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Abstract— In this paper, a general fluid model is developed to
study the performance and fairness of BitTorrent-like networks.
The fluid model incorporates two important features, user settings
with multiple groups and inter-group data exchange, in a synthe-
sized way to obtain statistics about the system performance. Our
numerical results point out some key parameters of the system,
such as the staying time of seeders. Generally, selfish behavior does
not receive equal performance degradation, and in some scenarios
users have strong incentives of free-riding. We also find content
delivery can be greatly deterred when malicious free-riders are
overwhelming.

I. INTRODUCTION

Peer-to-Peer (P2P) applications have become a major source
of Internet traffic and are still on the rise [1]. As a typical P2P
software and protocol, BitTorrent [2] has achieved a remarkable
success, taking over half of the P2P traffic in some areas [3].
A BitTorrent session is the procedure of distributing a file to
interested clients, called peers. Regarding BitTorrent sessions,
four issues have been widely discussed. The first is scalability,
namely, how BitTorrent handles varied population. The second
is the maintenance of a session. The third issue is the efficiency,
i.e., how fast peers can finish downloading and how well
their bandwidths are utilized. The fourth issue concerning
BitTorrent is how well it deters selfish behavior, known as
free-riding in most P2P literature. Due to the cooperative
nature of BitTorrent-like networks, performance and fairness
are interwoven and thus should not be treated separately.

Previous works on BitTorrent have taken either an exper-
imental or a theoretical approach. [4] collected realistic data
from the tracker’s perspective. [5] analyzed a peer’s log files
after participating in 12 BitTorrent sessions. [6] simulated and
altered some major mechanisms in BitTorrent. On the other
hand, in [7] a branching process model was used to estimate the
service capacity of BitTorrent-like networks after startup. [8]
introduced a simple fluid model of identical users, and obtained
some analytical solutions as well as the equilibrium strategy for
peers. However, performance models in [7], [8] failed to capture
the influence of multiple groups and optimistic unchoking.

In this paper, we use a general fluid model to combine a
multi-group setting and the choking algorithm. Multiple groups
are necessary because they reflect realistic peer composition.

The multi-group setting further enables and necessitates the
study of optimistic unchoking, a mechanism via which different
groups unavoidably exchange data. Numerical solutions can
be generated for the model to reveal parameters essential to
system performance and fairness. Our results show that group
composition and the number of seeders are both important to
performance. In particular, normal peers may get harmed if
the session is dominated by malicious free-riders. Calculation
also proves that peers with a smaller uploading capacity do
not suffer an equally prolonged downloading time. For certain
scenarios, the low-bandwidth peers will have strong incentive
of free-riding even if they are performance-sensitive.

The rest of the paper is organized as follows. Section II
provides a very brief description of the BitTorrent protocol.
Section III describes a general fluid model through three steps.
First multiple groups are introduced in a fluid model without
data exchange between groups, followed by a discussion of
its steady state. Secondly, assuming optimistic unchoking is
running, download speed statistics of steady state and conver-
gence time are computed for each group. Thirdly, the steady
state of the fluid model is revised to consider the influence
of optimistic unchoking. Section IV presents numerical results
of the general mode and carries some discussion about the
key elements toward better efficiency and fairness. Section V
concludes the paper.

II. BACKGROUND

In BitTorrent, peers aiming at the same file form a large
pool called a swarm, made up of both leechers (downloading
peers) and seeders (uploading peers). A peer typically keeps
connections with at most 40 to 100 peers, which become
its neighbors. But the number of leechers a peer actually
uploads to at one time is only a few. The local peer holds
back uploading to most neighbors by marking them as choked,
otherwise unchoked. The leechers actually receiving data are
called downloaders by the local peer.

To get a complete file, peers join the corresponding session
after downloading a small .torrent file containing session in-
formation. The actual file distributed via BitTorrent is split
into much smaller, verifiable parts called pieces. Therefore



new leechers can start exchanging data with other peers almost
immediately.

The choking algorithm decides the choking state of a peer’s
neighbors, and it consists of regular unchoking and optimistic
unchoking. Regular unchoking periodically selects neighbors
who are offering the best uploading rates. On the other hand,
the local leecher tentatively unchokes other neighbors to dis-
cover better targets, using optimistic unchoking. In practice,
it transfers data to some randomly chosen neighbor for 30
seconds, during this period, the regular unchoking at the remote
peer may start sending data in return. Seeders behave quite
differently from leechers, because they require no reciprocal
uploading and merely consider leechers’ downloading capacity.
The latest choking algorithm distributes a seeder’s uploading
chances rather randomly among its neighbors.

III. A GENERAL FLUID MODEL

This section develops a general fluid model. Here we first
introduce multiple leecher groups into the model without inter-
group data exchange. Then after discussing the impact of
optimistic unchoking in detail, the fluid model is revised to
take that into account.

A. Introducing Multiple Groups

In a real BitTorrent session seldom do all peers possess
the same physical bandwidths, and peers can effortlessly set
bandwidth limits in many BitTorrent clients. Therefore, we
introduce multiple groups and extend the uni-group fluid model
in [8]. In the general model, a set of parameters characterizes
a peer group, and only finite groups exist. The file size
of each session is defined as 1, and peers’ bandwidths can
be normalized accordingly. For a swarm of n peer groups,
variables and parameters describing the model at time t are
listed as following.

λi arriving rate of Gi, arrivals follow Poisson distribution.
θi the rate a Gi leecher aborts the session.
γ the rate seeders leave a session. Since leaving is manually

done, we assume all groups have the same value.
µi uploading bandwidth limit of a Gi leecher.
ci downloading bandwidth limit of a Gi leecher, ci ≥ µi.

xi(t) number of leechers that belong to group Gi at time t.
y(t) number of seeders at time t.
µ(t) average uploading bandwidth of seeders.

η file sharing efficiency, defined as the probability a leecher
has at least one piece requested by its neighbors. [8] argues
η is very close to 1 in BitTorrent.

The variables xi(t), y(t), µ(t) are decided by the pa-
rameters λi, θi, γ, µi, ci, η. At time t, the size of
leecher group i changes by the margin between the arriving
rate λi and departing rate, which is the sum of abandon-
ing rate θixi and the rate group i peers become seeders
min {µiηxi(t) + µρi(t)y(t), cixi(t)}. The size and composi-
tion of the seeder group evolve similarly. µ(t) changes accord-
ing to the composition of seeders. Hence we obtain a set of

differential equations:

dxi

dt
= λi − θixi(t)−min {µiηxi(t) + µρi(t)y(t), cixi(t)}

dy

dt
=

nX
i=1

min {µiηxi(t) + µρi(t)y(t), cixi(t)} − γy(t)

dµ(t)

dt
=

nX
i=1

min


µiηxi(t)

y(t)
+ µρi(t),

cixi(t)

y(t)

ff
µi − γµ(t)

(1)

The auxiliary variables in Equation (1) are defined as:
x(t) total number of leechers at time t, x(t) =

∑n
i=1 µixi(t).

ρi(t) proportion of group i in all leechers, ρi(t) = xi(t)
x(t) .

1) Steady State: A BitTorrent session usually has a lasting
steady state [4]. Steady state is solved by letting dxi(t)

dt =
dy(t)
dt = 0 in Equation (1). By applying iteration to the

equations, steady state with any number of groups can be
solved.

But here we focus a swarm of two groups, the simplest
case reflecting peer disparity and fairness problem. Another
benefit is that analytical solutions are available in this case.
The steady state value of any variable a(t) is represented as
ā, e.g., x̄i, ȳ. In one situation, all leechers are limited by
their uploading bandwidths, namely µiηx̄i + µ̄ρ̄iȳ < cix̄i for
i = 1, 2. Since lack of uploading bandwidth is common, this
case should be particularly important. The corresponding steady
state equations are:

0 = λ1 − θ1ρ̄x̄− (µ1ηρ̄1x̄ + µ̄ρ̄1ȳ)
0 = λ2 − θ2ρ̄2x̄− (µ2ηρ̄2x̄ + µ̄ρ̄2ȳ)
0 = µ1ηρ̄1x̄ + µ2ηρ̄2x̄ + µ̄ȳ − γȳ

µ̄[µ1ηρ̄1x̄ + µ2ηρ̄2x̄ + µ̄ȳ]
= µ1(µ1ηρ̄1x̄ + µ̄ρ̄1ȳ) + µ2(µ2ηρ̄2x̄ + µ̄ρ̄2ȳ)

(2)

As mentioned before, η = 1 can be treated as 1, then ρ̄1 (0 <
ρ̄1 < 1) turns out to be the root of this quadratic equation:

0 = λ1 (−µ2θ2 + γ µ2 + γ θ2)

+
[
λ1

(
2 µ2θ2 − γ µ2 − γ θ2 − µ1µ2 − µ1θ2 + µ1

2
)

+ λ2

(
µ2θ1 + µ1µ2 − γ µ1 − µ2

2 − γ θ1

)]
z

+
[
λ1

(
µ1θ2 − µ2θ2 + µ1µ2 − µ1

2
)

+ λ2

(
µ1θ1 + µ2

2 − µ2θ1 − µ1µ2

)]
z2

(3)

x̄, ȳ can then expressed as functions of ρ̄1. Of course, when
bottlenecks are located elsewhere, the model can be solved
using the same method, but easier.

B. The Influence of Optimistic Unchoking

Choking algorithm serves to encourage and maintain coop-
eration. Choking does not matter for a uni-group swarm, but it
plays an important role among multiple groups. While regular
unchoking seems straightforward, optimistic unchoking affects
the performance and fairness in contradictory ways. On the up
side, it offers the dynamic toward the Nash equilibrium state
proved in [8]. On the down side, such uploading can be taken
advantage of by malicious peers or free-riders.



In this section we calculate a leecher’s average downloading
rates at steady state and convergence times toward it. In a
two-group swarm, it is assumed new leechers only know the
existence of the two groups, G1 with a higher uploading
bandwidth and G2 with a lower one. Leechers also believe each
group has over nu (number of regular unchoking neighbors)
members so they take the Nash equilibrium strategy. In addi-
tion, a peer distributes its uploading bandwidth equally among
downloaders.

1) Converging Time: Now we answers a question: how long
does it take a peer to reach steady state? Obviously, only G1

peers need to be discussed in a two-group case. An optimistic
unchoking round is long enough for regular unchoking to take
effect between two peers, so we measure how many rounds
are needed. To facilitate a uniform discussion, the bidirectional
procedure is equated with a double-paced one from a local view.
Since the regular unchoking list of a G1 peer should stabilize
after identifying nu other G1 leechers, the probability a peer
stabilizes right after the k-th round is:

Pnu {R = k} = Pnu−1 {R < k} × P {G1 peer, round k}
= f (nu;N − 1, N1 − 1, k)

nu

k
(4)

Function f follows Hypergeometric distribution. Round ex-
pectation is:

E [R] = nu

(
N1 − 1

nu

) N−N1+nu∑

k=nu

(
N−N1
k−nu

)
(
N−1

k

) (5)
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Fig. 1. Convergence Time toward Steady State

We plot the relationship between E[R] and G1’s portion
among leechers in Figure 1, and have several discoveries. First,
swarm population has almost no influence on expectation, but
large swarms help G1 peers to avoid being trapped by G2 for
long. Second, both expectation and variance of R drop quickly
as G1’s portion increases. If G1 leechers are not rare (say, below
10% in the swarm), they can reach steady state reasonably fast.
Third, the convergence time increases no more slowly than nu.
Figure 2 says the difference in expectation between nu = 3
and nu = 4 is roughly 30%, and the difference in standard
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deviation is below than 20%. These equations and figures also
explain the warming up period often reported by BitTorrent
users.

2) Average Downloading Rates: Now we discuss a peer’s
expected downloading rate from other leechers in steady state.
Let ‖G1‖ = N1, ‖G2‖ = N2, N1 + N2 = N . The average
individual downloading rates of G1 and G2, υ1 and υ2 are:

υ1 = µ1 − µ1 − µ2

nu + 1
N2

N − nu − 1

υ2 = µ2 +
µ1 − µ2

nu + 1
N1

N − nu − 1

(6)

Equation (6) tells us the downloading rate of G1 peer is lower
than its uploading bandwidth. On the contrary, a G2 leecher
will get some extra gain. The absolute difference between the
downloading and uploading rate changes linearly according to
G1’s relative population.

G1 peers undergo at most a 1
nu+1 discount (compared

to its uploading bandwidth) in downloading rate. However,
the relative gain of a G2 peer may vary greatly. When the
bandwidth gap is large, G2 peers’ downloading bandwidth can
be saturated merely by being optimistic-unchoked.

C. A General Fluid Model

To count in optimistic unchoking, we revise the steady state
solution of the fluid model in Section III-A. Previously, Section
III-B.1 demonstrates that data exchange through the connection
lasts much longer compared with the time spent on finding
a peer. Therefore, we believe solving steady state equations,
which disregards the impact of swarm dynamics, still offers a
decent estimation of the overall situation.

First, the steady state solution of Equation (2 is revisited.
Each group’s downloading rate from other leechers, i.e. µi, is
now replaced by νi(x̄i) from Equation (6). The rate that group i
leechers become seeders now becomes νiηρ̄ix̄+µ̄ρ̄1ȳ, i = 1, 2.
And the constraints on system performance bottleneck should
be νiηx̄i + µ̄ρ̄iȳ < cix̄i, i = 1, 2. The equations when one or
two of G1’s and G2’s downloading bandwidths are saturated
are straightforward. We will resort to numerical methods to
visualize statistics in the next section.
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Fig. 3. Change of Download Speed and Group Size against Different Parameters

IV. NUMERICAL RESULTS AND ANALYSIS

The rich numerical data illustrate how a BitTorrent session
is influenced by system parameters, and when occasions occur
that free-riding becomes appealing. We validate our calcula-
tions with a handful of available real life measurements and
simulations.

When applying numerical analysis on Equation (1), we
center around two baseline settings in Table I. The trend of
average downloading time and group sizes are visualized in
Figure 3. The baselines are picked referring to the real-life
statistics in [4] as: λ1 = 0.002, λ2 = 0.012, θ1 = θ2 = 0.0001,
γ = 0.00025 and η = 1. Two different settings of bandwidths
in Table I reflect different file sizes. The relation between
uploading and downloading bandwidth agrees with realistic
scenarios, where higher-end users usually have more symmetric
bandwidths. In Figure 3, subfigures on the first line adopt
setting 1, while the rest adopt setting 2.

TABLE I
DEFAULT VALUES OF BANDWIDTH PARAMETERS

parameter µ1 c1 µ2 c2
setting 1 0.000025 0.00005 0.000005 0.000025

setting 2 0.00025 0.0005 0.00005 0.00025

A. Performance Analysis

Swarm population is the key for a session to survive,
especially seeder population. Calculation other than in Figure
3 proves both leecher and seeder populations grow almost
proportional to the arriving rate. On the other side, group sizes
are negatively correlated to the abandoning rate and G2 grows
much faster than G1 as this rate drops. Figure 3(a) and Figure
3(e) show that the average seeder number quickly approaches 0
when seeders’ staying time decreases. But a higher µ2 or higher
percentage of G1 peers makes the session more survivable.
In addition, file size plays an important role. Very large files
such as in Figure 3(a) to 3(d) tend to keep more leechers
but less seeders than smaller files. Statistics of 12 sessions in
[5] demonstrates smaller files typically correspond to higher
seeder/leecher ratio.

Some interesting features have been discovered about the
efficiency. G1 users are insensitive to the abandoning rate.
However, it is not the case with G2 peers. In setting 2, a
near 40% delay is observed when most G2 users stick around
longer. That means the many unfinished downloads (as reported
by [4]) actually promote the performance of remaining peers.
The reason is that a higher abandoning rate leads to more
G1 peers within the swarm. On the other hand, the number



of seeders is significant to the efficiency of all. In setting 2,
when the seeders’ average staying time increases from 1,000
seconds to 10,000 seconds, downloading time of a G1 and G2

leecher shortens by 50% and 76% respectively. The evolution
concerning µ2 is worth some special attention here, because
Figure 3(c) and Figure 3(g) show that allowing a slightly
more than zero uploading greatly reduce the downloading time
for G2 peers. This means holding back moderate bandwidths
leads to acceptable downloading rates. We will return to this
phenomenon in Section IV-B.

To find out the scalability of BitTorrent, several other set-
tings have been computed by multiplying all λi by a factor.
BitTorrent scales well except under some extreme conditions.
For large swarms, bandwidth mismatch in regular unchoking
rarely occurs. However, the choking algorithm says if the G1

population is less than nu, a G1 peer has to regular-unchoke one
or more G2 peers. In this sense, big swarms, or swarms with
high arriving rates and low leaving rates, have more predictable
performance.

B. Analysis of the Fairness Problem

First let us take a close look at µ2, and we find in Figure
3(c), a G2 leecher’ providing 60% the uploading bandwidth of
G1 actually downloads at 62% the rate of G1. Under setting 2,
a G2 peer only needs 40% G1’s uploading bandwidth to receive
a 59% relative downloading rate. Table II lists the thresholds
at which peers’ downloading bandwidths become saturated. In
both settings, G2 peers reach saturation before G1. Besides,
it is more likely to achieve full-speed download with smaller
files, mainly because of the abundant seeders.

TABLE II
THRESHOLDS OF FULL-CAPACITY DOWNLOADING

parameters
setting 1 setting 2

G1 G2 G1 G2

γ - < 1.22e− 5 < 7.49e− 5 < 1.11e− 4

µ2 - > 2.26e− 5 > 2.31e− 4 > 1.08e− 4

G1 (%) - - > 65.5 > 45.2

”-” means such threshold does not exist.

The combination of optimistic unchoking and seeders’ un-
selfish uploading makes free-riding more attractive. Under
default setting 1 (setting 2), G1 leechers take 21.7% (10.9%)
more time in the general fluid model compared with in a
model without inter-group data exchange. From G2 peers’ view
point, with optimistic unchoking they save 10.3% (4.4%) down-
loading time. Meanwhile, without optimistic unchoking the
bandwidth saturation becomes less likely for G2 but easier for
G1. Based on a similar observation in simulation, a bandwidth
estimation method is suggested in [6] to replace optimistic
unchoking.

C. Discussion

i) Security: After demonstrating BitTorrent is quite scalable
facing flash arrivals of normal peer composition, it remains
doubtful if it can resists abundant malicious free-riders. Our
convergence time of choking algorithm in Section III-B.1

shows with very low percentage of high-bandwidth peers, they
may be easily trapped by low-bandwidth users and find it hard
to achieve ideal downloading rates.

ii) Seeder: Long-staying peers can upload much more data as
seeders than leechers, and are crucial to maintain a session.
What’s more, with plenty of seeders, a session with a low
utilization rate of uploading bandwidths can still be very
efficient. Unfortunately, the current BitTorrent protocol lacks
incentives to keep seeders around. Consequently, performance
of BitTorrent sessions can be quite unstable even for the
same peer composition. We notice that there is a distinct
relationship between file size and seeder population, making
sharing smaller files more efficient than larger ones. However,
sessions of smaller files tend to cease more easily than larger
ones.

iii) Free-riding: BitTorrent is vulnerable to free-riding un-
der certain circumstances. Figure 3 and Table II provide
sufficiency conditions of free-riding in a theoretical model.
Nevertheless, system performance in BitTorrent is always
positively related to free-riding incentives. Therefore, the
fairness problem of a normal BitTorrent session, i.e., without
a flash-crowd of malicious free-riders, is not critical.

V. CONCLUSION

In this paper, we have studied BitTorrent-like networks using
a general fluid model. The emphasis is laid on the steady state
performance and fairness of stable sessions. With numerical
methods, influences of major system parameters as well as
optimistic unchoking are discussed. We find seeders play a
key roll in achieving good overall performance, yet there
lacks encouraging mechanisms. We also find BitTorrent is not
strictly scalable or safe against abundant maliciously selfish
leechers. The free-riding incentives in BitTorrent are stronger
than previously believed in theoretical study.
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