
Exploiting Precision vs. Efficiency Tradeoffs in Symmetric Replication Environments
(Brief Announcement)

Uğur Çetintemel
Department of Computer Science

Brown University
ugur@cs.brown.edu

Peter J. Keleher
Department of Computer Science

University of Maryland
keleher@cs.umd.edu

Yanif Ahmad
Department of Computer Science

Brown University
yna@cs.brown.edu

1. Introduction
In this paper, we address (1) numerical data that are replicated and
updated at multiple network locations (which we refer to as
symmetric replication); (2) environments where maintaining strict
data consistency is prohibitive due to large system scale, high
volume of updates, or communication restrictions; and (3)
applications that can tolerate bounded imprecision in the data they
observe. Wide-area network management, on-line commodity
distribution, load balancing, and resource monitoring, etc.,
demonstrate these characteristics.
This paper describes the key features of ReBound, a system that
uses efficient distributed precision control to support and exploit
data precision vs. efficiency tradeoffs in symmetric replication
environments. ReBound enables clients to specify read requests
tagged with custom precision bounds, which are satisfied
cooperatively by the servers. ReBound supports two types of reads.
Continuous reads require that the data cached by the clients always
meet the specified precision constraints. This is accomplished by a
push-based approach where the servers refresh client caches with
new updates as necessary. Ad-hoc reads, on the other hand, have
one-time semantics and are realized using a pull-based approach
where the clients pull the new updates from the servers.
Most previous work studied precision bounding in asymmetric
replication (e.g., master-copy) environments. Early work that
addressed symmetric replication environments commonly addressed
general distributed constraint maintenance and employed expensive
mechanisms that are impractical for the types of applications and
environments we target. Recently Yu and Vahdat [2] described a
practical precision control algorithm for replicated network
services. Yu’s algorithm basically works by partitioning the client-
specified precision bounds across the servers in the system. Each
server then efficiently bounds imprecision by limiting the updates
that it commits and that are yet unknown (i.e., not yet propagated)
to clients. Upon receiving an update, the server checks local criteria
to decide whether the commitment of the update violates its
partition of the precision bound (i.e., local bound). If the criteria are
met, the server commits the update locally. Otherwise, the server
performs synchronization and pushes the unknown updates to the
proper clients.
ReBound generalizes and extends previous work with a new
algorithm for continuous reads, support for ad-hoc reads, and light-
weight adaptation mechanisms for coping with dynamically
changing update load. In the next section, we discuss these features
in more detail.

2. ReBound System Model
We now briefly outline ReBound’s key features:
Support for continuous reads. We propose two algorithms that
maintain continuous precision bounds by properly controlling
update commitment at servers. The first algorithm partitions the
precision bounds across servers (based on per-server weights). Each
server then maintains a local precision bound and ensures that the
updates it commits do not invalidate its own local bound. This
algorithm is a simple generalization of that presented in [2], which
partitions bounds uniformly across servers. The second algorithm
replicates the precision bounds across servers, establishing a global
precision bound that is shared and maintained by all servers. The
advantage of a shared global bound is the flexibility of using any
“unused imprecision space” available in the system. On the other
hand, this requires more server-server synchronization than the
partitioning approach does, thereby reducing server autonomy.
Support for ad-hoc reads. ReBound also addresses and supports
ad-hoc reads with precision bounds. Our algorithms exploit the
already registered continuous precision bounds, if available, to
efficiently select a proper subset of servers whose unknown updates
need to be pulled by the client to satisfy the specified bound.
Lightweight adaptation mechanisms. ReBound employs a simple
but effective adaptation mechanism. We use of per-replica weights,
which define the autonomy of the servers in terms of the volume of
updates they can commit locally. We then enable dynamic, pair-
wise redistribution of these weights to cope with changing update
patterns across servers. This mechanism is similar to the sum-
preserving weight distribution proposed in the context of Deno [1].

3. Status and future work
Our preliminary experimental results, based on a prototype
implementation, verify the performance advantages of exploiting
precision vs. efficiency tradeoffs. We are currently investigating
proxy-based hierarchical organizations to effectively scale up to a
large number of clients and data items. In this model, proxies are
responsible for executing the requests of their client set by
interacting with the servers (or higher-level proxies). We are
developing adaptive policies for setting appropriate aggregate
proxy precision bounds that balance server-proxy push and proxy-
server pull, thereby optimizing overall communication
requirements.

References
[1] U. Cetintemel, P. J. Keleher, and M. J. Franklin. Support for

Speculative Update Propagation and Mobility in Deno. In IEEE
Intl. Conf. on Distributed Computing Systems (ICDCS),
Phoenix, 2001.

[2] H. Yu and A. Vahdat. Efficient Numerical Error Bounding for
Replicated Network Services. In Proc. of the 26th VLDB Conf.,
Cairo, Egypt, 2000.

	References

