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Abstract
This paper presents a demand-driven, flow-insensitive analysis al-
gorithm for answering may-alias queries. We formulate the com-
putation of alias queries as a CFL-reachability problem, and use
this formulation to derive a demand-driven analysis algorithm. The
analysis uses a worklist algorithm that gradually explores the pro-
gram structure and stops as soon as enough evidence is gathered
to answer the query. Unlike existing techniques, our approach does
not require building or intersecting points-to sets.

Experiments show that our technique is effective at answering
alias queries accurately and efficiently in a demand-driven fashion.
For a set of alias queries from the SPEC2000 benchmarks, an
implementation of our analysis is able to accurately answer 96%
of the queries in 0.5 milliseconds per query on average, using only
65 KB of memory. Compared to a demand-driven points-to analysis
that constructs and intersects points-to sets on the fly, our alias
analysis can achieve better accuracy while running more than 30
times faster. The low run-time cost and low memory demands of
the analysis make it a very good candidate not only for compilers,
but also for interactive tools, such as program understanding tools
or integrated development environments (IDEs).

Categories and Subject Descriptors D.3.4 [Processors]: Com-
pilers; F.3.2 [Semantics of Programming Languages]: Program
Analysis

General Terms Algorithms, Languages

Keywords Pointer analysis, alias analysis, memory disambigua-
tion, demand-driven analysis, CFL reachability

1. Introduction
The pervasive use of pointers and references in imperative lan-
guages such as C or Java has led to a large body of research devoted
to the pointer analysis problem, which aims to extract information
about pointer values and aliases in programs. Such information is
needed by virtually any analysis, optimization, or transformation
for pointer-based programs.

Following Hind (2001), we make the distinction between
points-to analysis, whose goal is to compute points-to relations
between program variables (represented using points-to sets), and
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alias analysis, which computes may-alias relations between pro-
gram expressions. Because points-to relations compactly represent
all possible aliases, they have been quickly adopted as the standard
representation. To the best of our knowledge, all of the analyses
developed in the past decade are points-to analyses. Both exhaus-
tive and demand-driven points-to analysis algorithms have been
proposed.

When using points-to analysis to answer an alias query about
two indirect memory accesses ∗ p and ∗ q, the standard approach is
to compute the points-to sets of p and q, and then intersect these
sets. If the intersection is non-empty, then ∗ p and ∗ q may alias.
However, in certain cases it is possible to answer alias queries
without deriving full points-to sets. For instance, if the program
assigns p to q, then the expressions ∗ p and ∗ q alias regardless of
their points-to sets.

This paper presents a demand-driven, flow-insensitive analysis
algorithm for C aimed at answering alias queries directly, with pre-
cision equivalent to an inclusion-based (Andersen 1994) points-to
analysis. We formulate the alias problem as a context-free lan-
guage (CFL) reachability problem over a graph representation of
the assignments and pointer dereference relations in a program. In
this formulation, the alias relations are described using a grammar.
Non-terminals in our grammar model alias relations, not points-to
relations.

We distinguish between two different kinds of alias relations:
memory (or location) aliases, representing expressions that might
denote the same memory location; and value aliases, representing
expressions that might evaluate to the same pointer value. In the
example above, ∗ p and ∗ q are memory aliases, whereas p and q
are value aliases. This paper shows that the computation of the two
kinds of alias relations is mutually recursive, and proposes a context
free grammar that describes both notions of aliases.

In the worst case, the proposed alias analysis algorithm might
end up performing as much work as building full points-to sets for
the two pointers being dereferenced. However, in many cases it can
answer queries before the two points-to sets are fully constructed.
This can happen in the following two scenarios:

• If it can be seen from a small number of program assignments
that the two pointers in question may hold the same value. Our
approach will quickly identify such assignments and conclude
that the two pointers alias, without trying to determine all of
their possible values. A points-to analysis will however search
for all memory locations that the two pointers may point to.

• If one pointer points to only a few values, none of which are
pointed to by the other pointer. A points-to analysis must still
compute the entire points-to set of the second pointer before
concluding that the two do not alias. On the other hand, the alias
analysis may discover that the few values of the first pointer
cannot flow into the second, and quickly terminate the search.



To make the alias exploration more efficient, our algorithm ex-
plores deeper levels of indirection gradually, and limits the amount
of exploration per query. Different exploration budgets allow users
to trade precision for run-time efficiency, and vice versa.

We have implemented the alias analysis algorithm and used it
to answer a set of alias queries in the SPEC2000 benchmark pro-
grams. Our experiments demonstrate that the proposed alias anal-
ysis can efficiently resolve a large fraction of alias queries on de-
mand. For our benchmarks, the analysis can correctly answer (with
respect to results from an exhaustive analysis) 96% of the queries
in 0.52 milliseconds per query on average, using only 65 KB of
memory. The low run-time cost and low memory demands of the
analysis make it a very good candidate not only for compilers, but
also for interactive tools, such as program understanding or pro-
gram development tools (e.g., IDEs) that have more restrictive time
and space constraints.

Our experiments also show that the proposed demand-driven
alias analysis can be significantly faster than an analysis that com-
putes points-to sets on demand (Heintze and Tardieu 2001) and
then intersects the computed sets. For instance, our alias analysis
can answer 89% of the queries using a budget that corresponds to
0.17 ms per query, whereas the approach based on points-to sets
resolves only 84% of the queries using a much larger budget that
corresponds to 6.32 ms per query, i.e., more than 37 times slower.
This demonstrates that alias problems can indeed be solved more
efficiently without constructing full points-to sets.

1.1 Contributions
This paper makes the following contributions:

• CFL-reachability formulation of alias relations. We present
a framework for solving memory-alias and value-alias problems
for C programs using CFL-reachability. To the best of our
knowledge, this is the first formulation of the alias problem as
a CFL-reachability problem.

• Demand-driven alias analysis. We present an analysis algo-
rithm for solving alias problems in a demand-driven fashion. To
the best of our knowledge, this is the first demand-driven algo-
rithm capable of answering alias queries without constructing
points-to sets.

• Experimental results. We present an experimental evaluation
showing that our method can answer alias queries accurately
and efficiently.

The rest of the paper is organized as follows. We first review
the related work in Section 2. Next, Section 3 presents our sim-
plified program model. Section 4 describes the CFL-reachability
formulation and presents the demand-driven analysis algorithm. A
formal semantics and soundness result is given in Section 5. Fi-
nally, Section 6 presents an evaluation of the analysis and Section 7
concludes.

2. Related Work
Due to its importance, pointer analysis has been and remains a very
active area of research. We limit our discussion to the most relevant
pieces of related work in this area, namely alias analyses, demand-
driven analyses, memory disambiguation studies, and analyses for-
mulated as CFL-reachability problems. We refer the reader to Hind
(2001) for a survey of pointer analysis techniques.

Alias analyses. Early approaches to pointer analysis have been
formulated as alias analyses (Landi and Ryder 1992; Choi et al.
1993). These are inter-procedural dataflow analyses that compute
a set of alias pairs at each program point. However, alias pairs are
difficult to maintain and often contain redundant information. More

compact representations of alias pairs have been explored (Choi
et al. 1993), but eventually points-to graphs and points-to sets have
emerged as the natural way of representing pointer information.
The analyses developed in the past decade have all used this repre-
sentation. Our analysis differs from existing alias analyses in that
it is flow-insensitive and demand-driven. Both of these aspects are
key to our approach: being demand-driven, we avoid the quadratic
blowup of computing all alias pairs; and being flow-insensitive, we
avoid computing alias pairs at each point. In the demand-driven set-
ting, computing aliases directly is a better choice because points-to
sets contain more information than needed to answer alias queries.

Demand-driven pointer analyses. Heintze and Tardieu (2001)
present a demand-driven Andersen-style points-to analysis for C
programs, and use it to disambiguate indirect function calls. To an-
swer a points-to query, their algorithm recursively generates points-
to and pointed-by queries until the original points-to query is fully
resolved. Saha and Ramakrishnan (2005) use a similar formulation
cast as a logic program. In contrast, our framework answers alias
queries and does not necessarily need to build complete points-to
sets.

In recent work, Sridharan et al. (2005); Sridharan and Bodı́k
(2006) have proposed demand-driven points-to analyses for Java
programs. Their algorithm extends a previous CFL-reachability
formulation of the points-to analysis problem (Reps 1997) to Java.
A key technique in their approach is matching loads and stores on
the same field via match edges. They use a notion of refinement-
based analysis, where match edges are gradually refined until the
answer to the query meets the needs of the client. Such match
edges are however not applicable to C programs because indirec-
tion in C is not limited to the use of object fields; it would amount
to considering any two pointer dereferences *p and *q as aliased,
which can be too conservative.

Memory disambiguation. Ghiya et al. (2001) present a study of
memory disambiguation techniques for C programs to resolve alias
queries issued by several compiler optimizations and transforma-
tions. Among other techniques, they use an Andersen inclusion-
based pointer analysis for answering alias queries. Lattner et al.
(2007) add context sensitivity to unification-based (Steensgaard
1996) points-to analysis and use it for memory disambiguation.
Their analysis uses a context-sensitive heap abstraction to distin-
guish between heap objects allocated at the same site, but through
different calls. We use a simple malloc wrapper detector to achieve
a similar effect. In another study, Das et al. (2001) use a context-
sensitive one-level flow analysis to resolve alias queries in several C
programs. Alias pairs were generated by computing all possible ex-
pression pairs in each function. Their study indicates that tracking
value flows in a context-sensitive fashion brings very little improve-
ments to alias disambiguation in C programs. All of these analyses
answer alias queries by intersecting points-to sets.

CFL-reachability formulations. CFL-reachability has become a
popular technique for expressing program analysis problems (Reps
1997). Standard problems that have been expressed in this frame-
work include points-to analysis problems (Reps 1997; Sridharan
et al. 2005), context-sensitive inter-procedural dataflow analy-
sis problems (Reps et al. 1995), and context-sensitive, but flow-
insensitive pointer analyses (Fähndrich et al. 2000; Das et al. 2001;
Sridharan and Bodı́k 2006).

In the CFL-reachability formulation of points-to analyses (Reps
1997), the grammar expresses points-to relations. In contrast, our
formulation addresses the aliasing problem and non-terminals in
our grammar denote alias relations. The fact that we use a single
relation for assignments A, instead of four different kinds of as-
signment edges (address-of, copy, load, and store) also makes the
grammar simpler and more general.



Program:

s = &t;
r = &z;
y = &r;
s = r;
x = *y;
... = *x;
*s = ...;

t

x

*x
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Figure 1. Program Expression Graph example. Solid, horizontal
edges represent assignments (A-edges) and dotted, vertical edges
represent pointer dereferences (D-edges).

3. Program Representation
We formulate our analysis for C-like programs that manipulate
pointers. For simplicity, we shall assume that all program values
are pointers. Programs consist of sets of pointer assignments. The
control-flow between assignments is irrelevant since the analysis is
flow-insensitive. Assignments can execute in any order, any num-
ber of times. Program expressions and assignments are represented
in a canonical form with the following minimal syntax:

Addresses a ∈ Addr
Expressions: e ∈ Expr, e ::= a | ∗ e
Assignments: s ∈ Stat, s ::= ∗ e1 := e2

Primitive addresses a ∈ Addr model symbolic addresses of
variables (e.g., &x) and dynamic allocation sites (e.g., malloc()).
There is one address amalloc per allocation site, and one symbolic
address ax for each variable x. There are two kinds of expressions:
primitive addresses a, and pointer dereferences ∗ e. A pointer deref-
erence expression ∗ e denotes the value of the memory location that
pointer expression e points to. If x is a variable, then the C ex-
pression &x is represented in canonical form as ax; expression x is
represented as ∗ ax, and expression *x is represented as ∗ ∗ ax.

In canonical form, an expression represents a memory location
if and only if it is a dereference expression ∗ e. In the rest of the
paper we will also refer to such expressions as lvalues (Kernighan
and Ritchie 1988). Program assignments are of the form ∗ e1 := e2,
syntactically enforcing that the left-hand side be an lvalue. Expres-
sion e1 is the address of the memory location being updated, and
e2 is the value being written. Assignments include (but are not lim-
ited to) the four standard forms of pointer assignments used in the
pointer analysis literature: address-of assignments x = &y, repre-
sented as ∗ ax := ay; copy assignments x = y, as ∗ ax := ∗ ay;
loads x = *y, as ∗ ax := ∗ ∗ ay; and stores *x = y, as ∗ ∗ ax :=
∗ ay . Our formulation does not require the program to be nor-
malized to this form; it automatically handles more complex as-
signments (for instance, *x = **y) without introducing temporary
variables.

The data structure that our algorithm operates on is the Program
Expression Graph (PEG). This is a graph representation of all
expressions and assignments in the program. The nodes of the
graph represent program expressions, and edges are of two kinds:

• Pointer dereference edges (D): for each dereference ∗ e, there
is a D-edge from e to ∗ e.

• Assignment edges (A): for each assignment ∗ e1 := e2, there is
an A-edge from e2 to ∗ e1.

For each A and D edge, there is also a corresponding edge in
the opposite direction, denoted by A and D, respectively. In the rest
of the paper we will also refer to graph edges as relations between

Memory aliases: M ::= D V D

Value aliases: V ::= F M? F

Flows of values: F ::= (A M?)∗

F ::= (M? A)∗

Figure 2. Context-free grammar G for the may-alias problem. The
grammar uses EBNF notation, where “?” indicates an optional
term, and “*” is the Kleene star operator. Symbols D and A are
the only terminals: D denotes dereference edges, and A denotes
assignment edges.

the corresponding nodes. Hence, relations A and D are the inverse
relations of A and D, respectively. All of the above relations (or
edges) are pre-computed before the analysis.

In the remainder of the paper we will use the terms “node” and
“expression” interchangeably, because of the one-to-one mapping
between PEG nodes and program expressions.

Example. Figure 1 shows an example graph. The source C pro-
gram consists of the pointer assignments shown on the left (control-
flow constructs are omitted because they are irrelevant to a flow-
insensitive analysis). The program expression graph is shown on
the right. The nodes in the graph represent all program expressions
and subexpressions. For readability, node expressions are shown in
C form, not in canonical form. However, the graph is constructed
using their canonical representation. Solid edges represent pointer
assignments, and dotted edges represent pointer dereferences. Each
horizontal line corresponds to a level of pointer indirection. Expres-
sions lower in the figure are at deeper pointer levels.

4. Alias Analysis via CFL-Reachability
The goal of the alias analysis is to compute may-alias relations
between program expressions. We define two kinds of aliases:

• Memory (or location) aliases: two lvalue expressions are mem-
ory aliases if they might denote the same memory location;

• Value aliases: two expressions are value aliases if they might
evaluate to the same pointer value.

We describe memory aliases using a binary relation M ⊆
Expr×Expr, and value aliases using a binary relation V ⊆ Expr×
Expr. Each relation can be viewed as an edge in the program
expression graph. We formulate the computation of M and V edges
as a context-free language (CFL) reachability problem (Reps 1997;
Kodumal and Aiken 2004) over the program expression graph.

The idea of CFL-reachability is as follows. Given a graph with
labeled edges, a relation R over the nodes of this graph can be for-
mulated as a CFL-reachability problem by constructing a grammar
G such that nodes n and n′ are in the relation R if and only if there
is a path from n to n′ such that the sequence of labels on the edges
belongs to the language L(G) defined by G. Such a formulation
makes it easier to develop demand-driven algorithms in a deduc-
tive fashion.

Figure 2 shows the context-free grammar G for aliasing prob-
lems. The grammar is written using EBNF notation, where the star
symbol is the Kleene star operator, and the question mark indicates
an optional term. Each terminal and non-terminal represents a rela-
tion. The concatenation of terminals and non-terminals in the right-
hand side of a production corresponds to relation composition.

The grammar G from Figure 2 has three non-terminals, M , V ,
and F ; and two terminals, A and D. Terminals A and D represent
assignments and dereference edges in the expression graph. Non-



terminal M models memory aliasing relations, and non-terminal
V represents value aliasing relations. Finally, non-terminal F de-
scribes flows of values via assignments and memory aliases. More
precisely, an F edge from e to e′ indicates that the execution of
the program might write the value of expression e into the memory
location of expression e′.

The intuition behind each production is as follows:

• Production M ::= D V D shows that two memory locations
∗ e1 and ∗ e2 are memory aliases, i.e., M(∗ e1, ∗ e2), when their
addresses have the same value: V (e1, e2). Hence, the path from
∗ e1 to ∗ e1 consists of an anti-dereference edge D(∗ e1, e1), a
value alias edge V (e1, e2), and a dereference edge D(e2, ∗ e2).

• Production V ::= F M? F shows that two expressions
e1 and e2 are value aliases if there exist two expressions e′1
and e′2 that are memory aliases, M(e′1, e

′
2), and whose values

flow into e1 and e2, respectively: F (e′1, e1) and F (e′2, e2). In
this production M is optional because M is not reflexive for
primitive addresses a ∈ Addr (see the properties in the next
subsection).

• Production F ::= (A M?)∗ means that flows of values are due
to sequences of assignments and memory aliases. The produc-
tion F ::= (M? A)∗ describes the inverse relation, i.e., value
flows in the opposite direction.

The value-flow relation F has been introduced in the grammar
to make it easier to understand. However, non-terminal F can be
eliminated from the productions, as follows:

M ::= D V D (1)
V ::= (M? A)∗ M? (A M?)∗ (2)

Hence, memory aliases and value aliases are mutually recur-
sive. Computing memory aliases requires computing value aliases
for their addresses; and computing value aliases involves knowl-
edge about memory aliases during value flows. At each step, the
recursive process goes one pointer level deeper.

Example. Consider the example from Figure 1. Suppose the anal-
ysis wants to determine whether *x and *s are memory aliases.
Expressions &r and y are value aliases V (&r, y) because the as-
signment A(&r, y) causes a value flow from &r to y. Therefore, the
dereferences of these expressions are memory aliases: M(r, *y).
Furthermore, the value of r flows into s, and the value of *y flows
into x. Since r and *y are memory aliases, we conclude that x
and s are value aliases: V (x, s). Therefore, *x and *s are mem-
ory aliases: M(∗x, ∗s).

From the CFL-reachability perspective, the path from *x and
*s that traverses nodes [*x, x, *y, y, &r, r, s, *s] corresponds to
a string D A D A D A D. Since this string is in the language of M
in the alias grammar, the two expressions *x and *y may alias.

4.1 Properties
To better understand relations D, V and M , it is useful to identify
their key properties. The list below enumerates and discusses these
properties:

• The dereference relation D is an injective partial map. That is,
each program expression e has at most one dereference expres-
sion e′ such that D(e, e′); and at most one “address-of” ex-
pression e′′ such that D(e, e′′). The relation D D (meaning the
composition of D and D) is the identity for primitive address
expressions; and D D is the identity for lvalue expressions.

• Relations V and M are symmetric. One can show that a rela-
tion is symmetric by showing that it is equal to its inverse. In the

CFL model, the inverse of a nonterminal is obtained by revers-
ing the order of terms in the right-hand side of its production,
and then inverting them. The inverses of M and V are:

M = D V D = D V D

V = F M? F = F M? F

The above equalities can then be used to inductively show that
V = V and M = M , by induction on the path length of
relations M , M , V and V (where relations are regarded as
paths, according to the CFL-reachability model).

• Relation V is reflexive. This is because V is nullable (it derives
the empty string ε in the grammar).

• Relation M is reflexive only for lvalue expressions. This is
because V is nullable, so D D is a subset of the relations in
M , and because D D is the identity for lvalue expressions.
Relation M is not reflexive for primitive addresses because such
expressions do not have incoming D edges by construction.

• Relations M and V are not necessarily transitive. Hence, they
are not equivalence relations and cannot be implemented using
union-find structures.
We illustrate this in the example from Figure 1. Expressions r
and s are value aliases, and so are s and &t; however, r and &t
are not. Similarly, *x and *s are memory aliases, and so are *s
and t, but *x and t refer to disjoint pieces of memory.
In particular, the non-transitivity of M is the reason why the
production for value flows F applies M at most once after
each assignment. Applying M more than once might generate
spurious alias relations.

4.2 Hierarchical State Machine Representation
This section shows a representation of grammar G using hierarchi-
cal state machines (Alur and Yannakakis 1998; Alur et al. 2001;
Benedikt et al. 2001). The alias analysis algorithm will be con-
structed from this state machine model. A hierarchical state ma-
chine is an automaton whose nodes are either states or boxes. Each
box represents a “call” to another state machine, and has a set of in-
puts and outputs; these correspond to the start and final states of the
machine being called. Transitions within each machine link states,
box inputs, and box outputs. As the name implies, recursive state
machines also allow recursive calls between the machines.

Figure 3 shows the hierarchical, recursive state machines for
the aliasing problem. These machines are constructed from produc-
tions (1) and (2), where the F non-terminal has been eliminated.
The machine for memory aliases M is shown in the upper part of
the figure, and the one for value aliases V in the lower part. Each
machine has one start state, indicated by the edge that crosses the
box. Furthermore, machine M has one output final state, and all of
the four states of machine V are final. In M ’s automaton, all four
edges emanating from the outputs of the V box are labeled D.

The four states of the automaton V describe the current position
in production (2). States 1 and 2 correspond to incoming value
flows in the first portion of the production. The automaton stays in
these states while traversing inverted assignment edges A. Once a
forward assignment A is traversed, the execution moves to states
3 and 4. These states correspond to the second portion of the
production. From this point on, only A edges can be traversed.
Hence, the execution can be thought of as consisting two stages,
one represented by states 1 and 2, and the other represented by
states 3 and 4. Each of the stages needs two states to ensure that
M is never called twice in a row. After each invocation of M , the
automaton follows either an A edge or an A edge, depending on
the current stage.
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Figure 3. The Hierarchical State Machines that describes aliasing
relations: machine M recognizes memory aliases, and machine V
recognizes value aliases. The two machines are mutually recursive.

4.3 Alias Analysis Algorithm
We now present the demand-driven algorithm for answering mem-
ory may-alias queries. Given two lvalue expressions e1 and e2, the
algorithm determines whether M(e1, e2) holds.

Figure 4 shows the analysis algorithm. This is a worklist al-
gorithm that propagates CFL-reachability information through the
program expression graph. The propagation of reachability facts
follows the structure of the recursive state machines from Figure 3.
During propagation, the algorithm uses machine call summaries to
cache and reuse results of recursive calls to state machines. This
mechanism is similar to the way inter-procedural dataflow analyses
cache and reuse function call summaries (Sharir and Pnueli 1981;
Reps et al. 1995).

The A and D edges of the expression graph are modeled using
four functions: deref(n) is the dereference of node n, or null if
none exists; addr(n) is the address of node n, or null if none
exists; assignTo(n) is the set of nodes that n is assigned into; and
assignFrom(n) is the set of nodes that n is assigned from. Hence,
functions deref, addr, assignTo, assignFrom indicate the D, D, A,
and A edges, respectively.

The information being propagated by the algorithm is value
aliases V . The worklist elements are triples of the form 〈n, s, c〉
indicating that a value-alias reachability propagation initiated at
node s (the source node) has reached node n (the current node),
in automaton state c. Here, state c is one of the four states of the
state machine V from Figure 3. Hence, the presence of element
〈n, s, c〉 in the worklist implies that n and s are value aliases.
For each node n, the algorithm maintains a set reach(n) of pairs
〈s, c〉 of source nodes and machine states that have reached node n.
The algorithm also maintains a set aliasMem(n) that represents the
currently known memory aliases of node n; these act as summaries
of calls to state machine M . Both of the sets aliasMem(n) and
reach(n) grow during the execution of the algorithm, but need not
be fully computed before the query is answered.

The functioning of the algorithm proceeds as follows. Given
the lvalue expressions e1 and e2, the algorithm tries to deter-
mine whether address expressions addr(e1) and addr(e2) are value

MAYALIAS(e1 : Expr, e2 : Expr)
1 /* initialize worklist */
2 w ← { 〈addr(e1), addr(e1), S1〉 }
3
4 while (w is not empty)
5 remove 〈n, s, c〉 from w
6 s′ ← deref(s)
7 n′ ← deref(n)
8
9 /* check if the destination has been reached */

10 if (s′ = e1 ∧ n′ = e2)
11 then return true
12
13 /* propagate information upward */
14 if (n′ 6= null ∧ n′ 6∈ aliasMem(s′))
15 then aliasMem(s′) = aliasMem(s′) ∪ {n′}
16 for each 〈s′′, c′′〉 in reach(s′) :
17 switch (c′′)
18 case S1 : PROPAGATE(w, n′, s′′, S2)
19 case S3 : PROPAGATE(w, n′, s′′, S4)
20
21 /* propagate reachability through value flows */
22 switch (c)
23 case S1 :
24 for each m in assignFrom(n) :
25 PROPAGATE(w, m, s, S1)
26 for each m in aliasMem(n) :
27 PROPAGATE(w, m, s, S2)
28 for each m in assignTo(n) :
29 PROPAGATE(w, m, s, S3)
30
31 case S2 :
32 for each m in assignFrom(n) :
33 PROPAGATE(w, m, s, S1)
34 for each m in assignTo(n) :
35 PROPAGATE(w, m, s, S3)
36
37 case S3 :
38 for each m in assignTo(n) :
39 PROPAGATE(w, m, s, S3)
40 for each m in aliasMem(n) :
41 PROPAGATE(w, m, s, S4)
42
43 case S4 :
44 for each m in assignTo(n) :
45 PROPAGATE(w, m, s, S3)
46
47 /* propagate information downward */
48 if (addr(n) 6= null ∧ (c = S1 ∨ c = S3))
49 then PROPAGATE(w, addr(n), addr(n), S1)
50
51 return false

PROPAGATE(w, n, s, c)
1 if (〈s, c〉 6∈ reach(n))
2 then reach(n)← reach(n) ∪ { 〈s, c〉 }
3 w ← w ∪ { 〈n, s, c〉 }

Figure 4. Demand-Driven Alias Analysis Algorithm.



aliases. For this, it starts the value-alias reachability automaton in
state S1, from node addr(e1), as shown by the initialization at line
2. If, during the execution of the main loop, the propagation of this
information reaches node addr(e2), then the query returns “true”,
as shown in lines 10–11. Otherwise, at each iteration the algorithm
performs the following tasks:

• Lines 14–19: information is propagated “up” in the graph,
through dereference edges. In this part, the algorithm identi-
fies new summaries of calls to the M machine. If the current
node n has a dereference n′ 6= null, and that dereference is not
in the memory alias set of s′ (the source’s dereference), then a
new summary M(s′, n′) is detected. In this case, the algorithm
adds n′ to the alias set of s′, and then propagates each pair
〈s′′, c′′〉 that has reached s′ over to n′ in order to simulate the
call to M . Such calls are possible only for pairs in states S1 or
S3; the resulting states are S2 and S4, respectively. This models
the transitions for M calls in the V machine.

• Lines 22–45: information is propagated through value flows.
This part of the algorithm precisely models all of the transi-
tions in the V automaton. For transitions that correspond to M
calls, the algorithm uses the current memory-alias summaries.
For the other transitions, it propagates information through the
assignments or inverted assignments in the expression graph,
changing the automaton state accordingly.

• Lines 48–49: information is propagated “down” in the graph,
through inverted dereference edges. This propagation corre-
sponds to calling automaton M , with the purpose of discov-
ering new memory aliases of the current node n. Such calls
are only possible if the automaton is currently in state S1 or
S3, and if the current node n has an address (i.e., an inverted
dereference edge D). In these cases, the algorithm starts a new
value-alias propagation at the address of n. As this new prop-
agation proceeds, it will enable the algorithm to discover new
memory aliases at lines 18 and 19.

The execution of the algorithm can have two outcomes. If the
algorithm identifies that addr(e1) and addr(e2) are value aliases,
then it terminates early and reports that e1 and e2 are memory
aliases, at line 11. Otherwise, when the worklist becomes empty,
all of the value-flow paths from addr(e1) have been explored, and
none of them reached addr(e2). In this case, the algorithm reports
that the two expressions are not aliased, as shown at line 51.

4.4 Analysis Example
We demonstrate the functioning of the alias algorithm using the
example from Figure 1. Suppose we want to answer the alias query
mayAlias(*x, *s). Figure 5 illustrates the propagation of worklist
items for this query starting from expression *x. Only the relevant
portion of the graph is shown. The shaded circles above the nodes
represent worklist items; the numbers inside items show the item
state; and the dashed edges show the propagation of items through
the graph. The table below shows this propagation in textual form:

Step Current Added Propagation
item to worklist kind

1 (x, x, S1) (x, *y, S1) flow
2 (x, *y, S1) (y, y, S1) down
3 (y, y, S1) (y, &r,S1) flow
4 (y, &r,S1) (x, r, S2) up
5 (x, r, S2) (x, s, S3) flow
6 (x, s, S3) return “may alias”

The table describes each step of the algorithm, the full contents of
each item, and the new items being generated at each step. The last
column indicates the kind of propagation.

may alias

*y r sx

*x *s

&ry

S1 S1 S2 S3

S1S1

Figure 5. Functioning of the worklist algorithm for the query
mayAlias(*x, *s). The shaded circles represent worklist items, and
the dashed lines indicate the propagation of items. The automaton
state is shown in each of the items.

The analysis starts the reachability propagation from the address
of expression *x, in state S1 of the automaton, as indicated by the
first item (x, x, S1). The analysis traverses the assignment edge
∗y → x in the opposite direction, maintaining the automaton state
S1. The new triple becomes (x, *y, S1).

At this point there are no other incoming or outgoing assign-
ment edges for *y, so the analysis starts looking for aliases of *y.
This is done by propagating information “down” in the graph and
starting a new reachability propagation at the address of *y. The
starting item is (y, y, S1). After traversing the assignment &r →
y (again in the opposite direction) the analysis generates the triple
(y, &r, S1). This shows that y and &r are value aliases. Hence, the
analysis concludes that their dereferences are memory aliases. This
is done by propagating the information “up” in the graph: for each
item that has reached *y, the analysis moves it over to r, adjust-
ing the automaton state to indicate that a memory alias has been
detected. In this example, the item (x, *y, S1) is propagated over
to (x, r, S2). The automaton state changes to S2 to show that the
propagation has traversed a memory alias.

Finally, the analysis traverses the assignment edge r→ s. Since
this edge is now traversed in the forward direction, the automaton
moves to state S3, and the new item becomes (x, s, S3). This shows
that x and s are value aliases. Their dereferences, *x and *s, are
the expressions in the query. Hence, the analysis reports that the
two expressions may alias.

Note that the analysis would have given the same answer if the
propagation of information had started from the other end, i.e., ex-
pression *s. In that case, the same path would have been traversed,
but in the opposite direction. This behavior is in agreement with the
fact that the alias relation M is symmetric.

4.5 Analysis Enhancements
We propose several improvements to the basic alias algorithm.

Gradual exploration. First, we impose an order on the explo-
ration at different pointer levels, giving priority to reachability
propagation at upper levels of the expression graph. In this way,
the algorithm first explores the possibility of value aliases through
assignments only. If the query is still not answered, then the al-
gorithm searches for memory aliases and starts using them in the
value flows. Furthermore, at each pointer level, the algorithm per-
forms a breadth-first search to avoid exploring long assignment
chains when short paths exist. This exploration behavior is achieved
by implementing the worklist as a multi-level queue. Each insertion
specifies the level at which the worklist element is added. Each re-
moval retrieves the first element in the topmost non-empty queue.



Concurrent exploration. The second improvement follows from
the observation that memory alias relations are symmetric, but the
alias algorithm is asymmetric, since it starts propagation only from
the first expression. Changing the order of expressions in the query
will not affect the final answer, but might impact efficiency. To
address this issue, we propose an enhancement where the algorithm
starts propagation from both ends, e1 and e2.

Conceptually, the algorithm consists of two separate, concurrent
searches. This lends itself to parallelism and can take advantage of
a multi-core or multi-processor system. However, our experiments
with a truly concurrent implementation showed that the synchro-
nization and thread management overheads outweigh the concur-
rency gains.

Thus, our algorithm uses a single-threaded implementation
where the two searches use two separate worklists, and tasks from
the two worklists are manually interleaved. Additionally, the search
at the topmost pointer level stops as soon as the propagations from
the two opposite ends connect to each other. We refer to this ap-
proach as the two-worklist algorithm.

Tunable exploration budget per query. To limit the time spent
on alias queries, our analysis uses a parameter N that controls the
amount of exploration per query. This represents the maximum
number of items that will be inserted into the worklist. While it
is more intuitive to limit the number of worklist iterations (i.e.,
the number of items taken out of the worklist), the latter is not as
useful in bounding the running time. This is because the amount of
work done per iteration is not constant; it depends on the number
of edges incident on the current node. If the analysis does not
terminate within its budget, it stops and conservatively reports that
the expressions may be aliased. The exploration budget N provides
a convenient way for analysis clients to trade running time for
precision, and vice versa.

Caching. The presentation so far assumed that each query is
executed from scratch. We can improve the analysis by caching
alias results so that successive queries benefit from the efforts of
earlier ones, at the expense of using more memory. New queries
will be able to reuse the memory alias information aliasMem(n)
stored at each node n, without exploring the deeper pointer levels.

One complication arises due to the fact that when a query termi-
nates the loop early, at line 11, it has not finished its exploration; in
particular, it has not finished computing full memory alias sets for
the dereference nodes traversed. A subsequent query reaching such
a dereference node will not know whether the alias set is complete,
and will need to conservatively start a new reachability search at
that node. To solve this, each query keeps track of the dereference
nodes it traverses. If the query completes, returning at line 51, it
marks all of those nodes as having full alias sets.

4.6 Comparison to Points-to Analysis
It is useful to compare our alias analysis to points-to analyses. The
key difference between the two analyses is that the alias analysis
computes the alias relations V and M , whereas points-to analyses
compute a points-to relation P ⊆ Expr × Addr between program
expressions and memory addresses. Relation P can be derived from
V , as follows. If R is a relation that marks all of the primitive
address expressions, R = { (a, a) | a ∈ Addr}, then:

P = F R = (M? A)∗ R (3)

The above equation indicates that an address is in the points-to
set of an expression if it flows into the expression. Using this
equation, one can build a demand-driven points-to analysis that
answers queries of the form pointsTo(e). We briefly sketch such
an analysis, but omit the full algorithm because it is not the focus
of this paper. The algorithm would be similar to the alias analysis

in Figure 4, with the following exceptions. The initialization of
the worklist would mark the source with a special symbol START.
Then, propagations through assignments A (at lines 29, 35, 39, and
45) will be disallowed when the source is START to model just the
backward flows. The termination condition at lines 10–11 would
be replaced by code that adds the current node into the points-to
set being queried, provided the source is START and the current
node is an address. The final points-to set will then be returned
after the loop. Essentially, this would be the demand-driven points-
to analysis of Heintze and Tardieu (2001). A key observation here
is that the alias analysis presented in Section 4.3 might terminate
early, at line 11, whereas the points-to analysis cannot, because it
must construct the full set.

Equation (3) also indicates that the computation of points-to
sets requires information about memory aliases. As we know, the
memory alias relation M and value alias relation V are mutually
recursive. Hence, points-to analyses, either exhaustive or demand-
driven, must compute relations M and V , or some approximation
thereof. Conservative approximations can be obtained via transitive
closure (recall that M and V are symmetric, but not transitive).
This leads to the following classification of three important points-
to analyses by the kinds of alias relation approximations they use:

• Andersen’s inclusion algorithm (Andersen 1994): M and V are
not transitive. This is the case for the relations computed by the
algorithm in this paper, as defined by equations (1) and (2).

• Steensgaard’s unification algorithm (Steensgaard 1996): both
M and V are approximated by their transitive closure.

• Das’s one-level flow algorithm (Das 2000): M is approximated
by its transitive closure, but V remains non-transitive.

The unification-based analyses are efficient both in time and in
space. These analyses run in almost linear time in the program size,
and they efficiently represent computed relations using union-find
data structures. Steensgaard’s analysis provides an approximation
of both M and V , whereas the unification phase of Das’s algorithm
provides an approximation of M only (computing V or P still
requires performing value flows).

4.7 Uninitialized Pointers and Null Pointers
Uninitialized and null pointers can cause our analysis to answer
alias queries more conservatively that using points-to analysis and
intersecting points-to sets. This is the case if an uninitialized or
null pointer e is assigned into two other expressions p and q, whose
points-to sets are disjoint. Our analysis says that ∗ p and ∗ q may
alias because of the assignments from e. However, this situation
arises only if: e is never initialized, which is a bug; or always null,
in which case all uses of e could be renamed to null via constant
propagation.

In our experiments, we have seen only one such case, for a query
between two dereferences of the command-line argument pointer
argv. Interestingly, this revealed a minor error in the points-to
analysis: argv was treated as uninitialized and considered to have
an empty points-to set. Our alias analysis correctly determined that
the expressions may alias. We have not encountered spurious alias
relations due to assignments of null pointers.

5. Semantics and Soundness
We briefly state our soundness result here as follows. Consider the
following semantic domains:

σ ∈ Store = Addr→ Value
ν ∈ Value = Addr ∪ {⊥}

where a ∈ Addr ranges over addresses, and⊥ represents uninitial-
ized values.



The denotational semantics of statements and expressions is:

[[a]] σ = a
[[∗ e]] σ = σ([[e]] σ)

[[∗ e1 := e2]] σ = σ[[[e1]]σ 7→ [[e2]]σ]

A program is a set of statements prog = {s1, ..., sn}. The
execution of the program consists of executing statements si any
number of times, in any order, starting from an initial store σ0

where all memory locations are uninitialized: σ0 = λa.⊥.

DEFINITION 1. We say that relations M , V , and F are sound
approximations of store σ, written (M, V, F ) ≈ σ, if:

∀e, e′ : [[e]]σ = [[e′]]σ 6= ⊥ ⇒ V (e, e′)
∀e, e′ : [[e]]σ = [[e′]]σ 6= ⊥ ⇒ M(∗ e, ∗ e′)
∀e : [[e]]σ = a ∈ Addr ⇒ F (a, e)

THEOREM 1. The relations V , M , and F defined using CFL-
reachability over the program expression graph are sound approx-
imations of all stores that might arise during the execution of the
program.

The proof is by strong induction on the program’s execution: we
show that if (M, V, F ) ≈ σ for all stores σ that arise before an
assignment s, then these relations are also sound approximations
of the store σ′ = [[s]]σ after the assignment, i.e., (M, V, F ) ≈ σ′.
The full proof can be found in Appendix A.

6. Evaluation
This section presents an evaluation of the algorithms proposed in
this paper, as well as the enhancements discussed in Section 4.5.
These algorithms were implemented in Crystal (Rugina et al.), a
program analysis infrastructure for C written in Java. The alias
analysis is implemented in Java and is publicly available as part
of the latest release of the Crystal infrastructure.

We ran our experiments on the SPEC2000 suite of C benchmark
programs. Figure 6 lists these benchmarks and their sizes, both in
terms of number of lines of source code, and in terms of the size
of their Program Expression Graphs (PEG). The experiments were
conducted on a dual-processor 3.8 GHz Pentium 4 machine with
2 GB of memory, running Windows XP.

6.1 Program Representation and C Language Features
The Crystal program analysis infrastructure uses an intermediate
representation of expressions and statements similar to the canon-
ical form presented in Section 3. The PEG is constructed by scan-
ning all of the statements in the Crystal representation. This takes
8 seconds in total for our 15 benchmark programs. Our front-end
handles all of the C language, translating all expressions and as-
signments into their canonical forms.

In addition to primitive addresses and dereference expressions,
the intermediate representation contains two other kinds of canoni-
cal expressions: field expressions and arithmetic expressions. Array
expressions are automatically translated into pointer arithmetic and
dereference expressions. In the PEG, each pointer arithmetic ex-
pression e + i is mapped to the same node as its base expression e,
so the analysis does not distinguish between the two. This also im-
plies that the analysis does not distinguish between different array
elements.

Field expressions e + f , where e is a pointer expression and
f a structure field, denote the address of field f in the structure
pointed to by e. Standard C expressions such as x.f, &(x->f), or
x->f are represented as ∗ (ax + f), ∗ ax + f , and ∗ (∗ ax + f),
respectively. In the PEG, each field expression e + f is mapped
to the same node as its base expression e, meaning the analysis is
field-insensitive. We have also experimented with a field-sensitive

Program Code size PEG size Alias
(KLOC) Nodes Edges queries

164.gzip 7.8 4767 3226 34
175.vpr 17.0 11242 9833 91
176.gcc 205.7 112341 168484 1086
177.mesa 50.2 51766 271863 955
179.art 1.3 1226 659 4
181.mcf 1.9 1303 1040 4
183.equake 1.5 1716 967 54
186.crafty 19.5 10929 7238 17
188.ammp 13.3 13526 9203 59
197.parser 10.9 9538 8753 99
253.perlbmk 61.8 48703 52964 304
254.gap 59.5 58915 809665 656
255.vortex 52.6 50322 65125 784
256.bzip2 4.6 3523 1681 22
300.twolf 19.7 14057 9977 120

Figure 6. Benchmark programs.

formulation of our analysis (presented in Appendix B), but found
that the benefits of field sensitivity are extremely small (affecting
less than 1% of queries) to justify the additional complexity in the
analysis. Therefore, all of the results in this section use a field-
insensitive analysis.

Finally, function calls are handled in a context-insensitive man-
ner, as assignments from actual arguments to parameters, and from
the returned expression to the expression being assigned at the call.
To resolve possible targets of indirect function calls, the number of
arguments at the call site is matched against all of the functions that
have had their addresses taken. Allocation wrappers are automati-
cally detected by our system using a simple intra-procedural flow-
insensitive analysis. The analysis identifies as allocation wrappers
those functions whose return values exclusively come from alloca-
tion points (either malloc or other allocation wrappers) via assign-
ments to local variables whose addresses have not been taken. The
alias analysis treats calls to allocation wrappers as distinct alloca-
tion sites.

6.2 Evaluation Methodology
We ran our analysis against a static set of queries using different
budgets N to judge its precision. To generate a more realistic set of
queries, we performed a standard available expressions analysis, a
dataflow analysis commonly used for partial redundancy elimina-
tion. From this set we excluded those queries that can be trivially
answered without pointer analysis, or that require techniques be-
yond pointer analysis. These include the following:

• Pairs of memory locations corresponding to memory blocks
with different names, e.g., different variables or different alloca-
tion sites. In canonical form, these are dereference expressions
whose base expressions are distinct primitive addresses. Such
expressions cannot alias.

• Pairs where one of the expressions is a variable whose address
has not been taken. In canonical form, the primitive addresses
of these variables have no outgoing assignment edges. Such
variables cannot alias any other expression.

• Pairs referring to different elements of the same array, e.g.,
a[i] and a[j]. These expressions map to the same PEG node.
Disambiguating such expressions would require techniques be-
yond pointer analysis, for instance, array dependence analy-
sis (Maydan et al. 1991). We conservatively assume that such
expressions may alias, and we exclude them from our statistics.



0%

20%

40%

60%

80%

100%

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
7
6
.g

c
c

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
1
.m

c
f

1
8
3
.e

q
u
a
k
e

1
8
6
.c

ra
ft
y

1
8
8
.a

m
m

p

1
9
7
.p

a
rs

e
r

2
5
3
.p

e
rl
b
m

k

2
5
4
.g

a
p

2
5
5
.v

o
rt

e
x

2
5
6
.b

z
ip

2

3
0
0
.t
w

o
lf

A
v
e
ra

g
e

N=2000

N=1000

N=500

N=200

N=100

N=50

N=20

N=10

N=6

0%

20%

40%

60%

80%

100%

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
7
6
.g

c
c

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
1
.m

c
f

1
8
3
.e

q
u
a
k
e

1
8
6
.c

ra
ft
y

1
8
8
.a

m
m

p

1
9
7
.p

a
rs

e
r

2
5
3
.p

e
rl
b
m

k

2
5
4
.g

a
p

2
5
5
.v

o
rt

e
x

2
5
6
.b

z
ip

2

3
0
0
.t
w

o
lf

A
v
e
ra

g
e

N=2000

N=1000

N=500

N=200

N=100

N=50

N=20

N=10

N=6

(a) (b)

Figure 7. (a) Percentage of queries completed by the demand-driven alias analysis (DDA) for exploration budgets N between 6 and 2000
steps. (b) Percentage of same queries answered as unaliased.
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Figure 8. Average run time per query (in milliseconds) for the
demand-driven alias analysis (DDA) under various budgets. Both
axes are logarithmic.

• Pairs of expressions that access different fields of a structure,
for instance a.f and b.g. Regardless of whether expressions
a and b are the same, the two field accesses never alias. These
pairs are also excluded.

The last column in Figure 6 shows the number of remaining queries
from each benchmark.

We evaluate and compare the following three algorithms for
answering alias queries:

1. Demand-Driven Alias Analysis (DDA). This is the analysis
algorithm proposed in this paper.

2. Exhaustive Points-to Analysis (EXH). This is an exhaustive
Andersen-style points-to analysis (Kodumal and Aiken 2005).
The analysis pre-computes points-to sets for all variables in the
program, and then answers alias queries by intersecting their
points-to sets. We use the results of this analysis as an upper
bound for determining the accuracy of our analysis.

3. Demand-Driven Points-to Analysis (DDPT). This is the
demand-driven points-to analysis discussed in Section 4.6. For
each alias query, the analysis computes points-to sets on de-
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Figure 9. Maximum memory consumption (in kilobytes) of DDA
across all queries in all benchmarks for different budgets. Both axes
are logarithmic.

mand and then intersects the computed sets. We compare both
the precision and the efficiency of this approach against ours.

Section 6.3 presents an evaluation of DDA alone. Next, Sec-
tions 6.4 and 6.5 compare DDA against EXH and DDPT, respec-
tively.

6.3 Evaluating DDA Alone
We evaluate the demand-driven alias analysis algorithm presented
in Section 4. The implementation of the analysis includes all of
the extensions presented in Section 4.5: the gradual exploration of
deeper pointer levels, the two-worklist algorithm, and the tunable
analysis budgets. Our main results do not make use of cached
alias information, but we have also experimented with the caching
version and briefly state the improvements. The exploration budget
parameter N ranges from 6 iterations to 2000 steps per query, and
all budgets are divided equally between the two worklists of the
algorithm.

Running time. Figure 8 shows the time to answer an alias query
on demand, averaged over all queries from all benchmarks, for dif-
ferent values of the analysis budget N . Both of the axes are loga-



rithmic. The results indicate that DDA takes less than 1 millisecond
per query on average for budgets up to 1000. Since some queries
can terminate much sooner than others, variation from the average
is expected to some degree. We find that the longest running queries
can take about an order of magnitude more time than the average.
On the other hand, the majority of queries (60% to 80%, depending
on the budget) takes less time than the average.

The run times shown represent the version of the analysis that
does not cache query results. If caching is used to help future
queries, the running time is lowered by an average of 12%.

Precision. Figure 7 shows an evaluation of the precision of the
demand-driven alias analysis. The figure shows the percentage of
queries completed and the percentage of queries answered as una-
liased for different values of the exploration budget N .

The numbers in Figure 7(a) show that the analysis completes
and thus fully resolves (either with a positive or with a negative
answer) about 72% of the queries on average using a budget of
2000 steps. Almost 50% of the queries can be answered in only 50
steps or less. The figure shows that for increasing exploration sizes,
the analysis yields diminishing returns. In particular, there is little
benefit in running the analysis with budgets larger than 500 steps.
For that budget, the analysis resolves about 67% of the queries.
Figure 7(b) shows that the number of queries answered as unaliased
follows the same trends.

As we will show in Section 6.4, most of the unfinished queries
correspond to expressions that may alias according to the exhaus-
tive analysis. Since we conservatively answer that expressions may-
alias when a query exceeds its budget, it means that most of our
conservative answers are in fact correct. This situation occurs in ap-
plications such as mesa and gap that use complex, custom memory
management that leads to long, eventually unsuccessful searches.
Setting a low exploration budget thus becomes useful for avoiding
such expensive queries in these cases, while providing the correct
answer in most cases.

Memory consumption. Since our implementation is in Java and
this is a garbage-collected language, it is difficult to monitor precise
memory usage. As such, we measure memory demand by identify-
ing the total number of objects created during each query and es-
timating the memory consumed by each type of object. The latter
was done by separately creating a large number of those objects,
inserting them into the same Java collection structures as the algo-
rithm (e.g., HashSets), and then deriving the average memory usage
per object.

Figure 9 shows the estimated memory consumption of the
alias analysis (without caching). These numbers confirm that our
demand-driven analysis has very low memory requirements. For a
budget of 500, only 65 KB are needed. Even for the largest budget,
the analysis never uses more than 264 KB.

In addition, for the caching version we have estimated the
amount of memory being used for the cache. This cache size in-
creases both with the budget N and with the number of queries.
The maximum cache size observed in our experiments was 380 KB
for vortex with a budget of 2000. For a budget of 500, the cache
size for all benchmarks was less than 150 KB. Note that it would be
possible to implement a more fine-grained cache eviction policy to
ensure control on the cache memory size, thus balancing memory
usage and performance.

6.4 Comparison to Exhaustive Points-to Analysis (EXH)
We compare our analysis to Banshee (Kodumal and Aiken 2005),
an exhaustive state-of-the-art Andersen-style points-to analysis that
pre-computes points-to sets for all variables in the program. Alias
queries are then answered by intersecting these sets. We refer to
this analysis as EXH. Since the precision of EXH is an upper bound
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Figure 10. Percentage of queries where our demand-driven alias
analysis (DDA) gives the same answer as the exhaustive analysis
(EXH).

for the precision of our analysis, the purpose of comparing the two
analyses is to determine how close our analysis gets to the ideal
answers.

Figure 10 shows the results of this comparison. The bars in this
figure show the percentage of queries where DDA gives the same
answer as EXH. The results indicate that our analysis is highly
accurate, even for low analysis budgets. For a budget of 500 the
analysis correctly answers more than 95% of the queries. Even
with as little as 50 steps, DDA resolves about 90% of the queries
that EXH does. Comparing Figures 10 and 7(a), we conclude that
the majority of queries where our demand-driven analysis does not
finish are cases where expressions may alias. As mentioned earlier,
our conservative answer becomes the correct answer in these cases.

We have also computed and compared the memory consump-
tion of the exhaustive analysis. The computed memory size ex-
cludes the memory needed for parsing the programs (estimated by
a run where points-to analysis is disabled). On average, EXH re-
quires 35 MB of memory per benchmark, and up to 150 MB for
gcc. We see that an exhaustive analysis can be very expensive in
terms of the memory needed, especially when compared with the
memory demands of DDA.

Although comparing running times is less meaningful, as the ex-
haustive analysis pre-computes all of the results and amortizes the
cost over all queries, we briefly report these numbers for the sake
of completeness. EXH takes 12 seconds in total to pre-compute
the points-to sets for all 15 benchmarks. The run time per query is
1 ms, but most of this time is spent building points-to sets for com-
plex expressions (such as **p) from the points-to sets of individual
variables. The actual set intersection operation is a small fraction
of this time.

6.5 Comparison to Demand-Driven Points-to Analysis
(DDPT)

Finally, we compare DDA against our own implementation of
demand-driven points-to analysis (DDPT), as described in Sec-
tion 4.6. This points-to analysis is similar to the one proposed by
Heintze and Tardieu (2001). Although an implementation in C and
SML of that analysis is publicly available, we chose to use our Java
implementation for two reasons: to ensure that DDA and DDPT
are implemented in the same language and same framework; and
to provide tunable exploration budgets for DDPT. These aspects
make the comparison more meaningful.



Budget Completed % of EXH Run time (ms)
N DDA DDPT DDA DDPT DDA DDPT
6 12% 8% 61% 63% 0.08 0.08

10 22% 15% 69% 69% 0.10 0.09
20 40% 19% 84% 73% 0.13 0.11
50 49% 27% 89% 80% 0.17 0.18

100 55% 29% 91% 82% 0.22 0.23
200 59% 30% 93% 83% 0.31 0.36
500 67% 31% 96% 84% 0.52 0.75

1000 70% 31% 96% 84% 0.85 1.63
2000 72% 31% 96% 84% 1.84 6.32

Figure 11. Accuracy and performance comparison between DDA
and DDPT: percentage of queries completed, percentage giving
same answer as EXH, and average run time per query.

Figure 11 compares the precision of the demand-driven alias
analysis against the demand-driven points-to analysis given the
same exploration budgets. We see that the alias analysis can com-
plete more queries than the points-to analysis for all budgets. Be-
yond a budget of 500, DDPT is unable to complete many more
queries even with an exponential increase in the budget. Accuracy
as compared to EXH reveals the same pattern, with an exception
at the extremely low budget of 6. DDPT is able to resolve slightly
more queries as unaliased compared to DDA at this budget because
of the two-worklist algorithm used by DDA, where the budget is di-
vided and some work is duplicated between the worklists. Beyond
this, the data is very striking when one considers the difference in
budget needed to achieve the same results. The number of queries
that is decided as unaliased is about the same (84%) when DDA is
given a budget of 20 and when DDPT is given one of 500.

The last two columns of Figure 11 show the run-time perfor-
mance of both DDA and DDPT. Our initial goal was to verify that
the run times for the two analyses are about the same, since this
should be controlled by the budget. We found this to be the case
at smaller budgets (below 200 steps), but were surprised to find
that DDA is noticeably faster than DDPT at higher budgets. At a
budget of 2000, DDPT takes more than 3 times longer to run than
DDA does. There are two main reasons for this difference. First,
many more queries are completed within the budget (and thus take
less than the maximum time) for DDA. Second, we have observed
that when both analyses are able to resolve a query under the same
budget, DDPT takes on average twice as many exploration steps.

Comparing both the running times and the accuracies of DDA
against DDPT, we see that there is a significant difference in cost to
achieve the same results. For an 84% accuracy DDA uses 0.13 ms
on average, whereas DDPT needs 0.75 ms, which is more than 5
times higher. DDA resolves in 50 steps more queries as unaliased
than DDPT does in 2000 steps, and the difference in running time
here amounts to a factor of 37.

6.6 Summary of Findings
We summarize the main conclusions of our experiments as follows:

• A demand-driven alias analysis can effectively resolve memory-
alias queries with the same accuracy as an exhaustive analysis
in very little time and using no pre-computed information.

• The memory consumption of our demand-driven analysis is
extremely low and orders of magnitude less than that of a state-
of-the-art exhaustive analysis.

• For answering may-alias queries, a demand-driven alias anal-
ysis will do less work than a demand-driven points-to analysis
and can answer more queries in less time given the same budget.

7. Conclusions
We have presented a novel demand-driven algorithm that answers
may-alias queries. The analysis is designed to answer the alias
queries without attempting to compute or intersect points-to sets.
We have described the alias relation using a context-free grammar,
and then formulated the alias problem as a CFL-reachability prob-
lem over a graph representation of the program. Our results show
that the analysis can accurately answer on demand a very large frac-
tion of the queries with small time and space consumption, making
the approach attractive not only for compilers, but also for more
constrained environments such as program development and inter-
active tools.

A possible direction of future work will concern investigating
the applicability of existing optimizations proposed for inclusion-
based points-to analysis, such as on-line cycle elimination (Fähn-
drich et al. 1998), to the alias analysis problem. Such optimizations
have proved to be very effective for exhaustive points-to analyses,
but it is unclear if the same applies to alias analyses or to demand-
driven analyses.
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A. Proof of Theorem 1
We will show that (M, V, F ) ≈ σ for all σ that can arise in a
program by strong induction on program execution.

Base case. Trivially true for σ0.

Inductive case. Let σ be the store after execution of statement s.
Write s as ∗ e1 := e2. Inductively assume that

(V, M, F ) ≈ σ′ for all σ′ before execution of s.

Consider an arbitrary expression e such that [[e]]σ = a. We will
show that F (a, e) holds.

If [[e]]σ′ = a for any σ′ that existed before the execution of s,
then F (a, e) already holds by the inductive hypothesis.

Otherwise, we must have [[e]]σ 6= [[e]]σ′ where σ′ is the store
immediately before the execution of s. That is, statement s modi-
fied the value of expression e, and as such, s must have written into
at least one memory location represented by a subexpression of e.

Write e as ∗· · ·∗ ae, and let e′ be the smallest subexpression of
e whose value changed as a result of executing s. Statement s must
have updated the memory location where e′ resides.

Write e′ as ∗ e′′. Since s explicitly updated ∗ e1, we must have
[[e′′]]σ′ = [[e1]]σ

′. This implies V (e′′, e1) and M(e′, ∗ e1) by our
inductive hypothesis.

Let expression e′ be updated to have value a′ by statement s.
We must have [[e2]]σ

′ = a′ and thus F (a′, e2) holds. Statement s
itself implies A(e2, ∗ e1).

Altogether, the facts F (a′, e2), A(e2, ∗ e1), and M(∗ e1, e
′)

imply F (a′, e′).
If e′ = e, we would have a′ = a and F (a, e), and we are done.

If e′ is some strict subexpression of e, we have the following.
Let [[∗ e′]]σ = a′′, and let s′ be the statement that updated the

memory location where ∗ e′ resides by writing a′′ into it. Note that
s′ can be any statement executed before s or even possibly s itself.
(Our inductive assumption will still hold even if s′ = s, since we
will only need information about the store before the execution of
s′.)

Write s′ as ∗ e′1 := e′2, and let σ′′ be the store before the
execution of s′. We thus have [[e′1]]σ

′′ = a′ and [[e′2]]σ
′′ = a′′.

By our induction hypothesis, we get F (a′, e′1) and F (a′′, e′2).
The facts F (a′, e′) and F (a′, e′1) together imply V (e′, e′1) and

M(∗ e′, ∗ e′1). Statement s′ gives us A(e′2, ∗ e′1).
We have thus inferred F (a′′, e′2), A(e′2, ∗ e′1), and M(∗ e′1, ∗ e′).

These facts imply F (a′′, ∗ e′).
Repeat this process to show value flows into ∗ ∗ e′, ∗ ∗ ∗ e′, and

so on up to ∗· · ·∗ e′ = e. The last flow gives us F (a, e) as desired.
Now consider two arbitrary expressions e and e′ such that

[[e]]σ = [[e′]]σ = a. We have shown that F (a, e) and F (a, e′)
hold, which implies V (e, e′) and M(∗ e, ∗ e′).

B. Field-Sensitive Analysis
The CFL formulation of alias analysis from Section 4 can be ex-
tended to distinguish between different structure fields. In the pres-
ence of fields, the PEG contains field edges between nodes in addi-
tion to assignment and dereference edges. Each field edge is labeled
with a field name f . Recall that an expression e + f is a field ad-
dress expression: it denotes the address of field f of the structure
pointed to by e. In the PEG, there is an f edge from e to e+ f , and
an inverse edge f in the opposite direction.

We now augment the grammar for alias relations to deal with
the presence of structure fields. The grammar Gf for field-sensitive
alias analysis is as follows:

Memory aliases: M ::= D V D
Value aliases: V ::= F V F | fi V fi | M?
Flows of values: F ::= (A M?)∗

F ::= (M? A)∗

This grammar reflects the fact that two field expressions are
value aliases if and only if they refer to the same field and their
base expressions are value aliases. This is shown in the production
V ::= fi V fi, where fi is a structure field. There is one such pro-
duction for each field fi in the program. The language of grammar
Gf subsumes the language of the field-insensitive grammar G. A
demand-driven, field-sensitive alias analysis algorithm can be de-
rived from the above grammar.


