Fine-grained Categorization and Dataset Bootstrapping using Deep Metric Learning with Humans in the Loop

Yin Cui1,2 Feng Zhou3 Yuanqing Lin3 Serge Belongie1,2

1Department of Computer Science, Cornell University 2Cornell Tech 3NEC Labs America

Motivation

FGVC Challenges

➢ Lack of training data.
➢ Large number of categories.
➢ High intra-class vs. low inter-class variances.

Proposed Solutions

qd Bootstrapping training data from the web.
qd Learning compact low-dim representations.
qd Learning manifolds with multiple anchor points.

Framework

Softmax vs. Metric Learning

\begin{align*}
\text{CNN with softmax loss} & \quad \text{CNN for metric learning} \\
\end{align*}

\begin{itemize}
\item Pre-defined one-hot encoding versus learned manifold.
\item Compared with Softmax, metric learning could learn a more compact representation in a much lower dimensional space.
\end{itemize}

Learning Manifolds

Hard Negatives

\begin{itemize}
\item \(\Omega(n^3)\) possible triplets, impossible to go through.
\item Training from hard negatives by:
 \begin{enumerate}
 \item Only keeping triplets that violate constraint.
 \item Including human-labeled false positives.
 \end{enumerate}
\end{itemize}

Local Positives

\begin{itemize}
\item Sampling local positives could learn a more spread manifold rather than a dense sphere.
\end{itemize}

Learning Anchor Points

\begin{itemize}
\item Incorporating class labels into metric learning.
\item Back-propagate classification loss to update anchor points.
\end{itemize}

Contributions

\begin{itemize}
\item A unified framework for simultaneous fine-grained categorization and dataset bootstrapping.
\item A novel metric learning method that learns manifolds from both machine-mined and human-labeled hard negatives.
\item A fine-grained flower dataset with 620 categories and around 30K images.
\end{itemize}

Experiments

Original Flower-620 (15K images)

\begin{itemize}
\item Softmax (68.8)
\item Triplet-A (68.5)
\item Triplet-M (66.8)
\item Triplet-H (66.3)
\item Triplet-I (65.9)
\item Triplet-M (64.4)
\item Softmax + HNS (80.1)
\end{itemize}

\begin{itemize}
\item Softmax + HNS (68.0)
\item Softmax + HNS (80.1)
\item Softmax + HNS (86.6)
\item Softmax + HNS (70.3)
\item Softmax + HNS (70.2)
\item Softmax + HNS (70.8)
\end{itemize}

[5] Metric Learning: +2.7\% over softmax, with a much more compact representation.

[6] Dataset Bootstrapping: +6.9\% (+3.4\% from new data, 3.5\% from human-labeled hard negatives).

Visualization of flower embedding

\begin{itemize}
\item Incorporating class labels into metric learning.
\item Back-propagate classification loss to update anchor points.
\end{itemize}

\begin{align*}
\mathcal{L}_{\text{triplet}}(x, x_p, x_n) &= \max \left\{ 0, \| f(x) - f(x_p) \|^2 - \| f(x) - f(x_n) \|^2 + m \right\}
\end{align*}