
Network Awareness in Internet-Scale Stream Processing

Yanif Ahmad, Ŭgur Çetintemel
John Jannotti, Alexander Zgolinski, Stan Zdonik

{yna,ugur,jj,amz,sbz}@cs.brown.edu
Dept. of Computer Science, Brown University, Providence, RI 02912

Abstract

Efficient query processing across a wide-area network requiresnetwork awareness, i.e., tracking
and leveraging knowledge of network characteristics when making optimization decisions. This paper
summarizes our work on network-aware query processing techniques for widely-distributed, large-scale
stream-processing applications. We first discuss theoperator placementproblem (i.e., deciding where
to execute the operators of a query plan) and present results, based on a prototype deployment on the
PlanetLab network testbed, that quantify the benefits of network awareness. We then present a summary
of our present focus on theoperator distributionproblem, which involves parallelizing the evaluation of
a single operator in a networked setting.

1 Introduction

As applications involving large numbers of geographically distributed data sources proliferate, network effi-
ciency and scalability are emerging as key design goals for future data processing systems (e.g., [6, 4, 7, 9, 11]).
Central to achieving these goals isnetwork awareness, i.e., the capability to track and exploit information about
specific network characteristics such as inter-site latencies, network topologies and link bandwidths. Traditional
query optimization models are commonly designed for CPU- and disk-bound optimization and thus need to be
rethought for network-bound processing.

To this end, the SAND project at Brown is currently developing a network-aware distributed query optimiza-
tion framework in the context of Internet-scale stream processing applications and the Borealis project [1], which
strives to develop a full-fledged distributed stream processing engine. In this paper, we provide an overview of
SAND, focusing on two key problems that arise in networked stream processing:

• Operator placement— deciding the network locations where the operators of a query plan should be
placed and executed.

• Operator distribution— deciding how a single operator, such as a join, should be distributed across nodes
in a networked setting.

Even though both problems have been extensively studied in the context of traditional distributed and parallel
databases (e.g., [10, 5]), existing solutions typically assume a small-scale, static and homogeneous networking

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

This work has been supported in part by the National Science Foundation under the ITR grant IIS-0325838.

1

Figure 1: A query plan and the corresponding control and network layers.

environment and rely on centralized algorithms. These solutions, thus, fall short of addressing the unique re-
quirements of Internet-scale query processing where network awareness and distributed algorithms are crucial
for achieving efficiency and scalability. Our work strives to eliminate these assumptions and limitations of prior
work.

We first summarize SAND’s basic system model. We then present various operator placement algorithms
that differ primarily in what nodes they consider as candidates for operator placement and how they take network
knowledge into account. We follow by presenting experimental results that characterize the relative performance
of the approaches in a wide-area setting, through deployment on the PlanetLab network testbed on top of the
Borealis stream processing engine. Finally, we briefly discuss the operator distribution problem and highlight
the key ideas that we are currently exploring towards an efficient and scalable solution.

2 Networked Operator Placement

2.1 Basic System Model

We target a widely-distributed query processing environment with geographically dispersed data sources that
produce high-volume data streams that are to be processed for purposes of filtering, fusion, aggregation, and
correlation. We assume an underlying distributed stream processing system (such as Borealis) that provides
core stream processing functionality and mechanisms for dynamic operator migration across nodes.

We abstractly represent our query plan as a tree of operators, calleda processing tree, whose edges represent
outputs from one operator that are used as inputs by another operator. The query’s data sources are represented
as leaves of this tree. We use a cost function combining (1) the bandwidth used while transporting data between
operators and (2) the network latency between the nodes selected to host the operators. The bandwidth usage
here is obtained by considering input rates to the operator and the operator’s selectivity. Two connected operators
incur a cost of zero if they are located at the same node, capturing the property that no network cost is incurred
if sequential operators are evaluated locally.

We use three heuristics-based algorithms to construct a placement minimizing this cost function: (1)Edge, a
network-agnostic algorithm placing operators at the data sources alone, (2)Edge+, an extended version of Edge
that factors in network latencies and topology during placement, and (3)In-Network, an algorithm capable of
placing operators at arbitrary locations within the network.

2

2.2 Control Model

For improved scalability and parallelism, we use a distributed control model. For each processing tree, we create
a correspondingcontrol treeof coordinator nodes by logically partitioning the processing tree into a number of
subtrees (not necessarily extending to the leaves), calledzones. Each zone is then assigned a coordinator node
that is responsible for the placement (and periodic dynamic re-placement) of its operators. Theapplication
proxy, the node that delivers the output of processing to the clients, is always assigned as the root coordinator
and decides how many additional zones to create.

Figure 1 provides a high-level view of this model, illustrating a processing tree as well as the corresponding
control and processing networks overlayed on top of the IP network. The processing tree is partitioned into three
zones, each assigned to a coordinator node. Each coordinator maps all operators in its zone using one of the
aforementioned heuristics. An advantage of this distributed optimization model is that zones can be optimized
locally, concurrently and asynchronously.

Note that a coordinator is dependent upon other coordinators whose zones contain descendant operators.
Our operator tree is, thus, mapped in a bottom-up fashion, starting at coordinators responsible for leaves, and
triggering placement of parent operators as each individual operator is mapped. Coordinators communicate
with each other when one coordinator has mapped its zone, sending optimization metadata to the coordinator
responsible for mapping parents. The contents of this metadata depend on the heuristic in use and will be
described along with the heuristics. In our distributed algorithm, a coordinator may also backtrack on the
placements prior to its round of control. This approach helps to overcome locally optimal solutions that are not
necessarily globally optimal, given operators are initially mapped without knowledge of their siblings residing
in other zones.

2.3 Placement Algorithms

The algorithms in this section determine an operator’s placement, given the placement of the operator’s imme-
diate children. The heuristics also determine if backtracking is necessary, and provide updated positions for the
operator’s children.

• TheEdgeheuristic considers placing an operator at the locations its children are placed, and anycommon
locations. We define common locations as follows. Each data source (i.e., the leaves of our tree) is
assumed to reside at a fixed location in the network. An operator may potentially be placed at the locations
of any data sources providing its inputs. A common location is a node present in the set of potential
locations of each child. As previously mentioned, Edge is a network-agnostic heuristic that uses a cost
function of bandwidth alone, and does not consider network latencies between nodes. Edge simply places
the operator at the location minimizing the total cost of each child’s subtree, and any edges between the
operator and its children. If the selected location is a common location, rather than some child’s existing
location, each child’s location is updated to the common location. When using this heuristic, coordinators
must send the set of potential locations for the root of their workload, as well as the cost of placing this
root at each potential location. The recipient coordinator may then map a parent, attempting to determine
an optimal solution by reconsidering each child’s placement in light of their respective placements.

• TheEdge+heuristic incorporates network latencies between nodes when making its placement decision.
Edge+ considers placing operators at their child and common locations, in an identical manner to Edge.
However, rather than considering cost as the bandwidth utilized by parent-child edges alone, Edge+ cal-
culates a cost based on the product of edge bandwidth and latencies. The latency here is that between a
potential placement of the operator, and the placement of a child. Edge+ searches over all potential place-
ments of the both the operator and its children, selecting a configuration with the minimal bandwidth-
latency product. In addition to an expanded cost function, Edge+ also incorporates a pruning technique

3

not found in Edge. Specifically, Edge+ prunes potential placements of an operator based on a latency cri-
terion. This criterion eliminates locations if the total latency between the location under consideration and
the locations of all children exceeds the total latency between child locations alone. In a similar manner to
Edge, coordinators exchange optimization metadata comprising of placement costs at potential locations.

• TheIn-Networkheuristic extends Edge+ in the set of potential locations considered for placement, and in
the pruning heuristic used to eliminate locations. In-Network searches over a set of candidate locations
obtained as a shortest-path tree between the application proxy, and all data sources. We remark that
candidate node selection remains an open issue and are investigating several other heuristics (such as
candidates chosen by random walks and by directed flooding in the neighborhood of our data sources).
In addition to pruning based on a distance criterion as in Edge+, In-Network computes a ranking based
on the total latency between potential operator locations and child locations, and selects the topk such
locations to actually compare costs (k is a configuration parameter). Consequently, coordinators only
forward optimization metadata containing placement costs at this subset of potential locations.

We refer the reader to [2] for a detailed description of the placement algorithms, as well as extensions that
can meet user-specified per-query latency bounds.

3 System Architecture and Deployment

We have implemented a SAND prototype using the OCaml language, and deployed our implementation across
the PlanetLab testbed. Our key design principles included retaining a flexible optimization and network protocol
framework, allowing modular extensibility to experiment with various operator placement heuristics. To support
this extensibility, our prototype includes a loosely coupled protocol stack and optimization engine. Lower layers
of our protocol stack include a DHT-driven lookup protocol (using the OpenHash implementation) and latency
and bandwidth probing protocols.

The SAND prototype interfaces with the Borealis stream processing engine, and uses this engine to perform
widely distributed query processing. Borealis provides an XML-RPC interface enabling SAND to both collect
selectivity statistics from a running query, and subsequently perform operator placement by moving Borealis
boxes. Presently the two systems are loosely coupled, with SAND capable of mapping a Borealis query network
onto a physical network in an offline manner. Our recent efforts have been to deploy the Borealis prototype
onto PlanetLab, implementing a wide-area network monitoring tool as an example application. This application
generates input data for Borealis through the use of a data wrapper interacting with the Ganglia, Slicestat and
Comon “sensors” collecting statistics from each PlanetLab site, and periodically pushing tuples into the Borealis
engine running at that site. We expect to integrate the SAND and Borealis prototypes to collect online selectivity
estimates in the immediate future.

4 Experimental Results

We briefly present two sets of experiments, where SAND first maps abstract query plans containing a variety of
edge rates between operators, and secondly maps a Borealis query network prior to measuring actual edge rates
on the running query. Both sets of experiments were run on Planet Lab.

Our experimental evaluation methodology compares the bandwidth consumption ratio and stretch factor of
the mapping obtained to a “warehousing” scenario, where data sources push tuples to a single site in the network
and the query is evaluated entirely at this site. The bandwidth consumption ratio is defined as the total sum of
our bandwidth-latency product of all transfers between operators across our network, as a ratio of the equivalent
metric in the centralized scenario. The stretch factor is a ratio of the maximum end-to-end latency resulting from
our mapping compared to the centralized scenario.

4

i) ii)

Figure 2: Experiment setup and deployment across Planet Lab

Edge In−Network
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Algorithm

Ba
nd

wi
dt

h
co

ns
um

pt
io

n
ra

tio

Edge In−Network
1

1.5

2

2.5

3

3.5

4

4.5

Algorithm

St
re

tc
h

fa
ct

or

Figure 3: i) Bandwidth consumption ratio and ii) Stretch factor of abstract query plan mappings.

Figure 2 shows the Borealis query plan we deployed across 20 PlanetLab sites chosen on the East and West
coasts of North America and Europe. Each data source provides statistics on CPU and memory utilization. The
query identifies the sites with very high resource utilization and outputs an aggregate count of those, grouped
by their domain identifiers. In the final placement, a filter and join box are placed at each source site, and the
aggregate box is mapped to the MIT site. We collect the query’s results at Brown.

Our abstract representations of query plans were binary trees of depth four, and fanout two. Our results
in Figures 3i) and 3ii) confirm those witnessed in our emulation [2], namely the dominance of the In-Network
heuristic over the network-agnostic Edge heuristic both in terms of the bandwidth consumption ratio, and the
stretch factor. Indeed the incorporation of network awareness is key: results comparing Edge and Edge+ (omit-
ted) exhibit similar gains in the Edge+ heuristic.

Figure 4 shows the bandwidth consumption ratio and stretch factor measured for the query network in
Figure 2, for two different selectivity values. To achieve these selectivity values, we used a dummy CPU
and memory utilization sensor generating values between 0-100%, and subsequently adjusted the threshold
of our filter’s predicate. The results here again demonstrate the benefits of in-network processing, where in
this scenario, the join operators are performed at the source sites, and the aggregate operator at a centroid-like
location (in this case MIT) with respect to all sources. The differences in the absolute values of the bandwidth
consumption ratio between Figure 3 and Figure 4 arise due the higher selectivity values used in the former set

5

Selectivity
0.1 0.2 0.3 0.4 0.5

sources BWCR SF BWCR SF BWCR SF BWCR SF BWCR SF
8 0.2154 1.2589 0.2510 1.2723 0.2940 1.2749 0.3382 1.2510 0.3890 1.2642
16 0.2365 1.3469 0.2710 1.4031 0.3227 1.3945 0.3686 1.4052 0.4146 1.4073

(BWCR = bandwidth consumption ratio, SF = stretch factor)

Figure 4: Results for the Borealis processing network from Fig. 2

of experiments.

5 Operator Distribution

As part of ongoing work in the SAND project, we are investigating mechanisms to further the distribution of
a query plan across a heterogeneous network. Our current focus is on the parallelization of query operators,
motivated by the vast divide between the scale of the abstract processing graph representation of a query, and
the abstract graph representation of the network. To this end, we are pursuing techniques enabling an individual
operator to utilize multiple sites during evaluation, while considering the necessary interaction between these
sites to provide an equivalent operational semantics as would result from a centralized evaluation.

Our distribution mechanisms revolve aroundreplicatingandpartitioning operators. To effectively support
distribution, we focus on exploiting two properties:network localityanddata locality. Network locality refers to
the proximity of the data sources’ network locations. Data locality refers to the similarity between data sources
in terms of the input values produced, and the frequency at which these values are produced. Data locality also
captures temporal properties of the inputs, such as the synchronicities of the input values.

We now discuss these mechanisms in the context of evaluating a join operator in a networked environment,
with the goal of improving the average end-to-end latency of processing tuples (more details and relevance to
previous work can be found in [3]):

• Replication: Our replication mechanism constructs ajoin treeof replicas (i.e., join instances), with each
replica capable of performing a partial evaluation of the join operator based on the subset of all data
sources it receives inputs from. Following partial evaluation, an operator replica may immediately deliver
its output to any interested parties, creating a “short-circuit” route between sources, processing site, and
sinks. We rely on a routing and evaluation policy between replicas to ensure correctness in our evaluation.
First, operators in our tree evaluate the join predicate on tuples only if they arrive on differing input
branches. Second, operator replicas forward input tuples received from their children towards the root of
the tree. The first property ensures that our replica tree does not produce duplicate results, allowing input
tuples to only join at their sources’ lowest common ancestor in the tree. The second property ensures
completeness of outputs, since all tuples will be forwarded to the root. This replication mechanism will
prove beneficial in terms of average end-to-end latency provided the majority of the join’s output occurs
at the lower levels of the replica tree and thus a decreasing join selectivity at operator replicas closer to
the root. We note that PIER recently considered a technique that performs a similar hierarchical join but
in a rather opportunistic manner [8].

• Partitioning: While replication targets exploiting network locality amongst data sources by enabling
nearby sources to compute their join results as early as possible, a second mechanism, operator partition-
ing, focuses on improving the networked deployment of a join operator by exploiting data locality amongst
sources. Operator partitioning requires sources to introspectively maintain a probability distribution over

6

the input values they produce. Sources subsequently exchange these distributions, using customizable
approximate representations such as wavelet-based histograms, to compute join output probability dis-
tributions. A distributed partitioning algorithm identifies trends in these distributions across pair-wise
combinations of data sources, placing partition boundaries on the join-key attribute domain according to
a gradient-based heuristic applied to the output probability distribution. In this way, partitions are chosen
to highly differentiate the set of sources that produce output values for each input value contained within
each partition.

Note that the replication and partitioning mechanisms are orthogonal in their applicability, and thus may be
composed: we can create a replica tree for each partition instantiated, first applying our distributed partitioning
algorithm before constructing the replica tree using a hierarchical clustering algorithm.

5.1 Implementation Plans

Our next phase of implementation involves integrating these proposed algorithms into the SAND framework,
and investigating the benefits these algorithms would bring to both a massively multiplayer online game, while
performing “area-of-interest”-based data dissemination, and our wide-area network monitoring tool deployed
on PlanetLab on top of the Borealis stream processing system.

References

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The Design of the Borealis Stream Processing Engine. InProc. of the
Second Biennial Conference on Innovative Data Systems Research (CIDR’05), Jan. 2005.

[2] Y. Ahmad and U. Cetintemel. Network-Aware Query Processing for Distributed Stream-Based Applications. InProc.
of the 30th International Conference on Very Large Data Bases (VLDB’04), 2004.

[3] Y. Ahmad, U. Cetintemel, J. Jannotti, and A. Zgolinski. Locality Aware Networked Join Evaluation. InProc. of the
1st International Workshop on Networking Meets Databases (NetDB’05), 2005.

[4] S. Chandrasekaran, A. Deshpande, M. Franklin, and J. Hellerstein. TelegraphCQ: Continuous dataflow processing
for an uncertain world. InProc. of the First Biennial Conference on Innovative Data Systems Research (CIDR’03),
Jan. 2003.

[5] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsaio, and R. Rasmussen. The Gamma Database
Machine Project.IEEE Transactions on Knowledge and Data Engineering, 2(1):44–62, 1990.

[6] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper, A. Edakkunni, and W. Hong.
Design Considerations for High Fan-in Systems: The HiFi Approach. InProc. of the Second Biennial Conference on
Innovative Data Systems Research (CIDR’05), Jan. 2005.

[7] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: An Architecture for a World-Wide Sensor Web.IEEE
Pervasive Computing, 2(4):22–33, Oct. 2003.

[8] R. Huebsch, B. Chun, J. Hellerstein, B. T. Loo, P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and A. R. Yumerefendi.
The architecture of PIER: an Internet-scale query processor. InProc. of the Second Biennial Conference on Innovative
Data Systems Research (CIDR’05), Jan. 2005.

[9] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shenker, and I. Stoica. Querying the Internet with PIER. In
Proc. of the 29th International Conference on Very Large Data Bases (VLDB’03), Sept. 2003.

[10] D. Kossmann. The state of the art in distributed query processing.ACM Computing Surveys, 32(4):422–469, 2000.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An Acqusitional Query Processing System for Sensor
Networks.ACM Transactions on Database Systems, 2005.

7

