
COLR-Tree: Communication-Efficient
Spatio-Temporal Indexing for a

Sensor Data Web Portal
Yanif Ahmad

Brown University
yna@cs.brown.edu

Suman Nath
Microsoft Research

sumann@microsoft.com

Abstract— We present COLR-Tree, an abstraction layer de-
signed to support efficient spatio-temporal queries on live data
gathered from a large collection of sensors. We use COLR-Tree in
a publicly-available sensor web portal to separate the concerns
of sensor data management from the web portal application.
COLR-Tree uses two techniques to optimize end-to-end latencies
of users’ queries by minimizing expensive data collection from
sensors. First, it uses a novel technique to effectively cache
aggregate results computed over sensor data with different expiry
times. Second, it incorporates an efficient one-pass sampling
algorithm with its range lookup to utilize cached data and
compensate for occasional unavailability of sensors. We evaluate
our implementation of COLR-Tree on SQL Server 2005 with
a real, large workload from Windows Live Local. Our experi-
ments demonstrate that COLR-Tree significantly improves both
the end-to-end query performance and the number of sensors
accessed compared to existing techniques.

I. INTRODUCTION

With a rapidly increasing number of large scale sensor
network deployments, the vision of a world wide sensor web
is closer to becoming a reality. Ranging from camera or loop-
sensor networks to monitor traffic on highways to weather
sensors to report live weather conditions, these deployments
generate tremendous volumes of useful data. To better harvest
the potential of the data generated by these sensors, we have
built SENSORMAP1, a web portal that can host data generated
by millions of sensors and lets users query that live data
directly on a map in many useful ways. One example service
SENSORMAP provides is a Restaurant Finder [1]. Supposing
restaurants in a city periodically publish their current waiting
times, users can query SENSORMAP for restaurants with
low waiting times in a geographic region. SENSORMAP also
supports multi-resolution aggregates: if the queried area is
large and contains a large number of restaurants, SENSORMAP
groups near-by restaurants together, and shows a distribution
of waiting times for each group (to keep the on-screen infor-
mation minimal). Users can zoom in on a particular area to
get more detailed live data about the restaurants in that area.
Moreover, a user can combine different types of live data,
such as traffic conditions of roads leading to the restaurants,
on the same map, to get an estimate of the total time required

1http://atom.research.microsoft.com/sensormap

for driving to a restaurant and waiting there before dinner is
served.

There are many issues that must be addressed to suc-
cessfully design and implement such an application, and in
this paper, we focus on one of the central challenges: query
processing. In one implementation, the application (e.g., SEN-
SORMAP) could naively use a custom program (data collector)
to periodically collect sensor data2 and populate a database that
could process user queries. However, such decoupling of the
database and the data collection program is inefficient since
some data may be pulled into the database even if no queries
use it. Such a solution is awkward too; applications on top of
the database cannot effectively deal with user-specified data
staleness—if the data collector has not collected data from
some sensors within the staleness period specified by the user
query, the cached sensor data cannot be used. We address
these problems via a new abstraction called COLR-Tree (short
for Collection R-Tree and pronounced “color-tree”), a novel
spatio-temporal index based on the classic R-Tree [2]. It serves
as an independence layer between sensors and applications.
Applications issue relational queries on static metadata and
realtime sensor data in COLR-Tree as if sensor data were
already collected and stored in persistent tables. COLR-Tree
transparently probes relevant sensors and collects data from
them on-demand.

Coupling data collection with query processing presents a
few challenges. First, collecting data from sensors on demand
is expensive in terms of latency and bandwidth, especially
when the query involves a large number of sensors. Second,
sensors are largely heterogenous in terms of their availability.
While some sensors can be probed for data almost any time
(e.g., those connected to the Internet), some may only be
probed when they are connected, working properly, and have
the resources required to sense and communicate (e.g., a
sensor on a cell phone). Finally, dynamically aggregating
sensor data at different zoom levels of the map is computation
intensive, resulting in a high end-to-end latency. A database
system suitable for our target set of applications, unlike
previous query processing systems, should optimize query

2Most publicly deployed sensors do not support continuously pushing data
to a sink; rather, data needs to be pulled from them on demand.

processing to address all these challenges.
COLR-Tree uses two key ideas to solve these problems.

First, it augments indexing with caching, so that query plan-
ning can take advantage of cached data and optimize the
cost of collecting data from sensors. To reduce query latency,
COLR-Tree precomputes sensor groups with different spatial
resolution and dynamically caches individual sensor data as
well as aggregate results at different resolutions. However,
effectively caching aggregate data becomes extremely chal-
lenging due to the fact that different sensors publish data with
different expiry times and a cached aggregate must be expired
when at least one of the corresponding raw data expires.
COLR-Tree uses a novel mechanism, called a slot cache,
to effectively cache aggregate data over different temporal
resolutions.

Second, to bound the data collection cost per query, COLR-
Tree samples a subset of sensors (instead of all the sensors)
within the query region to compute aggregate results. In the
presence of COLR-Tree’s caching and occasional sensor fail-
ures, selecting a target number of random sensors and probing
them are not sufficient; for example, more sensors need to be
probed in sub-regions with less data in the COLR-Tree cache,
and more sensors than the target sample size need to be probed
in parallel to compensate for occasionally unavailable sensors.
We provide an efficient one-pass sampling algorithm that deals
with these challenges and provides provable guarantees on
the expected number of successfully probed sensors and the
sensing workload uniformity.

We implement COLR-Tree in Microsoft SQL Server 2005
as an abstraction layer on top of the database engine. It is being
used as the live database backend of SENSORMAP, which has
been publicly available for over a year.

In summary, this paper makes the following contributions.

1) We present COLR-Tree, a database abstraction layer
that hides the messy details of data collection from
applications and acts as an independence layer between
applications and sensor data.

2) We present slot-cache, a novel technique for effectively
caching aggregate results computed over sensor data
with different expiry times. We show how to efficiently
maintain slot-caches in COLR-Tree nodes and how to
utilize the cache during lookup.

3) We incorporate an efficient one-pass sampling algorithm
with COLR-Tree’s range lookup that leverages cached
data and handles occasional unavailability of sensors.
The algorithm provides provable guarantees on the num-
ber of successfully probed sensors and the uniformity of
sensing workload.

4) We evaluate our COLR-Tree implementation on Mi-
crosoft SQL Server 2005 with a real workload. Our
evaluation shows that caching and sampling are able
to reduce processing latency to approximately 20% and
provide more than a factor of 30 reduction in the number
of sensors accessed in comparison to collection-agnostic
techniques.

The rest of the paper is organized as follows. Section II
discusses related work. Section III describes SENSORMAP and
its requirements that are addressed by COLR-Tree. Section IV
and Section V describe COLR-Tree’s caching and sampling
techniques. Section VI and Section VII describe the design and
evaluation of our index. Finally, we conclude in Section VIII.

II. RELATED WORK

Several recent works have tackled query processing chal-
lenges for wide-area sensing systems. IrisNet [3] provides
techniques to process queries over a distributed XML docu-
ment containing sensor data. IrisNet builds hierarchical indices
of sensors and applications need to explicitly specify the
parts of a hierarchy that the query will traverse. In contrast,
COLR-Tree takes a relational approach over a flat sensor
collection. This enables us to insulate applications from several
complexities such as hierarchical organization of the sensors.
IceDB [4] presents a delay-tolerant query processor to address
intermittent and variable connectivity. It focuses on individual
sensors prioritizing its push of query results to a central
server. In contrast, COLR-Tree selectively pulls data from
an appropriate subset of sensors and focuses more on spatio-
temporal query processing at the central server. MauveDB [5]
supports model-based user views in database systems. Such
modeling is orthogonal to our work, and could be used in
COLR-Tree (e.g., COLR-Tree can maintain a model from its
cached data).

The database literature contains many examples of index
structures, each customized for various query types, including
spatial and temporal queries. An overview of recent spatio-
temporal access methods by Mokbel et al. may be found in
[6]. Our work is inspired by the R-Tree by Guttmann [2] and
the bulk-loaded R-Tree of Kamel and Faloutsos [7]. Both the
RT-Tree and the 3D R-Tree have added temporal search to the
R-Tree by including temporal metadata at each tree node. The
multiple-resolution aggregation (MRA-) tree by Laziridis and
Mehotra [8] is an index structure maintaining standard aggre-
gates such as min, max, sum, count at each node in the tree
structure. However the authors do not account for real-time
and as such do not discuss how to manage frequently changing
data. The aRB-Tree by Papadias et al. [9] is similar in nature
to the MRA-Tree with the exception that multiple aggregates
are maintained over time for every internal R-Tree node, and
the temporal dimension is indexed with a standard B-Tree. The
SB-Tree [10] describes an index structure to maintain temporal
aggregates and service time window queries. Each node in
the tree maintains aggregates for multiple time segments, in a
similar manner to our aggregation per slot. However the SB-
Tree time segments are of arbitrary lengths, and are determined
by the insertion order into the index. The SB-Tree does not
consider any spatial search component in its design, nor does
it investigate the use of sampling techniques. To the best of our
knowledge, COLR-Tree is the only index structure focusing
on data collection issues by tightly coupling both a sampling
and caching algorithm with index seek.

COLR-Tree’s sampling algorithm significantly differs from
existing algorithms [11], [12], [13] in that they do not deal
with sensor unavailability and cached data, which make the
sampling problem more complex. Moreover, in a single pass,
many of these algorithms select one random data point from
a spatial database, while our algorithm selects a user-specified
number of random sensors, even in the presence of sensor
unavailability.

III. THE SENSORMAP PORTAL

COLR-Tree is designed to address unique requirements of
SENSORMAP, a web portal for live sensors. SENSORMAP
consists of two high-level components: the portal service and
a back-end database.

A. SensorMap Usage

The portal acts as the rendezvous point for sensor data
publishers and users. Data publishers publish their sensors
in SENSORMAP by registering them with static metadata
such as sensor locations, data types, data expiry times, etc.
SENSORMAP users see a map that they can zoom and pan (like
Google Maps [14] or Windows Live Local [15]) to locate the
geographic area of interest. They can also query for sensor data
by specifying polygonal regions of interest, types of sensors,
and a few keywords describing the sensors of interest. Upon
receiving a query, SENSORMAP collects live data from the
relevant sensors and presents them to the user by overlaying
them as icons on top of the map.

B. Back-end Database

The back-end database of SENSORMAP is required to
process queries with the following requirements.

Users issue spatial queries with a fixed-size viewport. Dis-
playing results of a query made over a large geographic region
(e.g., a whole state) in a fixed-size viewport (i.e., computer
monitor) causes some sensor icons to visually overlap with
near-by sensors, hiding them from users. Moreover, too many
icons representing individual sensors make it difficult for users
to infer underlying information. To deal with these problems,
SENSORMAP requires the database to group near-by sensors
(those who would overlap with each other in the display) and
to compute aggregate information for each group. Moreover,
the database must optimize data collection, grouping, and
aggregation to reduce the latency perceived by users.

Sensor data becomes stale. Users may also specify the
maximum staleness of sensor data. If no data of sufficient
freshness is present in the cache, it must be collected from
relevant sensors.

Data collection costs must be constrained. SENSORMAP is
configured with the maximum number of sensors that can be
contacted per query; so, if someone asks for a query for the
whole world, SENSORMAP will not try to collect data from
all the sensors in the world; rather it will collect data from the
maximum number of sensors distributed roughly uniformly
over the world.

We now present an example query that SENSORMAP issues
to the back-end database.

SELECT count(*)
FROM sensor S
WHERE S.location WITHIN Polygon(<lat,long>)
AND S.time BETWEEN now()-10 AND now() mins
CLUSTER 10 miles
SAMPLESIZE 30

Here, the query asks for a count of sensors in a region,
defined by a polygon whose vertices are given by latitude
and longitude locations, within the specified time window.
Furthermore, the query requests that live data is obtained from
a subset of 30 sensors inside the region, and that sensors
within 10 miles of each other are grouped together and a count
aggregate result should be computed for each group.

C. The COLR-Tree Index

COLR-Tree is designed to meet the above query require-
ments. It is based on an R-Tree, a classic multidimensional
index [2], with several extensions. COLR-Tree needs to ag-
gregate data in different spatial granularities (corresponding
to different zoom levels of the map or CLUSTER values in
queries). We assume the locations of sensors do not change
often, allowing COLR-Tree to be built bottom-up, in batch
mode, by iteratively computing sensor clusters with a k-means
algorithm [16] to construct a hierarchy. We periodically
reconstruct the COLR-Tree index to reflect any change in
sensor locations.

The basic query processing in COLR-Tree leverages the
containment relationship between parent and child nodes.
Starting at the root of the tree, the lookup algorithm prunes
nodes whose location ranges do not overlap with the query
range, since these are guaranteed not to contain any entries that
could be a result for the query. Given that COLR-Tree nodes
may spatially overlap, the algorithm descends down multiple
paths through the tree. The lookup algorithm completes its
descent along any path when it encounters a terminal node
which is below a threshold level (depending on the query’s
zoom level) and is contained entirely within the query region.
At this point, COLR-Tree collects readings from the terminal
node’s descendant sensors.

In our context, the algorithm above would incur high end-
to-end response time due to high data collection latency from
sensors. To avoid this, COLR-Tree uses two techniques. First,
sensor readings and aggregates are cached in both leaf and
non-leaf nodes of COLR-Tree. Second, COLR-Tree supports
computing approximate aggregate results by probing a subset
of sensors of interest. We elaborate on these two mechanisms
in the next two sections.

IV. COLR-TREE CACHING

Due to the presence of spatio-temporal locality in query
workloads, caching allows COLR-Tree to re-use already col-
lected data (avoiding expensive communication) and to deal

Fig. 1. COLR-Tree’s slot cache mechanism.

with temporarily disconnected sensors. However, unlike a tra-
ditional database architecture where caching is decoupled from
indexing, COLR-Tree combines them: leaf nodes cache raw
sensor readings, while internal nodes cache aggregates com-
puted over the set of sensor readings from their descendents.
Incorporating caching with indexing has two advantages. First,
since non-leaf index nodes cache aggregate data, top-down
query processing can stop at non-leaf nodes, reducing query
latency. Second, the data collection plan can be optimized
based on the cached data at non-leaf nodes. We elaborate
this in Section V. Note that caching aggregate data has the
added benefit of reducing the computational overhead of query
processing in addition to any benefits from accessing data.

While caching raw sensor data is straightforward, caching
aggregate data is challenging due to the fact that different
sensor readings collected by COLR-Tree expire after times
specified by their sources. An expiry time is a fixed range
indicating the validity of the reading. Consider n sensor read-
ings with expiry times in the range [tmin, tmax]. If we cache an
aggregate computed over these n readings, it needs to expire
after tmin, because it is the point when at least one of the
constituent values expires, and, depending on the aggregation
function, the expired data can affect the aggregate in arbitrary
ways. Since a typical aggregate includes a large number of
sensors, tmin can be very small (i.e., stale), seriously limiting
the usefulness of aggregate caching. COLR-Tree addresses this
problem with a slot-cache.

A. Slot Cache

A slot-cache in a non-leaf COLR-Tree node maintains m >
1 aggregates in m slots, where m = tmax/∆, tmax is the
maximum expiry time of sensors, and ∆ is slot size. Slot i
maintains the (partial) aggregate of the subset of sensor read-
ings whose expiry times are within the range ((i − 1)∆, i∆].
In effect, a slot-cache maintains multiple partial aggregates
over multiple time windows. COLR-Tree queries are answered
considering all partial results stored in all slots. We allow
slots to slide, factoring in the continuously changing nature
of sensor data. When sliding, the slot-cache advances one slot
at a time in every ∆ units of time, expiring all entries lying
in the oldest slot ((m − 1)∆,m∆]. Aggregates in other slots
remain useful for subsequent queries. We now describe a slot

cache’s primitive operations.
Insert. Sensor readings are inserted into a node’s slots using a
hash function on timestamps. During the insertion, we detect
if the reading’s timestamp lies beyond the newest slot. In this
case, we slide the slot-cache until the youngest slot covers the
reading’s timestamp. Cache insertions of large sets of readings
may also violate a cache size constraint. Here, our replacement
policy is to evict the least recently fetched readings from the
cache lying in the oldest slot, in just as the entries are evicted
following a slide.
Lookup. A query accesses the slot-cache according to its
freshness requirement. The timestamp corresponding to the
freshness bound is hashed using the same function as with
insertions, yielding the query slot. The query slot determines
the useful readings in the current cache as those entries lying
in slots which are strictly younger than itself, through to the
window’s boundary.

B. Slot Cache Tree

COLR-Tree maintains a slot-cache at every tree node to
provide cached aggregates at multiple spatial and temporal
resolutions. For an internal node, each slot in the cache
represents an aggregated value over the sensor readings in
the same slot-caches in the node’s descendents. Thus the slot
maintains a spatio-temporal aggregate at a temporal resolution
corresponding to the size of a slot, and at a spatial resolution
according to the bounding box of the internal node.
Insert, update. Insertions of new sensor readings at the leaf
level result in bottom-up updates through the tree’s slot caches.
A new or updated entry in a leaf’s slot triggers an update to
the aggregate value in the same slot, in the parent’s cache. For
inserts, the aggregate update may be performed incrementally.
However in the case of updates to an existing value, we must
decrement the old value from any aggregate using the reading.
This may or may not be performed incrementally depending
on the aggregate function (e.g. sum and count support a
decrement operation, while min and max do not). We are
only able to perform this per-slot aggregation given a globally
aligned slotting scheme for all of the slot-caches in the tree.
Lookup. Lookups first take advantage of the global temporal
alignment of slots to perform a pre-traversal elimination of
slots containing stale entries. Then, during tree traversal, the
test at a node is extended to terminate early if the sensor
reading or aggregate is indeed cached at the node. Any leaf
entries lying in the query slot itself must be inspected further
by comparison of the entries’ timestamps against the freshness
bound timestamp, to determine whether the cached readings
may be used to answer the query.

Figure 1 illustrates basic operations.

C. Optimal Slot Size

Even though a slot can be of any size ∆ within the range
(0, tmax], the performance of a slot cache depends on ∆. We
now use a utility-cost analysis to find a slot size that optimizes
the overall performance of COLR-Tree. A similar analysis has

been previously used to find the optimal node size of an index
stored in a disk [17] or a flash device [18].

Intuitively, larger slots have the benefit that fewer partial
results need to be combined to produce the final result. Without
loss of generality, we normalize tmax to 1. When the slots are
of size ∆ < tmax, answering a query with a time window
T would require combining bT/∆c slots. This would also
require updating dT/∆e × f slots with new data, where f is
the fraction of times data for a specific slot is collected from
sensors. Finally, the data from sensors in T − bT/∆c × ∆
slots, outside the usable ones, need to be collected. Thus, the
total cost incurred by a query due to slots of size ∆ is given
by:

cost ∼ bT/∆c + dT/∆e × f + (T − bT/∆c × ∆) × c

Where c is the collection cost normalized to the processing
cost of a slot. Note that the cost depends on the actual query
workload: T depends on the query workload and f depends
on how often queries arrive.

On the other hand, smaller slots provide the benefit that
partially aggregated information can stay in the cache for
longer, before it gets discarded (remember that slots are
discarded one by one). We define the utility of a slot size
as the average time the data from a sensor, in aggregated
form, can remain valid in slot cache. Suppose we have k
slots < s1, s2, · · · , sk >, where k = d1/∆e. Suppose, sensor
expiry time distribution is such that expiry times of ni sensors
on average fall within the slot si. Then all the aggregated
information from ni sensors will remain valid in the cache
for time (i − 1)∆. In other words, after time (i − 1)∆, data
cached in slot si will be discarded because at least one of its
constituent data may expire at that time. Thus, the total utility
of slots of size ∆ is given by:

utility ∼
∑

i

ni(i − 1)∆

Like cost, utility also depends on the workload since ni

depends on the distribution of sensor expiry times.
The optimal slot-size relies on the sweet-spot within the

above two tradeoffs; i.e., the ratio of utility and cost is
maximized at the optimal slot size. Figure 2 shows the utility-
cost ratio of three workloads: Uniform is a hypothetical
sensor deployment with expiry times uniformly distributed
within the range [0,1], USGS denotes the expiry times of
≈ 10, 000 United States Geological Survey sensors (collected
from www.usgs.gov), and Weather denotes the expiry
times of ≈ 1000 personal weather stations (collected from
www.WeatherUnderground.com). For all scenarios, we
use a real query workload described in Section VII. As shown
in the figure, the utility-cost ratio is optimal at different slot
sizes for different scenarios. For Uniform, optimal slot size is
0.5 (i.e., the slot cache has 2 slots), for USGS, it is 0.8, and
for Weather, it is 0.2. COLR-Tree can be configured with the
optimal slot size found by using the target workload in the
above framework.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
ti
lit

y
/C

o
s
t

Slot Size

Uniform
USGS

Weather

Fig. 2. Utility/cost ratio with different sensor expiry times.

V. COLR-TREE SAMPLING

To reduce the number of sensors probed for readings, and
thus the communication cost and end-to-end latency, COLR-
Tree provides the option to compute approximate answers by
probing a subset of sensors within the query region. One
simple approach to select a sample (i.e., subset) is to first
obtain the complete sensor list by using the standard range
query, and then to randomly sample from the result. However
this approach is inefficient since it offers no advantage in terms
of latency over the regular range lookup. We present a one-
pass algorithm that samples sensors during range lookup in
COLR-Tree.

COLR-Tree samples an application specified number R of
sensors with several goals in mind. First, sensors are selected
uniformly randomly to both distribute the sensing load on
sensors, and to provide more sensors from “interesting” areas
with denser deployment. The second goal of sampling deals
with sensor unavailability. Since some of the probed sensors
occasionally fail to return required data (e.g., due to failure or
disconnection), COLR-Tree selects R′ > R sensors such that
probing all R′ sensors would provide readings of the target
size R. Sampling utilizes aggregate and raw data in cache as
much as possible. Existing spatial sampling algorithms [11],
[12], [13] do not address caching and over-sampling.

A. Layered Sampling

Algorithm 1 shows the pseudocode of COLR-Tree’s sam-
pling algorithm, called layered sampling. In addition to a target
sample size R and a query region A, it takes two threshold
levels3: O and T . In our implementation, one sample (or
aggregate computed over the sample) is returned for each
non-leaf node at level T, and it can be adjusted based on
the zoom level of the map. For simplicity, the pseudocode
in Algorithm 1 returns only the union of all the samples.
The other threshold O is used during over-sampling (described
below). The algorithm has the following key ideas.

Weighted partitioning of sample size. The basic idea of
COLR-Tree’s layered sampling is to allow siblings in the tree
to independently choose their samples from their descendents.

3The root node is at level 0

Algorithm 1 SAMPLE(R,A, O, T)
Require: A number R ≥ 0 of sensors to probe, an area of interest

A, an oversampling level O, and a result threshold level T .
Ensure: A sample.
Definitions:

wi: weight of the node i
ci: cached sensors at node i
ai: mean availability of sensors below node i
BB(i): bounding box of node i
Overlap(A1, A2): fraction of A1 overlapping with A2

1: sample← ∅
2: nodes← PriorityQueue()
3: insert(nodes, R, root)
4: while |nodes| > 0 do
5: r, n← pop(nodes) {r is the priority, i.e., target sample size,

of node n}
6: totalFetched← 0
7: for child i in children(n) do
8: if BB(i) is inside A and Level(n) > T then
9: ri ← r × wi×Overlap(BB(i),A)P

i wi×Overlap(BB(i),A)
− |ci|

10: if Level(n) < O then
11: ri ← ri/ai

12: s← ri random sensors under i
13: totalFetched← totalFetched + |s|
14: d ← probe sensors in s and successfully collect data

from available sensors
15: sample← sample ∪ d ∪ ci

16: else if BB(i) overlaps with A then
17: ri ← r × wi×Overlap(BB(i),A)P

i wi×Overlap(BB(i),A)

18: if Level(n) = O then
19: ri ← ri/ai

20: totalFetched← totalFetched + ri

21: insert(nodes, ri, i)
22: if totalFetched < r then
23: REDISTRIBUTE(nodes, r − totalFetched)
24: return sample

Algorithm 2 REDISTRIBUTE(N,F)
Require: A priority queue N of tree nodes with priority as the

number of sensor probes assigned to the nodes, a number of
additional probes F to distribute amongst the given tree nodes.

Definitions:
priority(i): the priority for a a node i ∈ N

1: incr ← F × priority(i)P
priority(i)

2: for node i in N do
3: priority(i)← priority(i) + incr

The difficulty with independent sampling lies in the ability to
precisely control the size of the resulting sample. We adopt the
following strategy. Starting at the root, with a sample target
size specified by the user, we descend along nodes relevant to
the query, splitting the target size recursively amongst children.
Thus each child is asked to return a sample smaller than the
original target size, so that consequently when the samples
from each child is combined, we meet our target size. Line
17 of Algorithm 1 shows how a node partitions its sample size
among its children. Each child node i gets a target size which
is proportional to its weight wi normalized by the fraction
of its bounding box overlapping with the query region. The

weight wi can be defined to suit the desired semantics of the
sampled answer. We assume applications want uniformity over
sensors, and set wi as the number of descendant sensors at
node i.

Oversampling. To cope with sensor unavailability, a non-leaf
COLR-Tree node scales up the target sample size to R′ > R
such that when a random R′ of its descendent sensors are
probed, R sensors are found to be available. To reduce probing
complexity, R′ should be as small as possible. However, an
absolute guarantee of R out of R′ successful probes is not
feasible in practice since non-leaf nodes scale up the target
size before sensors are actually probed and individual sensors
may be found unavailable in nondeterministic ways. Moreover,
nodes independently scale up their target sizes, and do not
block while other sensors are accessed by other nodes. We
therefore provide a probabilistic guarantee: R′ is chosen such
that when all of them are probed, an expected number of R
sensors will be available to provide data.

To determine R′, we use the historical availability of
individual sensors which has proved to be effective in pre-
dicting the future availability of the sensor. Suppose, the
target sample size is R over m sensors (s1, s2, . . . , sm) with
availabilities (p1, p2, . . . , pm). Then, the probability that a
randomly probed sensor will be available to produce readings
is a = 1/m×

∑m
i=1 pi. The probability that exactly R sensors

will be available out of R′ probed sensors follows a negative
binomial distribution, with an expected value of R′ = R/a.

The value of a could be computed with a range query
on a COLR-Tree built over sensor availability information.
However, this would result in a two-pass algorithm: first
computing a over the query region, and then using it during
lookup. Instead, during lookup, we scale up the target size by
computing a at nodes whose bounding boxes BB are entirely
within A (line 8 of Algorithm 1). Such scaling up is done
at nodes within a threshold level O such that the nodes have
enough sensors under them to oversample. Finally, we make
sure that the sample size is scaled up exactly once in any path
from the root to a node probing sensors, either at the first node
below level T whose bounding box is entirely inside A, or the
node at level O if no node above level O has its bounding box
entirely inside A. This is necessary to ensure correctness of
the algorithm (Section V-B).

Redistribution of sample sizes. The above oversampling
algorithm provides a probabilistic guarantee of achieving a
target sample size and may sometimes fail to provide the
target size. This may happen due to nondeterministic sensor
unavailability and holes and nonuniform distribution of sensors
in bounding boxes. In such cases, if the sample size lags
behind the target size for some nodes of the tree, the lag
is compensated by the REDISTRIBUTE subroutine by evenly
distributing it among nodes yet to be probed. This increases
the probability that a target sample size is achieved even in
the presence of sensor deployment irregularity.

Exploiting leaf and non-leaf caches. Before probing sensors,
a node checks its cache for sensors that satisfy the query, fol-

lowing which, only the additional number of sensors required
to satisfy the target sample size are probed (line 9 and line
15).

B. Sampling Properties
The following two theorems show the desirable properties

of our sampling algorithm.
Theorem 1: Algorithm 1 returns a sample with an expected

size of R.
Proof: Suppose the priority queue Q created in line 2 of
Algorithm 1 contains two logical classes of nodes: (1) S, nodes
whose sample sizes have already been scaled up (i.e., if a node
n is in S, it or one of its ancestors has executed line 11 or
19.), and (2) NS, nodes who are not in S. We will now show
that after each round of the while loop of Algorithm 1, the
algorithm maintains the following invariant:∑

n∈NS

rn +
∑
n∈S

rn · an + sample ≈ R (1)

where sample is the variable defined in line 1 of Algorithm 1
and ≈ denotes the expected size. At the end of the algorithm
S = NS = ∅; therefore, according to the invariant, sample ≈
R, which proves the theorem.

The invariant holds in the beginning of the while loop
because NS contains only the root node with priority R,
S = ∅, and sample = 0. Now suppose, a node n ∈ NS
is popped out in the beginning of a while loop. This reduces
the value of the left hand side (LHS) of Equation 1 by rn.
Suppose, n’s children are C with |C| = m. Without loss
of generality, assume that the sample size rn is partitioned
for first k children (line 17), partitioned and scaled up for
next l children (line 17 and line 19), and scaled up for actual
probing for next (m-k-l) children (line 11 and line 12). In the
first case, k nodes are added to NS, increasing the value of
LHS by

∑k
i=1 rnOi, where Oi = wi×Overlap(BB(i),A)P

j∈C wj×Overlap(BB(j),A) .
In the second case, l nodes are added to S, increasing the
value of LHS by

∑k+l
i=k+1((rnOi)/ai) × ai =

∑l
i=k+1 rnOi.

In the third case, the expected value of sample increases by∑m
i=l+1[(rnOi − ci)/ai] × ai + ci =

∑m
i=l+1 rnOi. Thus the

total increase of the value of LHS is given by
∑m

i=1 rnOi =
rn

∑m
i=1 Oi = rn, exactly offsetting the decrease of LHS due

to popping out the node n.4 Thus the invariant is maintainted.
Similar argument can be given for the case when n ∈ S.

Theorem 2: Suppose sensors are uniformly distributed
within the bounding boxes that partially overlap with query
region A and caching is disabled. Then, Algorithm 1 with
a target sample size R successfully collects data from each
sensor in A with the equal probability of R/N , where N is
the total number of sensors in A.
Proof: Consider a path P =
(n0, n1, . . . , ns−1, ns, . . . , nt−1, nt), where n0 is the root, ns

is the node where sample size is scaled up (line 11 or line
19), and nt is the terminating node where sensors are probed

4If, in the third case, less than ai fraction of probes are successful, the
value of sample can be smaller. However, in that case the REDISTRIBUTE
subroutine distributes the lag among nodes in S and NS, keeping the invariant
true.

(line 13). As mentioned before, the sample size is scaled up
in exactly one node ns in this path.

We now show that each sensor below nt is successfully
probed with the probability R/N . Under the above assump-
tion, wi × Overlap(BB(i), A) denotes the expected number
of sensors ηi below node i that are within A. We denote the
sampling ratio of a node n as x/y where x of total y sensors
need to be selected below node n. Clearly, at n0, the sampling
ratio is R/ηn0 = R/N . At n1, x = R × ηn1P

i∈child(n0) ηi
≈

Rηn1/ηn0 and y = ηn1 . Thus, the sampling ratio at n1

is x/y = R/ηn0 = R/N . Similarly, it is easy to show
that the sampling ratio remains the same R/N in all nodes
n0, . . . , ns−1. Similarly, the sampling ratio remains R/ai

N in
all nodes ns, . . . , nt. At nt, only ai fraction of the probed
sensors, on expectation, return data, and therefore, the ratio of
sensors successfully returning data to all the sensors below ns

is given by R/ai

N × ai = R/N . Since the sensors are selected
uniformly randomly below nt, each sensor below nt has the
equal probability of R/N .

VI. COLR-TREE IMPLEMENTATION

COLR-Tree is implemented entirely on top Microsoft SQL
Server 2005 using relations to represent the tree and cache
structures, and T-SQL to manipulate these structures declara-
tively. Our reasons for choosing a relational implementation
included reducing communication and context switching be-
tween the front-end portal service and the back-end database
by implementing access methods as a single query, in addition
to rapid prototyping through the use of a high-level language,
and extensive tool reuse.

A. Index Schema and Access Methods

The database schema implementing our index uses a layered
approach similar to work by Bohm et al. [19]. Here, each tree
layer is represented by a table (denoted the node table) whose
schema includes the following attributes:
layer = {node id, child id, child bounding box, child weight}
Child identifiers in an upper level layer table are present as
node identifiers in a lower level layer table. We traverse the
tree by joining two adjacent layers’ node tables on a child
identifier. Each layer table has a corresponding cache table
representing cached sensor readings of all nodes within the
layer. Cache tables contain the following attributes:
cache = { node id, slot id, value, value weight}
The value represents an aggregate over the node’s descendents
and the value weight maintains the size of the aggregation set
producing this value.
Sensor Selection Access Method. The sensor selection access
method returns a set of sensor identifiers for the frontend to
probe for fresh readings. Our implementation of this algorithm
is as a multiway join on the layer tables, executed as a left
deep join tree that joins each layer’s node table and cache table
from root to leaf layer. At each layer we check for sufficiently
cached nodes, otherwise we perform sampling. This requires
that we compute the total number of relevant cached nodes
for the sampling heuristic, by filtering spatially with a join

predicate and aggregating cache value weights across slots.
The sampling heuristic further reduces the nodes we consider
traversing at lower layers.
Cache Read Access Method. A cache read is a union of
multiple join trees, which individually are similar to the join
trees for sensor selection. Each join tree declaratively specifies
that we want to retrieve cached entries at a specific layer that
lie entirely within the query region and have a timestamp of
newer than our freshness requirement. We also specify that no
contained cached entry exists in a higher level to eliminate
duplicate readings. Retrieving cached entries from the leaf
layer requires an additional predicate on the timestamp of
the sensor readings, where we directly compare the readings’
timestamps and the query’s freshness timestamp in addition to
a comparison of slot identifiers.

B. Cache Maintenance

We now describe our mechanism to manage the contents of
the slot cache. This includes the window and caching policies’
implementation, and the aggregate maintenance within each
slot and cache. Our basic design is to leverage SQL triggers
to perform these tasks, and we present four triggers which
execute after the insertion of new readings into the leaf cache
level.
Roll trigger. This trigger is responsible for managing the
window extents, the slot identifiers, and the alignment of all
tree nodes’ cache slots. This trigger advances the start time in
increments of slot periods, until the latest insertion lies in the
most recent slot, and only fires on insertions to the leaf cache
level. The roll trigger implements the window expiration cache
replacement policy, by expunging the values in any slot the
window slides over.
Slot insert trigger. This trigger handles new sensor readings
that are not already present in the index structure. The trigger
increments all aggregates in the same slot as the reading, in the
level directly above the leaf cache level. The slot insert trigger
implements the cache size constraint, and the least recently
fetched replacement policy, by checking the size of the cache
following an insertion.
Slot delete trigger. This trigger fires on deletions in the leaf
cache level, specifically on slot rolls or on violations of the
cache size constraint. Its primary function is to update the
sampling weight of the cache table and to initiate expirations
at the tree layer above the leaves.
Slot update trigger. This trigger is the only trigger firing on
cache tables above the leaf layer. Note that the above slot
roll, insert and delete triggers only execute update statements
above the leaf layer, which modify the sampling weight and
the cached value. The update trigger’s responsibility is to
propagate this update through all cache tables to the root.

VII. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the performance
of our COLR-Tree implementation in SQL Server 2005. While
the majority of experiments are performed on this setup, we
prototyped an equivalent design in Java on top of the Berkeley

DB storage engine so that we may directly instrument internal
COLR-Tree statistics. We ran these experiments on a desktop
class machine with an AMD Athlon 3200+, 2GB RAM and a
Western Digital WD160 drive.

A. Windows Live Local Dataset

For our evaluation, we used a workload consisting of two
real datasets from Windows Live Local [15]: a query set and
a sensor set. The query set consists of 106,000 Windows
Live Local queries, each query asking for restaurants in a
rectangular geographic region in the USA. The sensor set con-
sists of approximately 370,000 restaurants in Windows Live
Local YellowPages directory. These two datasets represent
the workload for a Restaurant Finder Service mentioned in
Section I: each restaurant periodically publishes their current
waiting times for tables and users query restaurants with small
waiting time in a region. We use the above workload to
understand the effectiveness of COLR-Tree’s sampling and
caching strategy.

B. Query Processing Complexity

Fig. 3. COLR-Tree internal node traversal analysis.

We first analyze the performance of COLR-Tree using a
set of internal data structure statistics collected during query
processing. For this experiment, we configured COLR-Tree in
three ways, first as a regular R-Tree (i.e. with no caching or
sampling), next as a hierarchical cache (i.e. with slot-caches
and a standard R-tree range query), and finally in its full-
fledged form with both caching and sampling enabled.

Figure 3 shows the number of index nodes traversed for each
query processed from the Live Local workload, as function
of the query’s ideal result set size (i.e the total number
of sensors lying in the query region). Queries are binned
according to their result set size, and we compute an average
node traversal count per bin. Figure 3 verifies that for a
standard R-Tree query the number of internal nodes visited
grows linearly with the number of leaf nodes accessed. This
occurs as a result of the uniformity of our clustering, where
we verified near uniform distributions of internal node weights
(i.e., number of descendents) per layer at lower tree layers.
Both the hierarchical cache and COLR-Tree configurations
access extremely similar numbers of internal nodes. The nested

Fig. 4. Ratio of: i) sensor probes compared to COLR-Tree, ii)
processing latency compared to COLR-Tree, and absolute values
of: iii) sensor probes, iv) processing latencies, over varying freshness
windows.

plot displays the number of cached nodes accessed by these
two configurations and when considered with the number of
node traversals, illustrates the tradeoff between caching and
sampling. Slot cache is able to reduce nodes traversed due to
the presence of sufficiently fresh cached aggregates. COLR-
Tree on the other hand caches much fewer nodes (between
5-8x fewer nodes), but uses sampling on top of caching to
reduce the number of nodes traversed.

C. End-to-end Performance

Figure 4 compares end-to-end results for various COLR-
Tree configurations. These configurations include a simple
flat cache that maintains only raw sensor readings (and not
aggregates) and is scanned for query processing, as well as
the hierarchical cache and standard COLR-Tree setups from
the previous section. Figures 4i and 4ii compare the number
of sensors probes and the processing latency of the flat cache
and hierarchical cache setups to COLR-Tree as ratios. COLR-
Tree is clearly beneficial for communication costs relative
to algorithms lacking sampling, as it is capable of reducing
sensors probes by a factor of 30-100x fewer probes over
varying freshness requirements. In terms of latency, both
indexed configurations dominate the flat cache, and COLR-
Tree further provides a 3-5x reduction over the hierarchi-
cal cache. This arises due to the extra cache lookups and
maintenance performed by the hierarchical cache over COLR-
Tree as we saw from Figure 3. Figures 4iii and 4iv display
the corresponding absolute values of probes and processing
latencies. In particular Figure 4iv indicates the viability of
supporting high throughput query processing for SENSORMAP
as we can provide a low processing latency of approximately
40ms per query. Figure 4iii shows that as we weaken freshness
requirements, COLR-Tree is able to take advantage of a larger
number of cached sensors to reduce the number of probes

it performs, with the heel of the curve at a freshness of
approximately 4 minutes.

D. Caching and Sampling Parameters

In this section, we investigate the caching and sampling
tradeoffs in more detail.

Fig. 5. Effects of varying cache size constraint, and sample size on:
i) # sensor probes, ii) end-to-end processing latency, iii) # internal
nodes traversed.

Cache limits and sample size targets. Figure 5 displays the
effects of both a cache size constraint, and the sample size
targets on the number of tree nodes traversed, the processing
latency and the number of sensor probes. We vary the cache
size limit from 16-32% of sensors (approx. 60k-120k sensors).
This range was chosen based on preliminary experiments
measuring the unconstrained cache size from the setup for
Figure 3. We also consider three different sample sizes at
each size constraint, ranging from 100-10000 sensor readings
requested per query. For a large sample size, as the cache limit
increases, we see the benefits of caching extra readings equally
for all of our metrics. For smaller sample sizes, varying the
cache limit has much less of an effect. The important trend
to note is that as the cache limit increases, the sample size
has a diminishing effect on all three aspects of performance.
This can be seen by the smaller difference between all of our
metrics across the different sample sizes at a cache limit of
32% than at a cache limit of 16%. This indicates sampling
becomes a highly critical feature for systems desiring to
support small caches (as may be the case for complex sensor
readings such as images).
Sampling Accuracy. Figure 6 shows two metrics capturing the
performance of our sampling algorithm for approximate query
processing. The first metric is target accuracy which captures
the percentage of the sensors requested in the SAMPLESIZE-
clause that contribute to the result, defined as:

target acc =
min(target size, sensors probed)

min(target size, unsampled result size)

The second metric is probe discretization error (pde) which
we define as the relative error between the number of sensors
probed and the target size at the terminal (i.e. probing) points
of index access:

pde =
∑

i∈terminals

target size(i) − #results(i)
target size(i)

Fig. 6. Sampling accuracy and probe discretization error under varying cache
and target sample size parameters.

where

#results(i) =
{

cached result size(i) if i is cached
#sensors probed(i) otherwise

Note these terminal points are not always leaves due to
the presence of cached aggregates at intermediate nodes. This
metric reflects the spatial uniformity of the query result,
under the assumption that the target size is itself distributed
uniformly at the terminals.

Figure 6 shows that even at a small target of 100 sensors,
COLR-Tree is able to accurately meet the desired sample size,
achieving 93% accuracy with a small cache size. This validates
that layered sampling can be effective despite the spatial
“holes” and pruning that arises in the index during lookup,
through its use of target weight redistribution. As both target
sizes and cache limit increase, COLR-Tree improves on its tar-
get accuracy achieveing a maximum of 99% accuracy. In terms
of probe discretization error, we see that with a sample size
of 100 sensors the error increases with cache size, indicating
the spatial bias induced by having aggregated cached results
comprised from a greater number of sensors than necessary
at the terminal. In contrast at the largest target, the probe
error decreases significantly with larger cache size due to
the generally higher targets at all query terminals, and hence
lower bias incurred by using cached aggregates. In summary,
the probe discretization error indicates the tension between
caching aggregates and uniform sampling, and suggests further
investigation for reversible aggregation materialization.
Result Accuracy. Note that since cached data is expired after
expiry times defined by sensors, caching does not affect the
accuracy of results. On the other hand, sampling provides only
approximate answers. However, note that, since sensor data is
often spatially correlated, sampling can provide a reasonably
good approximation. We validate this hypothesis by using
real-time water discharge data reported by 200 United States
Geological Survey sensors in the Washington state (the data
is available at www.usgs.org). We query for average water
discharge reported by all these sensors, and COLR-Tree uses
different sample sizes to answer the query. Figure 7 shows the
relative error of the results as a function of sample size. As
shown, an error within 10% can be achieved by sampling as
few as 15 sensors.

 0.3

 0.2

 0.1

 0
 200 175 150 125 100 75 50 25

R
e
la

ti
v
e
 e

rr
o
r

Sample size

Fig. 7. Sensor reading approximation error due to sampling.

VIII. CONCLUSIONS

We have described COLR-Tree, an abstraction layer de-
signed to support efficient spatio-temporal queries on live
data gathered from a large collection of sensors. COLR-
Tree promotes the efficient collection of data from live sen-
sors during query processing. COLR-Tree attains collection-
efficiency through two techniques. First, it augments caching
with index structures and uses a novel mechanism that enables
caching aggregates computed from data with different expiry
times. Second, it allows computing approximate aggregate
results by probing carefully chosen subset of sensors. Our
evaluation with real workload shows significant benefits of
these techniques.

REFERENCES

[1] “Microsoft’s plan to map the world in real time,” MIT Technol-
ogy Review, http://www.technologyreview.com/read\ article.aspx?id=
16781&ch=infotech, May 2006.

[2] A. Guttman, “R-trees: A dynamic index structure for spatial searching.”
in SIGMOD, 1984, pp. 47–57.

[3] A. Deshpande, S. Nath, P. Gibbons, and S. Seshan, “Cache-and-query
for wide area sensor databases,” in ACM SIGMOD, 2003.

[4] Y. Zhang, B. Hull, H. Balakrishnan, and S. Madden, “ICEDB:
Intermittently-Connected Continuous Query Processing,” in ICDE, 2007.

[5] A. Deshpande and S. Madden, “MauveDB: Supporting Model-based
User Views in Database Systems,” in ACM SIGMOD, 2006.

[6] M. F. Mokbel, T. M. Ghanem, and W. G. Aref, “Spatio-temporal access
methods.” IEEE Data Engineering Bulletin., vol. 26, no. 2, pp. 40–49,
2003.

[7] I. Kamel and C. Faloutsos, “On packing r-trees.” in CIKM, 1993.
[8] I. Lazaridis and S. Mehrotra, “Progressive approximate aggregate queries

with a multi-resolution tree structure.” in SIGMOD, 2001.
[9] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang, “Indexing spatio-temporal

data warehouses,” 2002.
[10] J. Yang and J. Widom, “Incremental computation and maintenance of

temporal aggregates.” VLDB Journal., vol. 12, no. 3, 2003.
[11] D. Gross and M. de Rougemont, “Uniform generation in spatial con-

straint databases and applications,” in ACM PODS, 2000.
[12] A. Nanopoulos, Y. Manolopoulos, and Y. Theodoridis, “An efficient and

effective algorithm for density biased sampling,” in CIKM, 2002.
[13] F. Olken and D. Rotem, “Sampling from spatial databases,” in ICDE,

1993.
[14] “Google Maps, http://maps.google.com/,” Google, Inc.
[15] “Windows Live Local, http://local.live.com/,” Microsoft Corporation.
[16] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”

ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.
[17] J. Gray and G. Graefe, “The five-minute rule ten years later, and other

computer storage rules of thumb,” SIGMOD Rec., vol. 26, no. 4, pp.
63–68, 1997.

[18] S. Nath and A. Kansal, “FlashDB: Dynamic Self-tuning Database for
NAND Flash,” in IPSN, 2007.

[19] C. Böhm, S. Berchtold, H.-P. Kriegel, and U. Michel, “Multidimensional
index structures in relational databases.” Journal of Intelligent Informa-
tion Systems., vol. 15, no. 1, pp. 51–70, 2000.

