
Simultaneous Equation Systems for Query
Processing on Continuous-Time Data Streams

Yanif Ahmad, Olga Papaemmanouil, Uğur Çetintemel, Jennie Rogers
Brown University

{yna, olga, ugur, jennie}@cs.brown.edu

Abstract— We introduce Pulse, a framework for processing
continuous queries over models of continuous-time data, which
can compactly and accurately represent many real-world activ-
ities and processes. Pulse implements several query operators,
including filters, aggregates and joins, that work by solving si-
multaneous equation systems, which in many cases is significantly
cheaper than processing a stream of tuples. As such, Pulse
translates regular queries to work on continuous-time inputs,
to reduce computational overhead and latency while meeting
user-specified error bounds on query results. For error bound
checking, Pulse uses an approximate query inversion technique
that ensures the solver executes infrequently and only in the
presence of errors, or no previously known results.

We first discuss the high-level design of Pulse, which we
fully implemented in a stream processing system. We then
characterise Pulse’s behavior through experiments with real data,
including financial data from the New York Stock Exchange,
and spatial data from the Automatic Identification System for
tracking naval vessels. Our results verify that Pulse is practical
and demonstrates significant performance gains for a variety of
workload and query types.

I. INTRODUCTION

Many physical processes and activities exhibit limited and
predictable state changes over time. The temperature of a
specific region, wind gust values as observed by a weather
station, and the trajectory of cars on a highway segment can all
be modeled using algebraic, continuous models of time. While
the underlying processes being monitored are fundamentally
continuous, they are sampled to produce a stream of discrete
values, which are then fed to stream processing engines as
input. Our work is motivated by the key observation that
practical, continuous models are not only capable of accurately
and compactly representing many such discrete data streams,
but, in many cases, can also be processed (using relational
operators) much more efficiently than the discrete input values
they represent.

In this paper, we present Pulse, a framework to study the
viability of continuous-time models as inputs to continuous
query processing. Pulse transforms a continuous query op-
erating on discrete input data streams during planning, to
instead operate on continuous-time models. Our work focuses
on designing a query processing plan to operate on these
models — Pulse uses continuous-time models as a compact
representation of the input data stream and processes this
compact representation to reduce computation overhead and
consequently end-to-end latency. We consider polynomials as
models whose structure, when combined with a query’s struc-

ture, allows us to represent discrete queries as simultaneous
equation systems. Continually solving this system allows us to
determine when the discrete-time query produces results and
consequently the values of output tuples. For example consider
a query detecting collisions of moving objects, expressed as a
join comparing the objects’ proximity:
select from objects R
join objects S on (R.id <> S.id)
where abs(distance(R.x, R.y, S.x, S.y)) < c

While standard stream processors compare many position
samples, Pulse is able to analytically solve models of ob-
ject trajectories to determine query results. Pulse includes
continuous-time implementations of a variety of relational-
style stream operators, including filters, aggregates, and joins.

Pulse further facilitates a tradeoff between the result error
tolerance and query efficiency. For each query, users supply an
error bound for the results. Pulse inverts these error bounds
specified at query outputs to bounds at query inputs. Error
bound inversion poses several interesting challenges including
how to handle non-invertible multi-input operators such as
joins and aggregates. Pulse addresses these challenges by
maintaining the lineage of query execution, and by using
heuristics to apportion bounds across inputs to optimize vali-
dation efficiency.

Pulse provides two operating modes from an application’s
viewpoint. The first is an online predictive processing scenario,
where Pulse uses predictive models of unseen data and pre-
computes query results off into the future. The second is offline
historical processing for scenarios such as a large number
of “what-if” queries over historical data streams. Here, Pulse
computes a model of the historical stream once, and feeds it as
input to the transformed queries, significantly reducing their
execution times. These operating modes begin to highlight
the joint space of application-level functionality and system
optimizations that we envision exploring with Pulse.

In summary, our contributions are:

1) We present a holistic design for a stream processor
capable of operating on continuous-time models of input
data and handling any errors in these models.

2) We describe a novel implementation of a query plan as
a simultaneous equation system per operator.

3) Our queries are capable of guaranteeing error bounds on
query results efficiently by inverting results and bounds
to be validated at query inputs.

4) We have fully prototyped our design in an actual stream
processing engine, and evaluated its performance against
realistic workloads from two canonical continuous-time
stream applications.

This paper is laid out as follows. Section II presents an
overview of Pulse, including its operating two modes, predic-
tive and historical processing, and its data streams and query
models. In Section III we present the predictive transformation
and its application to filters, joins and aggregates. Section
IV presents our strategy for performing validation to ensure
desired accuracy bounds are met. Section V presents an
experimental evaluation using an implementation of Pulse in
the Borealis [1] stream processing engine prototype. Finally
we conclude in Sections VI and VII with discussion of relevant
work and future directions on this topic.

II. PULSE FRAMEWORK OVERVIEW

Continuous-time models provide two distinctive properties
for use in query processing: they facilitate random access
to data at arbitrary points in time, and enable a compact
representation of the data as model parameters. In this section
we present an overview of the nature of the application types,
data streams and queries we support.

A. System Model

In this section, we discuss two novel uses of models in the
query execution model of a stream processing engine in terms
of both functionality and performance.

Predictive Processing. In the predictive processing scenario,
Pulse uses its modeling component to generate the continuous-
time models for unseen data values off into the future, pro-
cesses these predicted inputs, and generates predicted query
results, all before the real input data becomes available from
external sources. This style of predictive processing has im-
portant uses both from the end-application perspective (e.g.,
a traffic monitoring application can predict congestions at
on road segments and send alerts to drivers) and system
optimization perspective (e.g., predictive results can mask I/O
latencies, or network latencies in wide-area network games by
pre-fetching).

Historical Processing. The second scenario is off-line his-
torical data analysis that involves running a large number of
“parameter sweeping” or “what-if” queries (common in the
financial services domain). Applications replay a historical
stream as input to a large number of queries with different
user-supplied analytical functions or a range of parameter
values. The results are then typically compared against each
other and what was obtained in the past, to identify the
“best” strategy or parameters to use in the future. In historical
processing, Pulse’s modeling component is used to generate
a continuous-time model of the historical stream that can be
stored and used as an input to all historical queries. Thus, the
cost of modeling can be amortized across many queries.

Query: SELECT * from A MODEL A.x = A.x + A.vt
JOIN B MODEL B.y = B.vt + B.at2

ON(A.x < B.y)
Transformation Description
A.x < B.y
A.x−B.y < 0 difference equation
A.x + A.vt− (B.vt + B.at2) < 0 substitute models
A.x + (A.v −B.v)t−B.at2 < 0 factor time variable t

Fig. 1. Pulse transforms predicates in selective operators to determine
a system of equations whose solution yields the time range containing
the query result.

B. Data Stream Model

Pulse adopts the following assumptions on the uniqueness
and temporal properties of data stream attributes.

Modeled Attributes. For predictive processing, Pulse supports
declarative model specification as part of its queries via
a MODEL-clause, as shown in Figure 1. Query developers
provide symbolic models defining a modeled stream attribute
in terms of other attributes on the same stream and a variable
t. For example in Figure 1, stream A has a modeled attribute
A.x defined in terms of coefficient attributes A.x and A.v.
We allow the self-reference to attribute A.x since we build
numerical models from actual input tuples where the values of
all coefficient attributes are known. In this example, the model
A.x = A.x+A.vt represents the x-coordinate a moving object
as its position varies over time from some initial position.
We consider time-invariant piecewise polynomial models since
they are often used for simple and efficient approximation.
The symbolic form of a general nth degree polynomial for
a modeled attribute a is: a(t) =

∑n
i=0 ca,it

i. To ensure
a closed operator set, we restrict the class of polynomials
supported to those with non-negative exponents, since it has
been shown that semi-algebraic sets are not closed in the
constraint database literature [14]. In historical processing
our modeling component computes coefficient attribute values
internally.

Temporal attributes. We assume each input stream S in-
cludes two temporal attributes, a reference attribute denoting
a monotonically increasing timestamp globally synchronized
across all data sources, and a delta attribute T . Pulse uses
the reference timestamp’s monotonicity to bound query state
and delta timestamps for simplified query processing. Our
models are piecewise functions, that is they are made up of
segments. Denoting r as a reference timestamp and tl, tu as
offsets, a segment, s ∈ S, is a time range [r + tl, r + tu),
for which a particular set of coefficients for a modeled
attribute, {ci}, are valid (written as s = ([tli, t

u
i), ci) =

([tl, tu), c)i). In the remainder of this work, we drop the
reference timestamp r from our time ranges for readability.
We adopt the following update semantics. For two adjacent
input segments overlapping temporally, the successor segment
acts as an update to the preceding segment for the overlap,
that is ∀i, j : [tl, tu)i ∩ [tl, tu)j 6= ∅ ∧ [tl, tu)i < [tl, tu)j ⇒
(([tli, t

l
j), ci), . . . , ([tl, tu), c)j). This captures the uniqueness

properties of an online piecewise function, where pieces
appear sequentially.
Key attributes. Pulse’s data streams contain exactly two
other types of attributes, keys and unmodeled attributes. Keys
are discrete, unique attributes and may be used to represent
discrete entities, for example different entities in a data stream
of moving object locations. Unmodeled attributes are constant
for the duration of a segment, as required by our time-invariant
models. We omit details on the operational semantics of the
core processing operators with respect to key and unmodeled
processing due to space constraints. Our general strategy is to
process these using standard techniques alongside the modeled
attributes.

III. CONTINUOUS-TIME PROCESSING

The underlying principle of our continuous-time processing
mechanism is to take advantage of the temporal continuity
provided by the input streams’ data models in determining the
result of a query. The basic computation element in Pulse is
a simultaneous equation system that is capable of performing
computation on continuous functions corresponding to opera-
tions performed by the relational algebra. In this section we
describe how we construct these equation systems from our
data models for core operators such as filters, aggregates and
joins, and how we are able to compose these equation systems
to perform query processing.

A. Selective Operator Transform

Selective operators, such as stream filters and joins, pro-
duce outputs upon the satisfaction of a predicate comparing
input attributes using one of the standard relational operators
(i.e., <,≤,=, ! =,≥, >). We derive our equation system by
transforming predicates in a three step process. Consider the a
predicate with a comparison operator R, relating two attribute
x, y as xRy. Our transformation is:

General form
1. Rewrite in difference form x - y R 0
2. Substitute continuous model x(t) - y(t) R 0
3. Factorize model coefficients (x-y)(t) R 0

We provide an example of these steps as applied to a
join operator in Figure 1. The above equation defines a new
function, (x−y)(t), from the difference of polynomial coeffi-
cients that may be used to determine predicate satisfaction and
consequently the production of results. Note that we are able to
simplify the difference form into a single function by treating
the terms of our polynomials independently. Depending on the
operator R and the degree of the polynomial, there are various
efficient methods to approach the above equation. In the case
of the equality operator, standard root finding techniques, such
as Newton’s method or Brent’s method [3], solve for points at
which (x−y)(t) = 0. We may combine root finding with sign
tests to yield a set of time ranges during which the predicate
holds. We illustrate this geometrically in Figure 2.

The above difference equation forms one row of our
equation system. By considering more complex conjunctive
predicates, we arrive at a set of difference equations of the

Fig. 2. A geometric interpretation of the continuous transform, illus-
trating predicate relationships between models for selective operators,
and piecewise composition of individual models representing the
continuous internal state of a max aggregate.

above form that must all hold simultaneously for our selective
operator to produce a result. That is, given the following
predicate and models: x1R1y1∧x2R2y2∧. . .∧xpRpyp, where
∀i.xi =

∑d
j=0 cj

x,it
i, and ∀i.yi =

∑d
j=0 cj

y,it
i, and cj

x,i is the
jth coefficient in a segment, we derive the following equation
system:

c0
x,1 − c0

y,1 . . . cd
x,1 − cd

y,1

c0
x,2 − c0

y,2

. . .
...

...
c0
x,p − c0

y,p . . . cd
x,p − cd

y,p

 t

R1

R2

...
Rp

0

= Dt R 0 (1)

In the above equation, t represents a vector comprised of
powers of our time variable (i.e., [t, t2, t3, . . .]′). Thus the
above equation system has a single unknown variable, namely
a point in time t. We denote the matrix D our difference
equation coefficient matrix. Under certain simplified cases,
for example when R consists solely of equality predicates
(as would be the case in a natural or equi-join), we may
apply efficient numerical algorithms to solve the above system
(such as Gaussian elimination or a singular value decompo-
sition). A general algorithm involves solving each equation
independently and determining a common solution based on
intersection of time ranges. In the case of general predicates,
for example including disjunctions, we apply the structure of
the boolean operators to the solution time ranges to determine
if the predicate holds. Clearly, Equation 1 may not have any
solutions indicating that the predicate never holds within the
segments’ time ranges for the given models. Consequently the
operator does not produce any outputs.

Pulse uses update segments to drive the execution of our
equation systems. Consider the arrival of a segment, with time
range [t0, t1). For a filter operator, we instantiate and solve
the equation system from the contents of the segment alone,
ensuring that the solution for the variable t is contained within
[t0, t1) (for both point and range solutions). For a join, we use
equi-join semantics along the time dimension, specifically we
execute the linear system for each segment [t2, t3) held in
state that overlaps with [t0, t1) (for each attribute used in the

Operator Inputs State Implementation Outputs
Filter xi – D = [xi − ci]; {(t, xi)|DtR0}

solve DtR0
Join xi on left input order-based segment buffers, align xi, yi w.r.t t; {(t, xi, yi)|DtR0}

yi on right input Sx = {([tl, tu), sx)|tl > ty} D = [xi − yi];
Sy = {([tl, tu), sy)|tl > tx} solve DtR0

Aggregate xi state model, align xi, si w.r.t t {(t, si)|DtR0}
min, max S = {([tl, tu), s)|tl > tx − w} D = [xi − si];

solve DtR0
Aggregate xi segment final C =

∫ tu

tl

∑d
i=0 xit

i, wfsum = ([tl, tu], wfsum)
sum, avg wftail =

∫ t

t−w

∑d
i=0 xit

idt wftail + C + wfhead

Aggregate xi per group state for f per group hash-based group-by, outputs for f per group
group-by, function f impl for f per group

Fig. 3. Operator transformation summary. Symbol definitions: xi, yi are polynomial coefficients for attributes x, y; t = [tl, tu) is the valid time range
for a segment; tx, ty denote the reference timestamps for the latest valid times for attributes x, y; (t, x) is the segment itself as a pair of valid times and
coefficients; (t, sx)i is a segment of attribute x that is kept in an operator’s state; si are the coefficients of these state segments.

predicate). In our solver, we only consider solutions contained
in [t0, t1) ∩ [t2, t3).

B. Aggregate Operator Transform
Aggregation operators have a widely varying set of prop-

erties in terms of their effects on continuous functions. In
this section we present a continuous-time processing strategy
for commonly found aggregates, namely min, max, sum, and
average. At a high-level, we handle min and max aggregates
by constructing an equation system to solve when to update
our aggregate’s internal state, while for sum and average, we
define continuous functions for computing the aggregate over
windows with arbitrary endpoints (i.e., continuous windows).
Min, max aggregates. The case of a single model per stream
is trivial for min and max aggregates as it requires computing
derivatives on polynomial segments to determine state updates.
We focus on the scenario where a data stream consists of
multiple models due to the presence of key attributes. The
critical modification for these aggregates lies in the right-
hand side of the difference equation, where we now compare
an input segment to the partial state maintained within the
operator from aggregating over previous input segments. We
denote this state as s(t), and define it as a sequence of
segments: s(t) = (([tl, tu), c)1, ([tl, tu), c)2..., ([tl, tu), c)n),
where each ([tl, tu), c)i is a model segment defined over a time
range with coefficients ci. For example with a min (or max)
function, the partially aggregated model s(t) forms a lower
(or upper) envelope of the model functions as illustrated in
Figure 2. Thus we may write our substituted difference form
as x(t)− s(t) R 0. This difference equation captures whether
the input segment updates the aggregated model within the
segment’s lifespan. We use this difference equation to build an
equation system in the same manner as for selective operators.
Sum, average aggregates. The sum aggregate has a well-
defined continuous form, namely the integration operator.
However, we must explicitly handle the aggregate’s windowing
behavior especially since sum and average aggregate along the
temporal dimension. To this end, we define window functions,
which are functions parameterized over a window’s closing

timestamp to return the value produced by that window. At
a high level, window functions help to preserve continuity
downstream from the aggregate. We now describe how we
compute a window function for sums.

We assume a window of size w and endpoint t, and consider
two possible relationships between this window and the input
segments. The lifespan of a segment [tl, tu) may either match
(or be larger than) the window size w, or be smaller than w.
In the first case, we may compute our window results from a
single segment. Specifically, we claim that a segment covering
[tl, tu) may produce results for a segment spanning [tl+w, tu),
since windows closed in this range are entirely covered by the
segment. We define the window function for this scenario as:

wfsum(t) =
∫ t

t−w

d∑
i=0

cit
idt =

d+1∑
i=i

ci−1

i
ti (2)

which is parameterized by the closing timestamp t of the
window. In the scenario where a window spans multiple
segments, we divide the window computation into three sub-
cases: i) segments [tl1, t

u
1) entirely covered by the window, ii)

segments [tl2, t
u
2) overlapping with head of the window t, and

iii) segments [tl3, t
u
3) overlapping with the tail of the window

t − w. In the first sub-case, we compute the integral value
for the segment’s lifespan and denote this the constant C. In
the second sub-case, we use the window function defined in
Equation 2, and refer to this as the head integral. For the
third sub-case, we apply an integral spanning the common time
range of the segment [tl3, t

u
3), and window:

∫ tl
3

t−w

∑d
i=0 cit

idt.
We refer to this integral as the tail integral. Note that for a
given segment tl3 is known and fixed. However we are still left
with the term t−w in our formula, but can leverage the window
specification which provides a fixed value of w to express the
result of the integral, by expanding terms of the form (t−w)i

for i > 0 by the binomial theorem. This yields the following
window function for windows spanning multiple segments:
wfsum(t) =

∫ tl
3

t−w

∑d
i=0 cit

idt + C +
∫ t

tl
2

∑d
i=0 cit

idt

For every input segment [tli, t
u
i) at the aggregate, we com-

pute and cache the segment integral C, in addition to a

function for the tail integral. This metadata is to be used by
windows functions produced by future updates arriving at the
aggregate. Finally we produce a window function for the input
segment itself that spans all windows contained in its time
range by fetching segment integrals and tail integrals for the
set of windows [tl − w, tu − w). While the above discussion
concerned a sum function, these results may easily be applied
to compute window functions for averages as wfavg = wfsum

w .
Transformation Limitations. Frequency-based aggregates are
those that fundamentally depend on the number of tuples in
the input stream. Examples include count, frequency moments,
histograms etc. Certain aggregation functions can be viewed
as mixed aggregates if they depend on both the content and
the frequency, for example a sum aggregate may have larger
values for high rate data streams (assuming positive numbers).
Presently, our framework does not handle frequency oriented
aggregates, and can only handle mixed aggregates when their
computation involves all tuples in the relation (and thus all
points on the continuous function) like sum and average.
Figure 3 summarizes Pulse’s selective and aggregate operator
transforms.

C. Query Transform

Pulse performs operator-by-operator transformation of regu-
lar stream query instantiating an internal query plan comprised
of simultaneous equation systems. Each equation system is
closed, that is it consumes segments and produces segments,
enabling Pulse’s query processing to use segments as a first-
class datatype. However, depending on the operator’s charac-
teristics, an equation system may produce an output segment
whose temporal validity is a single point. This occurs primarily
with selective operators involving at least one equality com-
parison. The reduction of a model to a single point limits the
flow of models through our representation, since the remaining
downstream operators can only perform discrete processing on
this intermediate result.

Once the processed segment reaches an output stream, we
produce output tuples via a sampling process. For selective
operators, this requires a user-defined sampling rate. We note
that for an aggregate operator producing query results, there
is no explicit need for a application-specified output rate. This
may be inferred from the aggregate’s window specification,
and in particular the slide parameter which indicates the peri-
odicity with which a window closes, and thus the aggregate’s
output rate.

IV. VALIDATING QUERY PROCESSING

To handle differences between our continuous-time models
and the input tuples, Pulse supports the specification of ac-
curacy bounds to provide users with a quantitative notion of
the error present in any query result. We consider an absolute
error metric and validate that continuous-time query results
lie within a given range of results produced by a standard
stream query. One validation mechanism could process input
tuples with both continuous-time and regular stream queries
and check the results. However, this naive approach performs

duplicate computation, offsetting any benefits from processing
inputs in a continuous form.

Our validation mechanism checks accuracy at the query’s
inputs and completely eliminates the need for executing the
discrete-time query. We name this technique query inversion
since it involves translating a range of output values into a
range of input values by approximately inverting the compu-
tation performed by each query operator. Some operators that
are many-to-one mappings, such as joins and aggregates have
no unique inverse when applied to outputs alone. However
we may invert these operators given both the outputs and
the inputs that caused them, and rely on continuity properties
of these inputs to invert the output range. Query inversion
maintains these inputs as query lineage, compactly as model
segments.

Fig. 4. High level overview of Pulse’s internal dataflow. Segments
are either given as inputs to the system or determined internally, and
processed as first-class elements.

We use accuracy validation to drive Pulse’s online predictive
processing. In this scenario, Pulse only processes queries
following the detection of an error. We note that accuracies
may only be attributed to query results if the query actually
produces a result. Given the existence of selective operators,
an input tuple may yield a null result, leaving our accuracy
validation in an undefined state. To account for this case,
we introduce slack as a continuous measure of the query’s
proximity to producing a result. We define slack as:

slack = mint ‖Dt‖∞
s.t t ∈

⋂
[tl, tu)i ∀i.[tl, tu)update ∩ [tl, tu)i 6= ∅

Above, we state that we only compute slack within valid time
ranges common with the update segment causing the null
(for stateful operators). Using the maximum norm ensures
that we do not miss any mispredicted tuples that could
actually produce results. Following a null any intermediate
operator, Pulse performs slack validation, ignoring inputs until
they exceed the slack range. Thus Pulse alternates between
performing accuracy and slack validation based on whether
previous inputs caused query results. Figure 4 provides a high-
level illustration of Pulse’s internal dataflow, including the
inverter component that maintains lineage from each operation
and participates in both accuracy and slack bound inversion.

A. Query Output Semantics
We briefly discuss the semantics of the outputs produced

by continuous-time data processing. While a complete dis-
cussion of the topic lies outside the scope of this paper, we

make several observations in the context of comparing and
understanding the operational semantics of a continuous-time
processor in comparison to a discrete-time processor. Clearly,
the two modes of processing are not necessarily operationally
equivalent on a given set of inputs. They may differ in the
following ways.
Observation 1: Pulse may produce false positives with respect
to tuple-based processing. If Pulse’s query results are not
discretized in the same manner as the input streams, Pulse may
produce results that are not present under regular processing
of the input tuples. For example, consider an equi-join that
is processed in continuous form by finding the intersection
point of two models. Unless we witness an input tuple at
the point of the intersection, Pulse will yield an output while
the standard stream processor may not, resulting in a superset
output semantics.
Observation 2: Pulse may produce false negatives with respect
to tuple-based processing. False negatives occur when the
discrete-time query produces results but Pulsedoes not, yield-
ing a subset output semantics. This may occur as a result of
precision bounds which allow any tuple lying near its modelled
value to be dropped. Any outputs that may otherwise have
been caused by the valid tuple are not necessary, and therefore
omitted. Again the difference in result sets arises from a lack
of characterizing discretization properties.

B. Query Inversion

We describe query inversion as a two-stage problem, first as
a local problem for a single operator, and then for the whole
query, leveraging the solution to the first problem operator to
produce an inversion data flow.
Bound inversion problem: given an output value and a range
at an operator, what range of input values produces these
output values? This problem may have many satisfying input
ranges when aggregates and joins are present in the query.
For example, consider a sum aggregate, and the range [5, 10]
as the output values. There are infinitely many multisets of
values that sum to 5, (e.g. the sets {4, 1} and {−1,−2, 8}).
The fundamental problem here is that we need to identify a
unique inverse corresponding to the actual computation that
occurs (motivated by continuity for future bound validation).
We use the following two properties to perform this restriction:
Property 1: continuous-time operators produce temporal sub-
ranges as results. This ensures that every output segment is
caused by a unique set of input segments.
Property 2: modelled attributes are functional dependents of
keys throughout the dataflow. Each operator in our trans-
formation preserves a functional dependency between keys
and segments by passing along the key values that uniquely
identify a segment.

These properties ensure we are able to identify the set
of input segments for operations involving multiple segments
(joins and aggregates) through segments’ time ranges and key
values. Providing we maintain the input keys and segments
used to produce an intermediate operator’s results (i.e., the
lineage of a segment), we are able to identify the cause of each

output segment, making query inversion an issue of accessing
lineage. We remark that the cost of maintaining lineage is
less prohibitive than with regular tuples due a segment’s
compactness (a full analysis of the lineage requirements lies
outside this paper’s scope).

Given both the input models and the output models, solving
the bound inversion problem then becomes an issue of how
to apportion the bound amongst the set of input models. We
describe split heuristics in the next section to tackle this
problem. Our run-time solution to the bound inversion problem
is dynamic and expressive, providing the ability to adapt to
changing data distributions. By considering both the input
and output segments during inversion, we are able to support
different types of bounds including both absolute and relative
offset bounds.
Query inversion problem: given a range of values on each
attribute at a query’s output, what ranges of query input
values produce these outputs? Query inversion determines the
appropriate context for performing bound inversion, given the
query’s structure. In particular we focus on addressing attribute
aliasing, and attribute dependencies caused by predicates, as
shown in the following example. Consider the query (omitting
windows and precision bounds for readability):

select a, b as x, d from R join S
where R.a = S.a and R.a < S.d

Here, a new attribute x is declared in the results’ schema,
and is an alias of the attribute b. We must track this data de-
pendency to support query inversion on error bounds specified
on attribute x, and refer to this metadata as bound translations.
The second type of dependency concerns query where-clauses.
In this example, the attribute S.d is not part of the query’s
results, but constrains the results via its presence in a predicate.
We track these dependencies and refer to them as inferences.
During the inversion process, we apportion bounds to attributes
such as S.d, inferring the values they may take.

C. Accuracy and Slack Bound Splitting

In this section, we present two heuristics for allocating
value ranges of an operator’s output attributes to its input
attributes for both accuracy and slack bounds. Pulse supports
the specification of user-defined split heuristics by exposing
the a function interface for the user to implement, for an
absolute error metric. We describe our heuristics in terms of
the function signature (simplified to a single modelled attribute
a for ease of understanding):

{(ikp, [ila, iua]), ..., (ikq, [ila, iua])} =
split(ok, oc, [ol, ou], {(ikp, ica) . . . , (ikq, ica)})

where (ikp, [ila, iua]) are the bounds allocated to input attribute
a for key p. Also, ok, oc denote the keys and coefficients
of the output segment, [ol, ou] the output bound, and finally
{(ikp, ica) . . . (ikq, ica)} the keys and coefficients of the input
segments producing the output. Note that the result of our split
function includes both the set of input keys that we split over,
in addition to the bounds. Thus bounds are only allocated to
the keys that actually cause the output.

Fig. 5. Microbenchmarks for i) filter ii) aggregate and iii) join operators, all with a 1% error threshold.

Equi-split: this heuristic assigns the output error bound uni-
formly across all input attributes. Specifically, it implements
the following split heuristic:

(ikp, [ila, iua]) = [ol

n , ou

n]
where a ∈ D(o), n = |{ikp . . . ikq}| ∗ |D(o)|,

D(o) = translations(o) ∪ inferences(o)

The above equation specifies the uniform allocation of a bound
to each key and attribute dependency.
Gradient split: this heuristic attempts to capture the contri-
bution of each particular input model to the output result.
Formally, the heuristic computes:

(ikp, [ila, iua]) = d(ica)
dt ∗ [olP

m∈I icm
, ouP

m∈I icm
]

where a ∈ D(o)
D(o) = translations(o) ∪ inferences(o)
I = {(ikp, ica), . . . , (ikq, ica)}

The above equation specifies that each bound allocated is the
product of the gradient of a single segment with respect to the
global segment of all input keys contributing to the result.

Both of the above schemes are conservative in the sense
that they preserve two-sided error bounds, and ensure that
the error ranges allocated on input attributes do not exceed
the error range of the output attribute. A more aggressive
allocation scheme may reduce two-sided error bounds to a one-
sided error, for example in the case of inequality predicates,
thereby improving the longevity of the bounds. In general,
the efficiency of validating query processing is fundamentally
an optimization problem and our current solution lays the
framework for further investigation.

V. EXPERIMENTAL EVALUATION

We implemented Pulse as a component of the Borealis [1]
stream processing engine. This implementation provides full
support of the basic stream processing operators including
filters, maps, joins and aggregates and extends our stream pro-
cessor’s query language with accuracy and sampling specifica-
tions. Pulse is implemented in 27,000 lines of C++ code and
adds general functionality for rule-based query transformations
to Borealis, in addition to specialized transformations to our
equation systems. We note that Pulse requires a small footprint
of 40 lines in the core stream processor code base indicating
ease of use other stream processors. In these experiments,
Pulse executes on an AMD Athlon 3000+, with 2GB RAM,

Experiment Parameter Value
All Page pool 1.5Gb

Filter stream rate 6000-20000 tuples/sec
Aggregate stream rate 20000-40000 tuples/sec

Join stream rate 1000-10000 tuples/sec
Fig. 5i,ii,iii precision bound 1%
Aggregate stream rate 3000 tuples/sec

Fig. 7i window size 10-100s, slide 2s
precision bound 1%

Join stream rate 100-900 tuples/sec
Fig. 7ii window size 0.1s

precision bound 1%
Historical stream rate 3000-30000 tuples/sec

Fig. 8 window size 60s, slide 2s
NYSE stream replay rates 3000-8500 tuples/sec
Fig. 9i precision bound 1%

AIS stream replay rates 200-6000 tuples/sec
Fig. 9ii precision bound 0.05%

Precision stream rate 3000 tuples/sec
Fig. 9iii precision bound 0.1-20%

Fig. 6. List of experimental parameters. Refer to MACD and “following”
queries in Section VB for operator window sizes.

running Linux 2.6.17. We configured our stream processor to
use 1.5GB RAM as the page pool for allocating tuples.

Our experiments use both a real-world dataset and a syn-
thetic workload generator. The synthetic workload generator
simulates a moving object, exposing controls to vary stream
rates, attribute values’ rates of change, and parameters relating
to model fitting. Our real-world datasets are traces of stock
trade prices from the New York Stock Exchange (NYSE) [6],
and the latitudes and longitudes of naval vessels captured by
the Coast Guard through the Automatic Identification System
(AIS) [7].

A. Synthetic Workload Benchmarks

Our first results are a set of microbenchmarks for individual
filters, joins and aggregates. We investigate the processing
throughput for fixed size workloads from our moving object
workload generator, under a varying model expressiveness
measured as the number of tuples that fit a single model
segment. The workload generator provides two-dimensional
position tuples with a schema: x, y, vx, vy denoting x- and y-
coordinates in addition to x- and y-velocity components.

Filter. Figure 5i demonstrates that the continuous-time

implementation of a filter requires a strong fit in terms of
the number of tuples per segment, between the model and the
input stream. The continuous-time operator becomes viable at
approximately 1050 data points per segment. This matches our
intuition that the iterations performed by the linear system dur-
ing solving dwarfs that performed per tuple by an extremely
simple filter operation.

Fig. 7. Continuous-time and discrete processing overhead comparison
for: i) aggregate operator, ii) join operator.

Aggregate. Figure 5ii compares the continuous-time aggre-
gate’s throughput for the min function under varying model fit
settings. We also illustrate the cost of tuple-based processing
at three window sizes for comparison. The window size
indicates the number of open windows at any point in time,
and thus the number of state increments applied to each
tuple. This benchmark shows the continuous-time aggregate
provides higher throughput at approximately 120-180 tuples
per segment for different windows. Thus we can see that
the model may be far less expressive (by a factor of 5x)
for our processing strategy to be effective. This improvement
primarily arises due to the increased complexity of operations
per tuple performed by an aggregate, in comparison to linear
system solving. Figure 7i illustrates the operator’s processing
costs as window sizes vary from 10 to 100 seconds. Here the
cost of a tuple-based aggregate is clearly linear in terms of the
window size, while the cost of our segment-based processing
remains low due to the fact we are only validating the majority
of tuples, and not solving the linear system for each tuple.
We demonstrate that Pulse outperforms tuple processing at
window sizes beyond 30 seconds, and is able to achieve a 40%
cost compared to regular processing at a 100 second window.

Join. Figure 5iii displays the throughput achieved by a
continuous-time join compared to a nested loops sliding
window join as the number of tuples per segment is varied.
The join predicate compares the x and y positions of objects
in our synthetic workload. Figure 5iii shows that our join
implementation outperforms the discrete join at 1.45 tuples
per segment for a window size of 0.1s. This occurs because a
nested loops join has quadratic complexity in the number of
comparisons it performs, as opposed to the complexity of a
validation operation which is linear in the number of model
coefficients. Figure 7ii illustrates the difference in processing
cost under varying stream rates, and clearly shows Pulse’s
significantly lower overhead. The processing cost of our
mechanism remains low while the tuple-based cost increases
quadratically (despite the linear appearance, we verified this

Fig. 8. Historical aggregate processing throughput comparison with
a 1% error threshold.

in preliminary experiments while extending to higher stream
rates). We plan on investigating this result with other join
implementations, such as a hash join or indexed join, but
believe the result will still hold due to the low overhead of
validation compared to the join predicate evaluation.

Historical processing. Figure 8 presents throughput and
processing cost results from the historical application scenario.
In these results, we present the cost of performing model
fitting, via an online segmentation-based algorithm [13] to
find a piecewise linear model to the input data, in addition
to processing the resulting segments. We consider a min
aggregate, with a 60 second window, and a 2 second slide.
Tuple processing reaches a maximum throughput of 15,000
tuples per second before tailing off due to congestion in the
system as processing reaches capacity. In contrast, segment
processing continues to scale beyond this point, demonstrating
that the data modeling operation does not act as a bottleneck
with this workload. The nested plot of modeling throughput,
which executes our model fitting operator alone, illustrates that
this instead happens at a higher throughput of approximately
40,000 tuples. This result indicates that data fitting is indeed
a viable option in certain cases, and that simplistic modeling
techniques such as piecewise linear models are indeed able to
support high-throughput stream processing.

B. NYSE and AIS Workloads

We extracted the NYSE dataset of stock trade prices from
the TAQ3 data release for January 2006, creating workloads
of various sizes for replay from disk into Pulse. The schema
of this dataset includes fields for time, stock symbol, trade
price, trade quantity. In our experiments on this dataset, we
stream the price feed through a continuously executing moving
average convergence/divergence (MACD) query, a common
query in financial trading applications. The MACD query is
as follows (in StreamSQL syntax):
select symbol, S.ap - L.ap as diff from

(select symbol, avg(price) as ap from
stream S[size 10 advance 2]) as S

join
(select symbol, avg(price) as ap from

stream S[size 60 advance 2]) as L
on (S.Symbol = L.Symbol)
where S.ap > L.ap

Fig. 9. NYSE and AIS dataset evaluation: i) Continuous-time processing of the NYSE dataset, with a 1% error threshold. ii) Continuous-time
processing of the AIS dataset, with a 0.05% error iii) Continuous-time processing of the NYSE data at 3000 tuples/second.

This query uses two aggregate operations, one with a short
window to compute a short-term average, and the other with a
long window to compute a long-term average, before applying
a join operation to check for the presence of a larger short-term
average.

The AIS dataset contains geographic locations and bearings
of naval vessels around the coasts of the lower 48 states over
a 6-day period in March 2006, totalling to approximately 6GB
of data. We extracted a subset of the data for replay, with the
following schema: vessel id, time, longitude, longitudinal ve-
locity, latitude, latitudinal velocity. We then use the following
query to determine if two vessels were following each other:
select Candidates.id1, Candidates.id2, avg(dist)

(select S1.id as id1, S2.id as id2,
sqrt(pow(S1.x-S2.x,2) + pow(S1.y-S2.y,2)) as dist

from S[size 10 advance 1] as S1
join S as S2[size 10 advance 1]
on (S1.id <> S2.id))[size 600 advance 10]

as Candidates
group by id1, id2 having avg(dist) < 1000

The above query continuously tracks the proximity of
two vessels with a join operation and computes the average
separation over a long window. We then apply a filter to detect
when the long-term separation falls below a threshold.

C. NYSE and AIS Processing Evaluation

In this section we compare the throughput of the NYSE and
AIS datasets and queries as they are replayed from file.

Figure 9i compares the throughput Pulse achieves while
processing the NYSE dataset in comparison to standard stream
processing. In this experiment, we set error thresholds to 1%
of the trade’s value. We see that the tuple-based MACD query
tails off at a throughput of approximately 4000 tuples per
second. We ran no further experiments beyond this point as
the system is no longer stable with our dataset exhausting the
system’s memory as queues grow. In contrast the continuous-
time processor is able to scale to approximately 6500 tuples
per second, and similarly begins to lead to instabilities beyond
this point. As a further comparison, we plot the historical
processing performance that represents the throughput of
processing segments alone (without modelling). This reflects
performance achieved following an offline segmentation of
the dataset. Historical processing scales well in this range
of stream rates due to the lack of any validation overhead.

Also note that we achieve greater throughput than parity, due
to lower end-to-end execution times for our fixed workload,
through the early production of results from sampling the
linear models.

Figure 9ii compares throughputs in the AIS dataset, for
an error threshold of 0.05%. This plot illustrates that the
original stream query tails off after a stream rate of 1100
tuples per second, achieving a maximum throughput of ap-
proximately 1000 tuples per second. In contrast, Pulse is able
to achieve a factor of approximately 4x greater throughput
with a maximum of 4400 tuples per second. We note the lower
stream rate in the AIS scenario in comparison to the NYSE
scenario, due to the presence of a join operator as the initial
operator in the query (the MACD query has aggregates as
initial operators). The segment processing technique reaches
its maximum throughput without any tail off since it hits a
hard limit by exhausting the memory available to our stream
processor while enqueueing tuples into the system.

D. NYSE Performance vs. Precision Tradeoff

Figure 9iii displays the end-to-end processing latency
achieved by Pulse for the MACD query on the NYSE dataset
under varying relative precision bounds. The inset figure dis-
plays the number of precision bound violations that occurred
during execution on a logarithmic scale. This figure demon-
strates that Pulse is able to sustain low processing latencies
under tight precision requirements, up to a threshold of 0.3%
relative error for this dataset. The inset graph shows that as
the precision bound decreases, there are exponentially more
precision violations. Beyond a 0.3% precision, the processing
latency increases exponentially with lower errors due to the
queueing that occurs upon reaching processing capacity.

In summary, our experimental results show that continuous-
time processing with segments can indeed provide significant
advantages over standard stream processing providing the
application is able to tolerate a low degree of error in the
results. In certain scenarios Pulse is capable of providing up
to 50% throughput gain in an actual stream processing engine
prototype, emphasizing the practicality of the our proposed
mechanisms.

VI. RELATED WORK

To the best of our knowledge, Pulse is the first framework
to process continuous queries on piecewise polynomials with
simultaneous equation systems. Temporal query languages,
stream [4], [18] and processing have all introduced temporal
constructs such as windows and patterns to provide query func-
tionality in the temporal domain but do not address continuity.
Stream filtering mechanisms [19], [11] apply delta processing
techniques to perform stateful query processing by establishing
a bound (or predictive model) between a data source and a data
processor. This allows the source to avoid sending updates,
providing these updates adhere to the predictive model. These
techniques are similar to the functionality provided by our
accuracy splitter component, but do not consider processing
issues for whole queries or computing with data models.

Neugebauer [20], and Lin and Risch [15] present interpo-
lation techniques for base relations in relational databases.
Deshpande and Madden [5] present a view-based approach
to interpolated data points through the regression techniques,
and advocate the use of standard query processing tech-
niques upon the modeled data. In contrast, we attempt to
maintain a model-based data representation throughout the
query processing pipeline. Time series databases primarily
focus on basic operations on a time-series datatype, and
consider datatype-specific queries such as similarity search
and subsequence matching [8], in addition to mining and
analysis related queries [21]. Time-series modeling techniques
include various segmentation algorithms used to capture time
series as piecewise linear models [22], [13]. This represents a
disjoint set of functionality from relational algebra and does
not address the issue of how to leverage temporal continuity
in high-volume relational data stream processing.

Moving object databases frequently leverage continuous-
time models in the form of object trajectories during spatio-
temporal query processing. Here, query types commonly in-
clude range search, range aggregation, spatial join [16] and
nearest neighbour queries [23], and are often implemented
through a specialized index structure for each query type. A
survey of these indexes and access methods may be found in
[17]. All of these works are related to Pulse, but do not capture
the same query generality provided by Pulse’s representation
of queries as a composition of equation systems.

Finally, constraint databases have provided inspiration for
representing high-volume data streams in a compact way, and
for our formulation of continuous queries as linear systems.
The DEDALE [9] project describes the implementation of a
constraint database system that operates on infinite sets of
tuples, simplifying tuples via normalization before processing
via a constraint engine. Other works in the field have presented
the constraint data and query model [12], and applied this to
process queries over interpolated data [10].

VII. CONCLUSIONS AND FUTURE WORK

This paper has described the Pulse framework, a data stream
processor that works directly with continuous-time models to
answer continuous queries posed by end users. We presented

the basic workings of Pulse across a variety of relational
operators including filters, joins and aggregates, and their
composition as queries. We have developed a fully-functioning
prototype in the Borealis stream processor, and used this to
demonstrate that Pulse is able to yield significantly lower pro-
cessing overheads in comparison to regular stream processing
operators on real-world data and queries. For future work [2],
we envisage segment indexing techniques to process highly
segmented datasets resulting from many unmodeled attributes,
potentially from a traditional relational database. We also
plan to apply our techniques to other model types, including
differential equations, time series, and frequency models such
as Fourier series.
Acknowledgements. This work has been supported in part by
the NSF under the grants IIS-0448284 and IIS-0325838. We
thank Stan Zdonik and John Jannotti for their comments.

REFERENCES

[1] D. Abadi et. al., “The design of the Borealis stream processing engine,”
in CIDR, 2005.

[2] Y. Ahmad and U. Çetintemel, “Declarative temporal models for sensor-
driven query processing.” in DMSN, 2007.

[3] R. P. Brent, Algorithms for Minimization without Derivatives. Engle-
wood Cliffs, NJ: Prentice-Hall, 1973.

[4] D. Carney et. al., “Monitoring streams: A new class of data management
applications,” in VLDB, 2002.

[5] A. Deshpande and S. Madden, “MauveDB: supporting model-based user
views in database systems,” in SIGMOD, 2006.

[6] “Monthly TAQ, http://www.nysedata.com/nysedata/,” New York Stock
Exchange, Inc.

[7] U.S. Coast Guard Navigation Center, “Automatic identification system,
http://www.navcen.uscg.gov/enav/ais/default.htm.”

[8] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence
matching in time-series databases.” in SIGMOD, 1994.

[9] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin, “The DEDALE
prototype.” in Constraint Databases, 2000, pp. 365–382.

[10] S. Grumbach, P. Rigaux, and L. Segoufin, “Manipulating interpolated
data is easier than you thought.” in VLDB, 2000.

[11] A. Jain, E. Y. Chang, and Y.-F. Wang, “Adaptive stream resource
management using kalman filters,” in SIGMOD, 2004.

[12] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, “Constraint query
languages.” J. Comp. and Sys. Sci., vol. 51, no. 1, pp. 26–52, 1995.

[13] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani, “An online algorithm
for segmenting time series,” in ICDM, 2001.

[14] G. M. Kuper, L. Libkin, and J. Paredaens, Eds., Constraint Databases.
Springer, 2000.

[15] L.Lin, T.Risch, “Querying continuous time sequences.” in VLDB, 1998.
[16] N. Mamoulis and D. Papadias, “Slot index spatial join,” IEEE TKDE,

vol. 15, no. 1, 2003.
[17] M. F. Mokbel, T. M. Ghanem, and W. G. Aref, “Spatio-temporal access

methods.” IEEE Data Engineering Bulletin, vol. 26, no. 2, 2003.
[18] R. Motwani et. al., “Query processing, approximation, and resource

management in a data stream management system,” in CIDR, 2003.
[19] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous

queries over distributed data streams,” in SIGMOD, 2003.
[20] L. Neugebauer, “Optimization and evaluation of database queries in-

cluding embedded interpolation procedures,” in SIGMOD, 1991.
[21] S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern discovery

in multiple time-series.” in VLDB, 2005.
[22] H. Shatkay and S. B. Zdonik, “Approximate queries and representations

for large data sequences,” in ICDE, 1996.
[23] M. L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate nearest neighbor

queries in road networks.” IEEE TKDE, vol. 17, no. 6, 2005.

