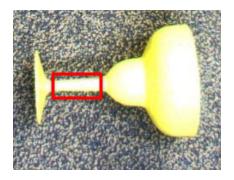
$$f(G) = w^T \phi(G) = \sum_{i=1}^k w_i \phi_i(G)$$

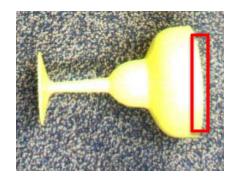
Best grasp: the highest-score rectangle in the image

$$G^* = \arg\max_G f(G)$$

## Learning the Score Function

- Learning algorithm: SVM-Rank
  - Ranking not classification:
    - because the boundary between 'good'/'bad' grasps is vague

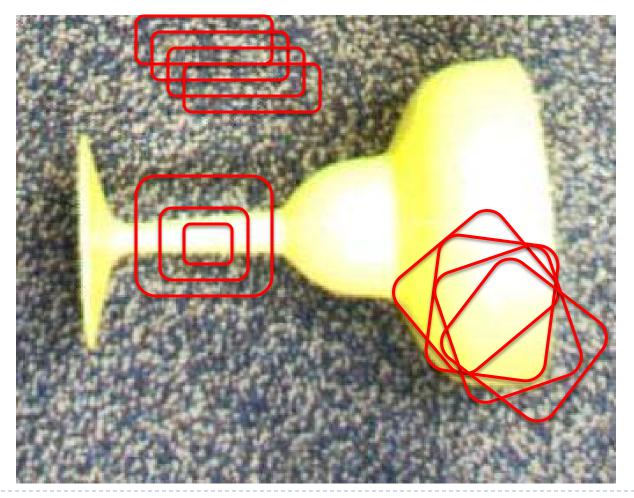




Training data: Labeled rectangles for pictures.

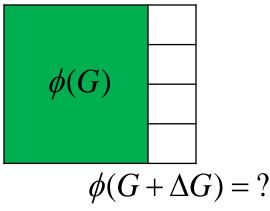
### Inference

Search for all possible rectangles



# Search Highest-score Rectangles

- Image: n x m
- Features: k (per rectangle)
- Brute-force search?
  - ►  $O(n^2m^2)$  rectangles, O(nmk) to compute features →  $O(n^3m^3k)$  for one orientation
  - ▶ To accelerate:
    - ► Compute features incrementally  $\rightarrow$   $O(n^2m^2k)$
    - Even faster?



# Fast search

▶ Condition: features are independent in pixel level, i.e.

$$\phi_i(G) = \sum_{(x,y)\in G} \phi_i(I(x,y)), \quad \forall i=1,\ldots,k$$

The score of a rectangle can be decomposed to the scores of pixels  $r_G + n_G c_G + m_G$ 

$$f(G) = \sum_{x=r_G}^{r_G+n_G} \sum_{y=c_G}^{c_G+m_G} F(x,y)$$

- Classical problem: maximum-sum submatrix!
  - In one dimension,

| array | 3 | -4 | 5 | 2 | -5 | 5 | 9  | -8 |
|-------|---|----|---|---|----|---|----|----|
| sum   | 3 | 0  | 5 | 7 | 2  | 7 | 16 | 8  |

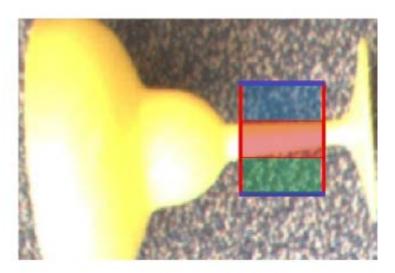
In our problem, reduce the time complexity to  $O(nmk+n^2m)$ 

# Histogram Features for Fast Search

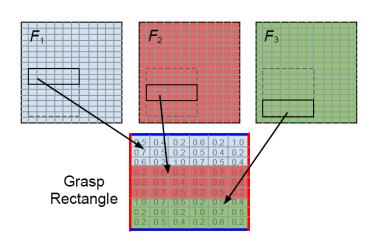
 Histograms from 15 filters to capture color, textures and edges



Spatial Histogram Features

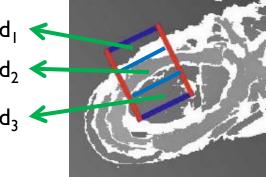


Divide a rectangle into 3 sub-rectangles



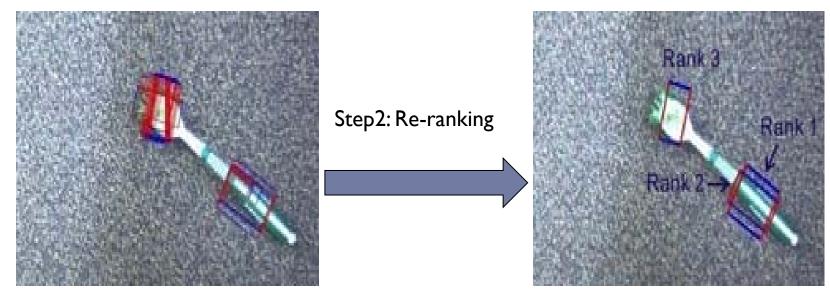
#### Advanced Features

- Histogram is fast but not able to capture the correlations among the 3 sub-rectangles
  - ▶ E.g., One criteria:  $d_1 > d_2$  and  $d_2 < d_3$
- Non-linear features
  - E.g.,  $d = d_1 d_3/(d_2)^2$
  - Expressive but not applicable to fast search



### Two-step Process

- Algorithm: Two models:
  - First step: Fast, but not accurate (good for pruning).
  - Second step: Accurate, but slow.



Top 100 rectangles after the 1st step

Top 3 rectangles after the 2nd step

## Summary

- RGBD images
- Representation
  - Oriented rectangle
- Learning using Efficient two-step process
  - ▶ Fast search with histogram features
  - Re-rank with more sophisticated features

# Experiments

Tested on novel objects



- Offline: 128 images
- Robot: 12 objects, multiple tries



#### Results on offline test

#### Evaluation-I: rectangle metric

| Dataset         | 0            | General Training |               |               |
|-----------------|--------------|------------------|---------------|---------------|
| Dataset         | One-step RGB | Two-step RGB     | Two-step RGBD | Two-step RGBD |
| Martini         | 75.0         | 80.0             | 87.5          | 92.5          |
| Marker          | 79.3         | 93.1             | 89.7          | 100.0         |
| Pencil Bag      | 66.7         | 88.9             | 100.0         | 100.0         |
| Dumbbel1        | 66.7         | 77.8             | 100.0         | 100.0         |
| Screwdriver     | 75.0         | 87.5             | 81.3          | 87.5          |
| Brush           | 81.8         | 81.8             | 100.0         | 90.9          |
| Black Container | 75.0         | 75.0             | 100.0         | 100.0         |
| Red Lid         | 66.7         | 100.0            | 100.0         | 100.0         |
| White Rox       | 85.7         | 857              | 100.0         | 100.0         |
| Average         | 74.7         | 85.5             | 95.4          | 96.8          |

#### Results on offline test

#### Evaluation-2: point metric [Saxena2008]

| Dataset         | O            | General Training |               |               |
|-----------------|--------------|------------------|---------------|---------------|
| Dataset         | One-step RGB | Two-step RGB     | Two-step RGBD | Two-step RGBD |
| Martini         | 77.5         | 85.0             | 87.5          | 95.0          |
| Marker          | 93.1         | 93.1             | 96.6          | 100.0         |
| Pencil Bag      | 77.8         | 88.9             | 100.0         | 88.8          |
| Dumbbel1        | 100.0        | 100.0            | 100.0         | 100.0         |
| Screwdriver     | 87.5         | 93.8             | 100.0         | 100.0         |
| Brush           | 100.0        | 90.9             | 100.0         | 100.0         |
| Black Container | 100.0        | 100.0            | 100.0         | 100.0         |
| Red Lid         | 66.7         | 100.0            | 100.0         | 100.0         |
| White Box       | 85.7         | 100.0            | 100.0         | 100.0         |
| Average         | 87.6         | 94.6             | 98.2          | 98.2          |

# Robotic experiments

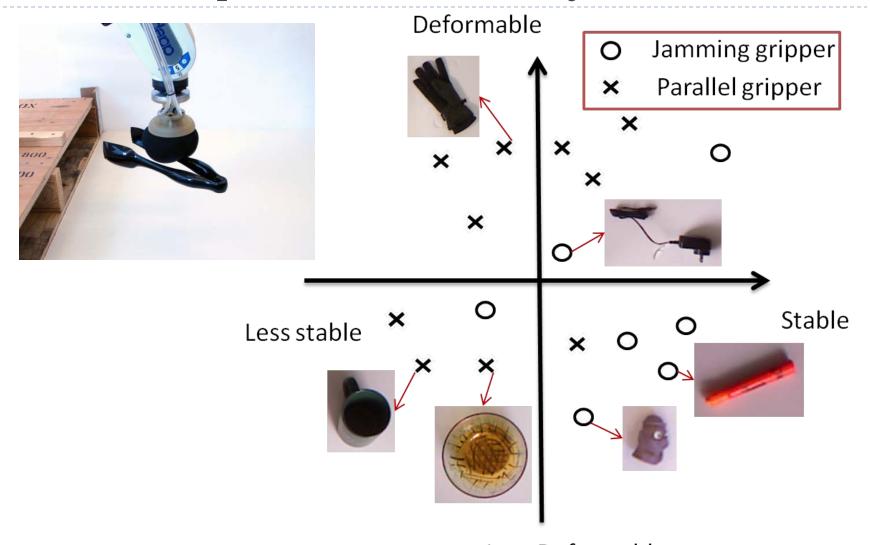
- Adept Viper s850
- Parallel plate gripper



# Results on robotic experiments

| Object        | Prediction  | Reaching    | Grasping/Holding |
|---------------|-------------|-------------|------------------|
|               | correct (%) | success (%) | success (%)      |
| Martini       | 100         | 100         | 100              |
| Markers       | 80          | 80          | 80               |
| Red Lid       | 100         | 100         | 100              |
| Wire Stripper | 100         | 100         | 100              |
| Screwdrivers  | 89          | 78          | 78               |
| Pencil Bag    | 100         | 100         | 100              |
| Plastic Case  | 100         | 100         | 100              |
| Book Stand    | 100         | 100         | 50               |
| Glove         | 100         | 100         | 100              |
| Window Wiper  | 80          | 80          | 80               |
| Blue Foam     | 100         | 100         | 100              |
| Shoes         | 50          | 67          | 67               |
| Total         | 91.6        | 92.1        | 87.9             |

# Universal Jamming gripper: Robotic Experiment and Analysis



# After Grasp: Learning to Place

- Challenges:
  - Enormous search space
  - Placing under preference





- Efficient learning approach to identify good placements
- Results on robotic experiment
  - Goal: correct location and preferred orientation
  - ▶ 92% for New Objects in New Environments.









# Thank you!

Yun Jiang, Stephen Moseson and Ashutosh Saxena,

Efficient Grasping from RGBD Images: Learning using a new Rectangle Representation, ICRA 2011.

#### Learning to Place New Objects:

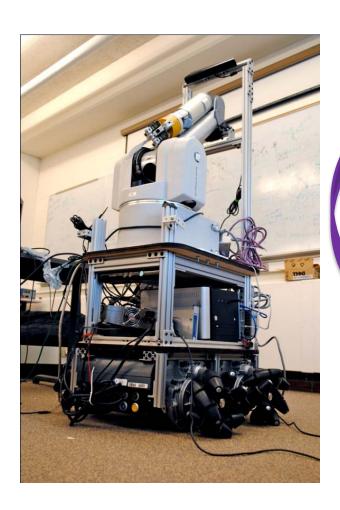
Yun Jiang, Changxi Zheng, Marcus Lim, Ashutosh Saxena, Learning to Place New Objects, ICRA 2012. First appeared in RSS workshop on mobile manipulation, June 2011.



### Video



## Future Work





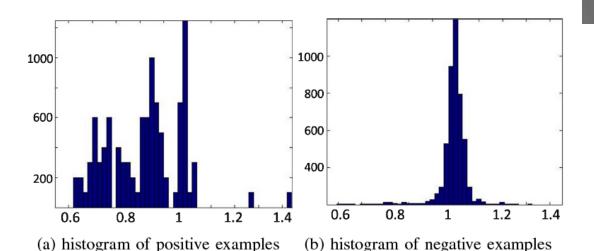


#### Advanced Features

Histogram is fast but not able to capture the correlations among the 3 sub-rectangles

▶ E.g., One criteria:  $d_1 > d_2$  and  $d_2 < d_3$ 

Non-linear features



Histogram of a non-linear feature  $d = d_1 d_3/(d_2)^2$ 

# Spatial Histogram for Fast Search

▶ Time complexity is only multiplied by 3

