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Abstract

We describe a methodology for detecting user errors
in spreadsheets, using the notion of units as our basic
elements of checking. We define the concept of a header
and discuss two types of relationships between headers,
namely is-a and has-a relationships. With these, we
develop a set of rules to assign units to cells in the
spreadsheet. We check for errors by ensuring that ev-
ery cell has a well-formed unit. We describe an imple-
mentation of the system that allows the user to check
Microsoft Excel spreadsheets.

1 Introduction

A spreadsheet is a program. That is, not only is the
utility—such as VisiCalc [1] or Microsoft Excel [10]—
that creates the spreadsheet a program, but so are the
individual spreadsheets that we use the utility to im-
plement. Even the humblest spreadsheet user writes
simple formulas to compute results and maintain con-
sistency between groups of data. These formulae are
user programs.

Not only are spreadsheets programs, they are in-
creasingly one of our most popular programming lan-
guages. Millions of users employ spreadsheet utilities
on a regular basis. The wealth of features and tools in
these utilities lets users perform several complex oper-
ations ranging from “what if” calculations to limited
forms of database management. Because of their pow-
erful operators, they are used not only in business ap-
plications [3], but in some forms of mathematical and
scientific computing, both to teach students [7] and to
build applications [15].

The widespread use of spreadsheet utilities has an
unfortunate consequence: Many users have relatively
little formal education in computing. Many of them
learn to use spreadsheet utilities primarily by trial-and-
error, by copying spreadsheets and formulae from oth-

ers, and so on. Consequently, they are not trained to
recognize common programming errors, and may thus
fail to spot mistakes. Sociologically, it is also possi-
ble that some are more prone to trust the output of a
program because it is “from the computer”, not fully
realizing the ways in which their actions can corrupt
that output.

Unfortunately, spreadsheet utilities are often quite
poor at detecting and reporting errors in user spread-
sheets. There are many possible reasons for this: the
desire to minimize confusing output; the expectation
that spreadsheets will remain modest, not grow into
large programs; and the difficulty in identifying errors
and reporting them meaningfully. Sadly, this lack of
checking means a great number of spreadsheets are ac-
tually buggy [11]. As spreadsheet programs grow, and
business decisions and workflows increasingly rely on
their output, these errors assume critical importance.

Indeed, the problems with spreadsheets are also a
software engineering problem. Spreadsheet utilities are
increasingly accessible to external programs through
powerful interfaces, such as those defined for Microsoft
Excel in COM [9]. This, combined with the growing
desire to cobble applications from fragments in differ-
ent domain-specific languages, means the reliance on
spreadsheets will only grow. Therefore, the reliabili-
ties of an overall software system can increasingly be
compromised by a buggy spreadsheet.

In this paper, we tackle the problem of statically de-
tecting errors in spreadsheets. We perform an opera-
tion similar to type-checking on the formulae of spread-
sheets; following the lead of Erwig and Burnett [4], we
call this “unit checking”. We present a collection of
rules that help identify weaknesses in spreadsheets that
are likely to be errors.

In addition to defining rules, we have also imple-
mented a unit checker. Building the checker and ex-
ecuting it on several spreadsheets helped us identify
problems with prior approaches. Our unit checker op-
erates on a mainstream spreadsheet utility, namely Mi-



crosoft Excel. By using COM, our checker interfaces
directly with Excel without the need for human inter-
vention (such as asking the user to save the contents of
the spreadsheet in some other format). Excel is weaker
than spreadsheet languages such as Forms/3 [2], and
provides less information to build an effective checker.
Nevertheless, because we do not have the power to
change practice, we believe it is important to contend
with the vicissitudes of a mainstream utility to make
our work most widely applicable.

The rest of this paper is organized as follows. Sec-
tion 2 motivates our work through a series of examples.
These examples lay the groundwork for the formal ma-
terial that follows. In particular, they present some of
the subtleties that arise in validating spreadsheets; not
treating these weakens prior work in this area. Sec-
tion 3 erects a formal framework for validating spread-
sheets, presenting judgement rules for units. In section
4 we briefly discuss some details of our implementa-
tion. Section 5 describes the results we obtained by
testing some off-the-shelf spreadsheets. The remain-
ing sections present related work, directions for future
work, and concluding remarks.

2 DMotivating Examples

In this section we introduce the basic concepts and
desired behavior of our unit checking system by pro-
viding several examples. A very simple table is shown
in Figure 1. Intuitively, the user should be able to add
the numbers in each row and column of the table be-
cause each row or column consists of compatible units.
For example, cells B3 and B4 are both in units of TVs,
so we can add them together to get another number in
units of TVs. We can also add cell B3 to C3, because
they both have units of the year 2001. The result, D3,
will be in units of 2001, and moreover, we can abstract
over the specific type of electronic device in each cell
and determine that the result is also in units of Elec-
tronics. On the other hand, if the user tries to add B3
and C4 (perhaps because of a formula error), this will
cause a unit-checking error, because these cells do not
have either a year or a type of device in common.
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Figure 1. Electronics Production by Year
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Figure 2. Electronics Production Minus De-
fective Products

Figure 2 shows a slightly more complicated table.
Here, TVs and VCRs are subdivided into three cate-
gories each. As before, we can perform an operation
on cells B4 and C4 because they both have units of
2001 and abstract to units of TVs. We also want to
be able to handle column H, which contains the sum
of defective TVs and VCRs. We see that cells C4 and
F4 have the unit 2001 in common. They are also both
Electronics and Defective, but they do not have the in-
termediate category of either TVs or VCRs in common.
Ideally, we would like our unit system to capture this
information by assigning the result units of 2001 and
Defective Electronics.
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Figure 3. Electronics Sales and Profits

Finally, consider Figure 3. If we follow the pattern
laid out above, D3 will have units of the year 2001
and Gross Sales, because we will “abstract” over TVs
and VCRs and find that B3 and C3 have Gross Sales
in common. This seems slightly odd, since Gross Sales
is not a supercategory of TVs and VCRs the same way
Electronics is. We also want to subtract B9 from B3 to
obtain B15, but B3 and B9 have only the subcategory
TVs in common, and no common supercategory at all.

In the remainder of this paper, we describe a unit
system that will allow us to perform all these opera-



tions, as well as preventing errors such as adding B4
to C5 in Figure 2 (see Section 4 for the error report
displayed in this case) or subtracting C9 from B3 in
Figure 3. This unit system is insensitive to the spe-
cific arrangement of data, so that if the user chooses to
present the data in Figure 3 differently (see Figure 4),
the results of unit checking will be exactly the same.
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Figure 4. Electronics Sales and Profits: Alter-
native Layout

3 The Unit System

We now proceed to discussing our type system, given
the previous examples of the desired behaviour of our
checker. First we describe our model of spreadsheets,
defining key concepts such as headers and relationships.
We then introduce units, the basic elements of our sys-
tem upon which error checking occurs. In the heart of
this section, we present rules to govern how units may
be built from spreadsheet cells, starting with simple
units, before progressing to more complex units cre-
ated from cells containing mathematical operations.

3.1 Headers and Relationships

We consider spreadsheets to be comprised of cell
locations, values, and expressions. Cell locations are
given by their addresses, which we take from the Excel
grid system. Values in spreadsheets are typically num-
bers or strings, but may include other data types as
well. Some cells contain expressions, and may include
operations on the values of other cells referenced by
their locations. The evaluation of an expression yields
a value.

A header is a concept that defines the common unit
for a group of cells. Some cells contain values that

provide names for headers, and we call these header
cells. For example, in Figure 1, Bl is a header cell
containing the value Electronics, which is the header for
TVs, VCRs, and Total (in cell D2). We assume that each
header cell defines a different header, unless it contains
a reference to another header cell. For example, in
Figure 1, the value Total appears in cell A7 as a total
over Years and in cell D2 as a total over Electronics. In
this case, although these header cells contain the same
value, they define two different headers. On the other
hand, in Figure 2, the value Defective in cell F3 comes
from a reference to C3, so these two cells define the
same header.

Note that a single cell may have more than one
header. For example, cell B3 in Figure 1 has two head-
ers, TVs and 2001. In addition, there may be cells
whose headers are not defined explicitly by header cells.
Figure 3 illustrates this situation. Here the TVs and
VCRs cells are both electronic goods, so they implicitly
share a header we will call Electronics, though there is
no cell to indicate this. The problem of inferring im-
plicit header information will be discussed further in
section 4. We assume in our unit-checking system that
all headers are known.

There are two kinds of relationships that can exist
between headers in our unit system. These relation-
ships, common to many type systems, are the is-a and
has-a relationships. We use the is-a relationship for
both instances and subcategories, so that in Figure 1,
we say that 2001 is-a (instance of) Year and that TVs
is-a (subcategory of) Electronics. The has-a relation-
ship generally describes properties of items or sets. For
example, we can say that in Figure 3, the set of TVs
has-a (property called) Gross Sales.

3.2 Units

Units form the basic elements upon which we per-
form error checking. Every cell has a unit determined
by the cell’s headers and the relationships those head-
ers participate in. The simplest unit is the Top unit.
Any cell that has no headers has unit Top. Examples
from Figure 3 are cells A2 (Year) and B1 (Gross Sales).
Header cells that participate in is-a relationships have
hierarchical is-a units, which we denote with square
brackets. The unit of cell C3 in Figure 2 (Defective)
is therefore written Top[Electronics[TVs]]. Since all is-
a hierarchies are ultimately derived from Top, we will
generally leave Top out when describing units from this
point onward.

Non-header cells have somewhat more complex
units. The unit of every non-header cell contains ex-
actly one has-a relationship, which we denote with



braces. This is because a has-a relationship uniquely
identifies the kind of data present in a value cell. If
there were more than one has-a relationships, we would
need to represent multiple data values in that cell,
which is impossible. For the same reason we cannot
have units made entirely of is-a relationships, although
the has-a relationship might be implicit, as described
below. In addition, non-header cells may have an arbi-
trary number of headers, each of which defines its own
is-a hierarchy. We create units with multiple is-a hi-
erarchies using the & operator. For example, cell B3
in Figure 3 has two headers, 2001 and TVs. The TVs
header is related to the Gross Sales header by the has-a
relationship, so the unit for B3 is:

Electronics[TVs]{Gross Sales} & Year[2001]

Note that, like other headers, the header defining the
has-a portion of a cell’s unit may not be explicitly given
in the spreadsheet. The tables in Figures 1 and 2, for
instance, do not list this header explicitly. However,
we can see by looking at the tables that the property
described by the data is a Number or Quantity of elec-
tronic devices. That is, each set of devices listed in the
table has-a Quantity. The unit for cell B3 in Figure 1
is therefore similar to the previous example:

Electronics[TVs]{Quantity} & Year[2001]

Now that we have covered headers and units, we
focus our attention on the description of well-formed
units. We observe the following conventions for nota-
tion:

e J(d) is the is-a header for header d (possibly 0)
e U(d) is the unit for header d

e 7(a) is the set of is-a headers for the cell at loca-
tion a

e U(a) is the unit for the cell at location a
e d — h holds header d has-a header h
e v(a) is the value of the cell at location a

e U(=ujfug|...[uy]...]]) is the short-hand represen-
tation for a hierarchy of is-a relationships

—

o ifd=wy[...[uy]...]then @] = uil... [un[u']].. ]

The four categories of elements for which we compute
units are:

1. Headers. The unit for a header is determined by its
is-a relationships. Every header itself has either

zero or one is-a headers. In the former case, the
header’s unit is Top!:

- I(d) =0
- U(d) = Top

Otherwise, its unit is a concatenation of its
header’s unit and its header’s name:

FId)=d Fd#0

F U(d) = ald]

- Ud) =i

We define the unit of a header cell to be the unit
of the header it names.

2. Non-header cells containing values (i.e. user data),
such as cell B3 in Figure 1. These cells also ob-
tain units from their headers. Every cell contain-
ing user data must have at least one is-a header.
Moreover, there must be exactly one is-a header
with a has-a relationship. In the case where a cell
has only one is-a header, the cell’s unit is formed
by concatenating its header’s unit and header’s
name as above to obtain the is-a part of the unit,
and adding the has-a header at the end:

- Z(a) ={d} +F Ud)=1i

= U(a) = uldl{h}

Fd—h

When a data cell has more than one is-a header,
each is-a header defines its own is-a hierarchy, and
the results are combined using the & operator:

F Z(a’) = {dadlv .. -adn}
Vieln:Ud) =
U(d) =y d—h

F U(a) = ugldl{h} & ui[di] & ... & uy[dy]

3. Cells containing references only, such as cell E3 in
Figure 2. The unit of a cell containing a reference
is the unit of the cell it refers to.

IThe bottom part of a judgement rule is what the unit checker
is able to infer based on the preconditions present in the top
part of the judgement. See Pierce’s book [13] for a detailed
explanation of type systems.



4. Cells containing formulas, such as cell B5 in Fig-
ure 1. These cells contain expressions involving
mathematical operators, and the resulting unit for
this kind of cell depends upon the actual operator
in use. We discuss the rules needed for our unit
system to support the four basic mathematical op-
erators (+, -,*,/) in the following subsection.

3.3 Units and Mathematical Operators

In this section we motivate and describe the behav-
ior of our system with regard to mathematical opera-
tions. The formal judgements for these operations are
listed in full in the Appendix. The section introduces
these judgements in a less formal way, making use of
the Excel examples.

We begin with the simplest example, Figure 1. We
want to be able to add the quantity of TVs and VCRs.
Intuitively, we can think of trying to union the set of
TVs and VCRs to get a combined set. The resulting
set will still represent quantities (the has-a relation)
but we want the union to be described by only the
common part of TVs and VCRs. In our unit notation
this means that

Electronics[TVs]{Quantity} + Electronics[VCRs]{Quantity}

when unit-checked should yield:
Electronics{Quantity}

Essentially, we want to keep the has-a part unchanged
and perform a union operation, @, on the is-a part of
the unit. In general, we have:

F ui{h} F u3{h}
F ui{h} +ua{h} — ui ® ua{h}

Thus, when we add two units, if they have the same
has-a part, the result is the union of their is-a part.
There is an underlying principle here that is the core
of the addition rule: in order to add two units together,
they must have something in common (in this case the
has-a part). Now consider the case where the two units
have a common is-a part. Here is a variant of the
example in Figure 3:

Electronics[TVs]{Costs} + Electronics[TVs]|{Profits}

Clearly, we cannot perform a union operation on Costs
and Profits, because they are both properties of the
same set, namely TVs. By adding Costs and Profits, we
obtain a new property of the same set of TVs. In gen-
eral, this new property will be some irreducible combi-
nation of the two old properties. Using the o combina-
tor to indicate the new compound property, the result

of the previous equation therefore becomes:
Electronics[TVs]{Cost o Profit}

Or, in general:

Foa{hi} F a{ha}
F @{hi} + @{ha} — @W{hyoha}

There is only one situation that we haven’t covered
yet, the one where both the is-a part and the has-a
part of the unit differ:

Electronics[TVs]{Cost} + Electronics[VCRs]{Profit}

This equation clearly violates our principle stating that
units must have either the is-a part or the has-a part
in common in order for the addition to pass the unit
checker. Intuitively, also, we see that this is the kind
of operation we want to prevent, as it could only result
from a mistake made by the user.

We turn our attention now to the @ rule, as it is an
important part of the addition operation. We quickly
glanced over it in the first example of the section, when
we obtained Electronics from Electronics[TVs] & Elec-
tronics[VCRs]. The & rule applied to the is-a parts of
the units, and combined them by retaining in the re-
sult only the common parts of the two units. Judging
from our first example, it might seem that the result
of the union operation will always be a more general
unit than either of the two arguments. But suppose we
want to perform a union operation on these two units:

Electronics[TVs[Wide-Screen[Defective]]] &
Electronics[VCR[Defective]]

In this case we could also say that the result should
be Electronics, but we would lose information common
to the two original units: the fact that they are both
defective. Instead, our desired result is:

Electronics[Defective]

The & operation therefore combines the is-a parts of
two units creating a new unit from all the common
features of the two units, not just the most general
ones.

To summarize, the addition rule applies only to units
that either have identical has-a parts, in which case the
result is a @ operation on their is-a parts; or identical
is-a parts, in which case the result is a o operation on
their has-a parts.

Now that we have seen how addition works, we will
describe subtraction. As with addition, we want to
allow subtraction only between cells that have either
identical has-a or is-a parts. We begin with the first
case. In Figure 2, the Okay column for TVs requires us
to subtract the following two units:



Electronics[TVs[Total]]{Quantity} -
Electronics[TVs|[Defective]]{ Quantity }

We want our unit checker to identify the result as
representing a quantity of TVs:

Electronics[TVs]{Quantity}

We cannot be any more specific about the unit of the
result, since there is no way to know in general whether
the set resulting from a subtraction operation contains
any items of the subtracted type. In other words, we
may not have subtracted all the defective TVs from the
original set. We only know that, since both original sets
were types of TVs, we must still have a set containing
only TVs (of some type). This result is satisfying, since
it exactly mirrors the behavior of addition, where we
apply @ operator to the is-a parts.

Now consider subtracting two units with a common
is-a part, as in Figure 3, where the data in the Profit
column is given by:

Electronics[TVs]{Gross Sales} - Electronics[TVs]{Costs}

As with addition, the result is the combination of the
is-a part, Electronics[TVs], and a new property derived
from Gross Sales and Costs:

Electronics[TVs]{Gross Sales o Costs}

Having seen how addition and subtraction work, we
can conclude that any binary operator must correctly
handle two cases: identical is-a parts and identical has-
a parts. In the case of identical is-a parts, the result
of the operation is always a compound of the two dif-
ferent has-a parts. For example, suppose we have a
computation for the area of a rectangle:

Shape[Rectangle]{Length} x Shape[Rectangle]{Width}

It is obvious we want to remember that the result is
given by the combination of Length and Width:

Shape[Rectangle]{Length o Width}

We conclude, therefore, that when dealing with iden-
tical is-a parts, any binary operator returns a o com-
bination of the has-a parts along with the is-a part as
the result.

Is the case of identical has-a parts also uniform
across all binary operators? We have seen that both
addition and subtraction require the use of the & op-
erator on the different is-a parts. But suppose we have
the following equation:

Shape[Rectangle]{Length} x Shape[Square]{Length}

Clearly it does not make sense to have Shape{Length}
as the result. In fact, there is no satisfactory combina-
tion of the two is-a parts that will accurately describe
the result. However, we do not want to flag this as an
error, since there might be a legitimate reason for the
user to perform this operation. Therefore, when deal-
ing with any binary operator other than + or -, the
result of combining two units with different is-a parts
and the same has-a part is always Top{h} (where h is
the common has-a part).

To obtain meaningful results from constructs such
as:

Shape[Square]|{Length} x Shape[Square]{Length}

the identical is-a combination, o, takes precedence over
the identical has-a combination, @& or Top.

Finally, we will describe the and(&) operation. As
briefly noted in section 2, the unit of cell B3 from Fig-
ure 1 is:

Electronics[TVs]{Quantity} & Year[2001]

The unit of a value cell that has more than one header
is given by the & constructor on the units inferred from
each individual header. There are restrictions on the
types of the units on which we can perform &.

Each header conveys a distinct property for the data
in the cell, which means that a well-formed & unit con-
sists of different, header inferred, units containing only
is-a parts, with only one of them potentially having a
has-a part. Since there is only one has-a part at most,
the difference applies to the is-a parts of the units.
Two is-a parts are different if and only if their top
labels are different because only then do the two is-a
parts represent disjoint data properties. The & opera-
tion is idempotent to handle the special case when two
is-a parts are identical. For example, Electronics and
Year are clearly different so it is correct to join them
through &. On the other hand,

Electronics[TVs] & Electronics[VCRs]{Gross Sales}

does not represent a valid & unit operation because
both headers represent Electronics and that contradicts
our requirement that the headers differ.

The & operation is distributive with respect to any
other binary operation between units. For example, in
Figure 1, cell B5 has unit:

Electronics[TVs]{Quantity} & Year[2001] +
Electronics[TVs]{Quantity} & Year[2002]

which reduces to:

Electronics[TVs]{Quantity} &
(Year[2001] + Year[2002])



We want the unit checker to perform the addition
on the two is-a units as if there were an empty has-a
part, yielding the following result:

Electronics[TVs]{Quantity} & Year

We thus handle the reduction of VYear[2001] +
Year[2002] using the special case of the identical has-a
rule for binary operations, the one with empty has-a
parts.

4 Implementation

Our unit checker is implemented in the DrScheme
programming environment [6]. It has three compo-
nents: a GUIL, an I/O layer that mediates the com-
munication with Excel, and the unit checker itself.

The GUI, Figure 5, is implemnted using MrEd, the
windows tool for DrScheme. The user can start an in-
stance of a desired spreadsheet with the Load File
button. Analyze will check the loaded spreadsheet
once it is annotated with the right units. In earlier
sections we relied on a header inference algorithm to
correctly annotate cells with units based on header la-
bels. Header inference is a difficult artificial intelligence
and natural language processing problem. Our current
implementation does not have such an algorithm. In-
stead, the value cells are annotated with the right units
through the GUI. A range of cells is selected either with
the mouse in Excel, or textually entered in the Cell(s)
Range (s) field in the GUI and their corresponding unit
in the Cell(s) Units field. The Assign Units but-
ton updates, in Excel, the comment field of every cell
from the range with the assigned unit. In the future
we plan to provide a more automated process for unit
inference. To that end, we may do semantic analysis
on headers to determine relationships with the aid of
WordNet [5].
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Figure 5. Unit Checker GUI

We use the MysterX [17] Component Object Model
(COM) extension to DrScheme to communicate with
Excel. Although Excel has a complex COM model

(over 400 COM interfaces), we only need a few of those
for our tool. Examples of the interfaces we need are:
_Application, Worksheet, _Irange. FEach of these
has methods and properties through which the appli-
cation can mimic any user interaction with Excel. Our
I/0 layer implements the functionality needed by the
tool (such as coloring cells, adding comments to cells,
etc.) by using MysterX methods.
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Figure 6. Unit Error

Unit errors are reported back to the user by color-
ing the offending cells. Figure 6 is similar to Figure 2
except we have deliberately introduced an error in cell
D5. For each error cell, the user can display the input
cells to the formula in that cell by right clicking the
mouse. In Figure 6 the input cells for D5 are B4 and
C5. There are two kinds of errors reported back. The
unit errors are those where the unit checker identified a
problem in the formula for the cell, as is the case with
cell D5. There are also propagation errors. Those are
cells that in their formula use a reference to another
cell that was flagged by the unit checker as containing
an error.

Our judgements do not dictate an order on checking
a spreadsheet. In our current implementation we assign
units to value cells through the GUI. All the other cells
will contain formulas and therefore their units will be
inferred. From Excel we extract a list of all the formu-
las and then unit check each one in a recursive manner
by computing units for subformulas first and then com-
bining them by using our inference rules. Since Excel
provides cycle detection, we do not concern ourselves
with circularity and furthermore this approach is guar-
anteed to terminate.

Excel has over 300 pre-defined functions. These
functions can be grouped together based on their do-



mains. For example there are financial functions, ma-
trix operators, trigonometric functions, etc. We chose
representatives of each of these groups and imple-
mented inference rules for them based on our base infer-
ence rules. In order to be fully functional, our checker
would need to implement judgement rules for all the
functions and this is something we plan to do in the
future.

5 Applying the Unit Checker

We have tested our unit checker on some off-the-
shelf spreadsheets. The book by Filby [14] contains a
collection of scientific spreadsheets from a variety of
engineering fields. None of the spreadsheets had any
unit annotations. We used our tool to annotate the
value cells in those spreadsheets with the correct units.

The table in Figure 7 describes the spreadsheets we
used to test our unit checker. The size given is the
number of non-empty cells. The COM column represents
the time the application spent communicating with Ex-
cel through COM using the Automation method. The
Checker column represents the actual unit checking
time. Both column times are in minutes and seconds,
as provided by PLT Scheme’s time macro. From the
table it is clear that the application spends most of its
time interacting with Excel. COM Automation is a
well-known performance bottleneck. In the future we
plan to use the COM Direct Interfaces or .NET when
Excel will be accessible through it to speedup the ap-
plication’s interaction with Excel.

There is one entry in the Checker column marked
with /. Supprisingly to us, our unit checker found an
error in the marked spreadsheet. The author of that
spreadsheet uses an Excel formula, FREQUENCY, that
takes two ranges of cells as arguments. The second
range he entered was incorrect in that it used one extra
cell that did not contain any data and our unit checker
correctly identified that misuse.

Although lacking a header inference mechanism,
there was very little time and effort involved when we
used our tool on the existing spreadsheets. Our experi-
ence suggests that the unit checker offers great promise
to be a useful tool for real-world users of spreadsheets.

6 Related work

The most closely related work is the unit checker of
Erwig and Burnett [4]. Their system is based on the
same principles as ours. There is, however, a significant
difference between their formulation and ours. Their
system fails to distinguish between the is-a and has-
o relationship. Additionally our system is capable of

handling subtraction in cell expressions. These changes
lead to a more thorough type system. We present the
following examples to highlight valid spreadsheets that
would be allowed to pass unhindered by our system,
yet fail to pass through the system in [4].

In Figure 4, we rearrange the tables in Figure 3,
and assume that the header inference is able to in-
fer that TVs and VCRs are both types of electronic
goods. Consider the operation in cell B15. First we
discuss how Erwig and Burnett’s checker would oper-
ate in this situation. In their system, cells B3 and B9
have units All Electronics[TVs[Gross]|] and All Electron-
ics[VCRs|[Gross]| respectively. The subsequent addition
operation in cell B15 fails, because the hierarchies of
the two units differ in their second components (TVs
vs. VCRs), despite the common third component of
Gross. The header inference could conceivably reverse
the hierarchy of the units. Cells B3 and B9 could be
assigned units of Gross[TVs] and Gross[VCRs], enabling
cell B15 to pass the unit checking. However the com-
putation of profits, in cell D3 for example, would now
fail (Cost[TVs] cannot be subtracted from Gross[TVs]).
Our system handles this case in exactly the same man-
ner as described above. Cell B15 turns out to be an
addition of:

All Electronics[TVs]{Gross} + All
Electronics[VCRs]{Gross} = All Electronics{ Gross}

Cell D3 is:

All Electronics[TVs|{Gross} - All Electronics[TVs]{Cost}
= All Electronics[TVs]{Gross o Cost}

This demonstrates that despite any rearrangement
of the tables, providing the header inference is able to
determine the relationships in the manner above, our
rules may be consistently applied. Erwig and Burnett’s
system is unable to handle an intuitive way of tabulat-
ing data, and no rearrangement of headers is able to
account for the differences in the is-a and has-a re-
lationships. These failures were highlighted while we
implemented their unit checker, which Erwig and Bur-
nett lacked.

There have been other works tackling the specific
problem of detecting errors in spreadsheets. Rothermel
et al. [16] apply an adaptation of testing mechanisms
for imperative programs to spreadsheets. This aims
at detecting the most common of spreadsheet errors,
cell reference errors in cell expressions [12], through
the use of data flow adequacy criteria. The authors
define the data flow test adequacy criteria employed,
in terms of definition-use (du) associations that are in-
volved in visible cell outputs. Relying on user interac-
tion to validate the values in cells, the system marks



[ Author

Description

Size | COM | Checker |

S. Leharne Acid Base Titration 109 0:23 0:01
‘W.J. Orvis Oscillations Frequency 43 0:18 0:01
Oscillations Euler Method 345 1:51 0:01
AA. Gorni Cubic Crystalline Systems X-Ray Diffrac- 83 0:39 0:01
tion
‘W.J. Orvis Electron Drift Velocity in GaAs 44 0:15 0:01
J.P. LeRoux Cleavage Strike Direction 236 1:13 0:03 /
Palaeocurrent 284 1:38 0:02
Untilt 53 0:21 0:01
Chi-square 41 0:15 0:01
A.A. Gorni Grain size of microstructure 40 0:22 0:01
E. Neuwirth Feigenbaum Diagram 1000 2:57 0:01
E. Neuwirth Simple Model 54 0:06 0:01
Parametric Model 55 0:09 0:01
Complex Model 56 0:12 0:01
Complex Model with Table 75 0:18 0:01
Complex Model with Stepwidth 57 0:07 0:01
Volterra-Lotka Model 8004 14:38 0:21
Planets 4001 12:18 0:16
Planets Halfstep 4001 10:10 0:14
‘W.J. Orvis Blackbody spectral emission 507 0:52 0:01
A.A. Gorni Viscometric molecular weight 41 0:46 0:01
A.A. Gorni Point count method 26 0:17 0:01

Figure 7. Experimental results.

du-associations as having been exercised, and visually
reflects the percentage of all du-associations exercised
per cell with shades of colors. Rothermel et al. apply
this kind of testing to the Forms/3 spreadsheet lan-
guage [2], whereas our system pertains to Excel spread-
sheets. Specifically, Excel spreadsheets are able to de-
tect the use of blank cells in cell expressions. Thus the
types of errors we are able to detect are of a differ-
ent nature, and this belief is reinforced if we consider
the following example. In Figure 1, suppose the cell
B5 contained the cell expression B3 4+ C4. Our type
system would flag an error due to the addition of the

types:

Electronics[TVs]{Quantity} & Year[2001] +
Electronics[VCRs]{Quantity} & Year[2002]

However the system in [16] would not be able to detect
this problem in Figure 1.

Kennedy [8] describes an extension of strongly-typed
programming languages to include polymorphic dimen-
sion types for values within the language, stemming
from a similarity between well-typedness of programs
and dimensional consistency of mathematical expres-
sions. The author introduces the concepts of base di-
mensions as dimensions that cannot be defined in terms
of others, such as length, mass, time, etc. The counter
to these are derived dimensions, for example accelera-
tion which can be thought of as length divided by time
squared. Units are also discussed. These units are not
to be confused with the units we check, but are units of
measurement, such as meters, or kilograms. Base units
are used to measure the base dimensions, and alterna-
tive units of measurement are considered a scaling of
base units.

7 Conclusion and Future Work

In this paper we have presented a methodology for
detecting errors of a semantic nature in spreadsheets.
We have introduced the concept of the is-a and the
has-a relationships, whose essence is found in a large
number of type systems, into the domain of spread-
sheets. In the process, we have enhanced the com-
pleteness of our type system in comparison to existing
work, by broadening the range of units that may pass
unit checking. This is important because users will
disable a checker if it reports errors on valid inputs.

Our implementation provides a simple interface to
unit check an Excel spreadsheet. While we have not
delved deeply into the problem of header inference for
a wide range of spreadsheets, our unit checker is able
to detect errors in many cases without any additional
information than that present in the spreadsheet.
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Appendix: Unit inference rules

V = any binary operator

V* = any binary operator except for +/-

I(d) are the is-a headers for header d (possibly 0)
U(d) is the unit for header d

Z(a) are the is-a headers for the cell at location a
U(a) is the unit for the cell at location a

d — h shows header d has-a header h
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- v(a) is the value of the cell at location a.
- U (= urfuz[. .. [un] ..
tion for a hierarchy of is-a relationships.

- if @ =wrl... [un]..] then @] = wl... [un[u]].. ]

Unit construction rules:

Headers:
F I(d)=0
F U(d) = Top
b d el(d), Ud)=1u

F U(d) = d[d']

Values:
F deZ(a) FUWd=u d—h
F U(a) = ad]{h}
F {d,di,...,dn}=Z(a),Viel.n:U(d) =

Ud)=ug,d—h

F U(a) = ug[d{h} & uildi] & ... & un[dn]

References:
F v(a) =a
F U(a) =U(a’)
@-rule :
ur =cl.. ez zeleigr - eg] ]
uz =cil. . feifyr - yileivr - eg] )
F il F us i>0;7>4 k1>0
Ful@®us — el e e]- ] ]
&-rule:
4=u1l...[ui...]
ﬁ:vl[...[vj]..]
Fa FU u #u0n
Fa&d

ut & (uh Vv uz) = ui&eus V ui &us
Identical is-a rule:

Foaf{hi} F @{h2}
F @{hi}vi{ha} — @{h1 o ha}

Identical has-a rule, has-a can be empty:

F ui{h} F uz{h}
F ui{h} £ur{h} — w1 ®uz{h}
F oui{h} F ub{h}

F ai{h}v*uz{h} — Top{h}

.]]) is the short-hand representa-




