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Abstract

Recent work that introduces local privacy to Bayesian Poisson factorization model
inference, but its proposed MCMC algorithm for inference suffers from significant
performance issues. We derive a coordinate ascent variational inference algorithm
to infer factorization models efficiently from private data. Our model relies on
several new properties we prove about Bessel distributions. Our method produces
a factor of 20 speedup in a synthetic experiment for model inference.

1 Introduction

Poisson factorization models are a powerful tool in social science and machine learning for under-
standing data generated by people. For instance, a corporate email corpus can surface count data such
as interactions between parties, counts of words in documents, and logs of types of events and their
actors recorded in these messages. However, these data may also encode interactions and content
that their human generators wish to keep private, which risks leaking information specific to a few
interactions in the final low-rank model.

Most existing methods for private inference of exponential family models operate in the central
model [15, 3], in which a trusted aggregator collects all the data and perturbs it to ensure privacy.
Recent work by [20] provides a privacy-preserving method for Poisson factorization models in the
local model, in which individual users perturb their own data to ensure privacy without relying on
any trusted party. The privacy guarantee uses a generalization of local differential privacy [26] called
limited-precision local privacy, which allows privacy protection on observations of variable scales
(e.g. ranging from an entire document to a single word token). A corresponding MCMC procedure
for inference of Poisson factorization models from prior work by [20] relies on the recharacterization
of the traditional data generative process to include the addition of perturbation through two-sided
geometric noise [12], with the true data characterized a random variable generated using the Skellam
and Bessel distributions.

The implementation of this method in prior work applies an MCMC approach to iteratively resample
the latent variables, such that after an initial burn-in period of resampling, these samples may be
aggregated to estimate the true model parameters. However, this approach to private Bayesian Poisson
matrix factorization is prohibitively slow for two primary reasons. First, it requires sampling from
the Bessel distribution, which is much slower than sampling for nonprivate Poisson factorization.
Second, the addition of private noise produces a denser matrix of observations, in which no observed
zero entry in the data is necessarily a true zero in the original data. This addition converts inference
from a sparse problem, where zero counts could be ignored, to a dense one, where every entry in the
observed data requires an expensive sampling procedure.
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We propose a new mean-field variational inference (VI) procedure to infer these models. To do this,
we first prove that the Bessel distribution is in the exponential family if its parameter ν is fixed,
and that it is the optimal Q-distribution for the latent count variables of the true data. However,
traditional mean-field inference fails, as the resulting expectation disrupts downstream inference due
to the non-integer value of the expectation of the Bessel. We overcome this obstacle by defining the
Q-distribution over the count to be a delta-spike at the mode of the optimal Bessel distribution (which
is integral, by definition). To show that this mode approximation is close to the value obtained using
the mean, we prove that the absolute difference between the mean and mode of a Bessel distribution is
bounded by one. Finally, we show that in a synthetic experiment, this method converges to reasonable
estimates of the true model parameters 20 times faster than the MCMC approach.

2 Background

Bayesian inference describes a family of methods to infer the posterior distribution P (Z |Y ) of latent
variables Z given data Y . This is most often performed using Markov chain Monte Carlo (MCMC) or
mean-field coordinate ascent variational inference (CAVI). An MCMC inference algorithm iteratively
re-samples each latent variable from its complete conditional zn ∼ P (zn |Z\n, Y ) where Z\n
denotes the set of all latent variables except zn. CAVI inference algorithms specify a factorized
variational distribution over latent variables Q(Z) =

∏
nQ(zn) and then optimize its parameters to

minimize the KL-divergence from it and to the exact posterior. A general result is that the optimal
factorized Q(Z) consists of Q(zn) factors that are proportional to the geometric expectation of the
corresponding complete conditional—i.e., Q∗(zn) ∝ GQ\zn

[
P (zn |Z\n, Y )

]
where the geometric

expectation isG[·] = exp (E[ln ·]). In practice, CAVI requires orders of magnitude fewer iterations
than MCMC to converge and is easier to adapt to large-scale streaming data settings.

Poisson factorization [23, 8, 30, 13, 14] is a broad class of models for learning latent structure from
discrete data, containing many of the most widely used models in the social sciences. including topic
models for text corpora [4, 6, 7], population models for genetic data [16], stochastic block models for
social networks [2, 13, 29], and tensor factorization for dyadic data [27, 10, 22, 18, 21]. It further
includes deep hierarchical models [17, 31], dynamic models [9, 1, 19], and many others.

Poisson factorization assumes that each observed count yiii is a Poisson random variable—yiii ∼
Poisson (µiii)—with unknown rate parameter µiii that is a deterministic function of shared model
parameters. We use the multi-index notation iii for generality; in the special case of Poisson matrix
factorization, each count is indexed by a row and a column—e.g., iii = (d, v)—and its latent rate
is defined as the dot product of corresponding row and column parameters—i.e., µiii=µiii=θ

>
d φv.

In many cases, the latent rate is defined to be a linear function of shared model parameters—i.e.,
µiii =

∑K
k=1 µiiik, where µiiik is a function of latent parameters specific to latent component k. In

Poisson matrix factorization, we define µiiik as the product of the latent parameters associated with
iii = (d, v), or µiiik = θdkφkv .

MCMC inference for Poisson factorization is a popular iterative Bayesian inference alogrithm.
In nonprivate Poisson factorization, When the latent rate is a linear function, the observed count
can be interpreted as the sum of latent sub-counts—i.e., yiii =

∑K
k=1 yiiik—where each sub-count is an

independent Poisson random variable yiiik ∼ Poisson (µiiik). The first step in MCMC inference is to
sample the vector of sub-counts ~yiii=(yiiik)

K
k=1 from its complete conditional, which is a multinomial

whose priors are determined by µiii:(
~yiii | −

)
∼ Multinom (yiii, µiii) (1)

where µiii=(µiiik)
K
k=1. The multinomial distribution is often parameterized with a probability vector

piii. In this paper, we parameterize it using a proportionality vector µiii which leaves implicit the
normalization step–i.e., piiik = µiiik∑K

k′=1
µiiik′

. Conditioned on samples of the sub-counts, updates to the
other latent variables are model-specific—i.e., depend on the particular structure of the rate function
and the priors over the parameters. However, in what follows, we derive a general approach that
applies to all models with a linear rate µiii.

Coordinate Ascent Variational Inference (CAVI) for Poisson factorization is an alternate ap-
proach to MCMC. It relies on the approximation of the true posterior distribution of the factorization
model with a set of variational distributions whose distributions are independent. By iteratively
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re-optimizing the values of the arguments, or variational parameters, of these approximating distri-
butions, it is possible to iteratively converge to an estimate of the true distribution parameters without
sampling.

The optimal variational family for ~yiii is proportional to the geometric expectation of its complete
conditional (given in Equation 1) and equal to:

Q∗ (~yiii) = Multinom
(
~yiii; yiii,

(
GQ [µiiik]

)K
k=1

)
(2)

The geometric expectationsGQ [µiiik] = eEQ[lnµiiik] can be understood as messages from the factors
Q(µiiik) in the context of a message-passing algorithm between variational parameters. In standard
cases, these expectations are available in closed-form. The factorsQ(µiiik) depend in turn on messages
from Q(~yiii) expressed via the expectation of yiii:

EQ [yiiik] = yiii
GQ [µiiik]∑K

k′=1GQ [µiiik′ ]
. (3)

Locally private MCMC for Poisson factorization does not permit us to directly observe the count
yiii. Instead, we observe a noised version of it ỹ(±)

iii = τiii + yiii where τiii ∼ 2Geo (αiii) is a two-
sided geometric random variable generated based on privacy parameter αiii ∈ [0, 1]. [20] show that
such perturbation mechanism satisfies (N,N ln(1/αiii))-limited-precision local privacy.1 MCMC
in this case proceeds by treating the true data yiii itself as a latent variable and re-sampling it from
its complete conditional. To do this, one can augment standard Poisson factorization with a set
of auxiliary variables for each data point Aiii =

{
λ

(+)
iii , λ

(−)
iii , g

(+)
iii , g

(−)
iii , ỹ

(+)
iii ,miii

}
, related to a

reinterpretation of the generative process for two-sided geometric noise as given in Appendix A. The
key feature of this auxiliary variable scheme is the two-step sampling procedure of a value of the
sensitive count yiii as a latent variable:(

miii | −
)
∼ Bessel

(
|ỹ(±)
iii |, 2

√
λ

(−)
iii

(
λ

(+)
iii +µiii

))
(4)

(
ỹ

(+)
iii | −

)
∼ Multinom

(
ỹ

(+)
iii , (λ

(+)
iii , µiii1, . . . , µiiiK)

)
(5)

Here, ỹ(+)
iii is defined deterministically as the maximum of miii and miii + ỹ

(±)
iii . The noisy observation

ỹ
(±)
iii and ỹ(+)

iii = (g
(+)
iii , yiii1, . . . , yiiiK) is a vector of latent sub-counts that sum to ỹ(+)

iii : the first of
these sub-counts g(+)

iii represents the positive noise added to the sensitive data yiii =
∑K
k=1 yiiik, while

the latter sub-counts constitute the vector of sub-counts corresponding to each latent component
in non-private Poisson factorization (see Equation 1).

3 Locally private variational inference for Poisson factorization

In this section we describe the challenges to deriving CAVI for locally private Poisson factorization
and sketch our solutions. In CAVI, we look to impose a factorized variational distribution over all
latent variables which, in this case, includes the set of auxiliary variables Aiii for each data point
mentioned in the last section. The main technical challenge lies in finding a variational families
for miii and ỹ(+)

iii that yield a good approximation and closed-form messages to the other factors.
Towards this goal, we prove the following two related propositions:
Proposition 1. (Proven in Appendix B.) The Bessel distribution m ∼ Bessel (ν, a) for fixed ν is an
exponential family with sufficient statistic Tν(m)=2m+ν, natural parameter ην(m)=log(a2 ), and
base measure hν(m)= 1

m!Γ(m+ν+1) .

Proposition 2. The optimal variational distribution for miii is a Bessel distribution:

Q∗(miii) = Bessel

(
miii; |ỹ(±)

iii |, 2
√
GQ

[
λ

(−)
iii

]
GQ

[
λ

(+)
iii +µiii

])
. (6)

1A local randomizer R satisfies (N, ε)-limited-precision local privacy if for any two observations y, y′ ∈ Nd

such that ‖y − y′‖1 ≤ N , R satisfies Pr[R(y) = r] ≤ exp(ε) Pr[R(y′) = r] for any r in the output range.
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Unfortunately, selecting the Bessel distribution as the family for Q(miii) prevents a closed-form
solution to Q∗(ỹ(+)

iii ): specifically, it results in the expression of the integer number of samples in a
binomial distribution downstream in the generative process as a non-integer expectation of miii. To
overcome this, we instead select the variational family for Q(miii) to be a Dirac delta function at the
mode of the optimal family (in Equation 6):

Q(miii) = δ [miii=mode(Q∗(miii))] (7)

This choice allows a closed-form solution for the optimal variational distribution over ỹ(+)
iii :

Q∗(ỹ
(+)
iii ) = Multinom

(
ỹ

(+)
iii ; EQ

[
ỹ

(+)
iii

]
,
(
GQ

[
λ

(+)
iii

]
,GQ [µiii1] , . . . ,GQ [µiiiK ]

))
(8)

Furthermore, we can prove that this degenerate choice variational family is in fact nearly optimal
in practice. Since the other factors depend on Q(miii) only through the message EQ [miii], we need
only show that the difference between the optimal message and ours is small. Under the optimal
Q∗(miii), this message equals the expected value under the Bessel distribution in Equation 6 while in
our solution, it equals the mode of that same distribution. To bound the error between these two, we
prove the following proposition:
Proposition 3. (Proven in Appendix C.) The absolute difference between the mean and mode of the
Bessel distribution is bounded by 1:

| EBessel(m;ν,a))[m]− mode(Bessel (m; ν, a)) | ≤ 1.

Equations 6 and 8 provide solutions to the main challenge of deriving a tractable and nearly
optimal variational family. The closed-form solutions to the optimal variational families for all
other auxiliary variables are more straightforward to derive and we give them in the supplementary
material (see Appendix D). There is one final challenge: the log term inside the expectation

GQ

[
λ

(+)
iii +µiii

]
= e

EQ

[
lnλ

(+)
iii +µiii

]
in Equation 6 prevents the derivation of a closed form. However,

we can derive a first-order Taylor approximation via the delta method [24].

4 Discussion

We present a new CAVI algorithm for inference of Bayesian Poisson factorization models under local
privacy. Our method relies on two key theoretical insights about the Bessel distribution: first, that
with fixed ν, it belongs to the exponential family, and second, that its mode is an integer neighbor
of its mean. Using these, we implement a tool with significant performance improvements over
even an optimized version of the prior MCMC algorithm. On a synthetic test case of inferring a
rank-50 factorization of an 1000 by 1000 data observation matrix, we obtain a 20x speedup in model
inference. We detail the construction of this synthetic performance experiment in Appendix E.
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A Different factorizations of the joint posterior

To find a variational inference algorithm, we leverage existing equivalent characterizations of the
generative process for Poisson factorization models under differential privacy.2 We consider in
this case the variable yiii to be a true observed data point, while ỹ(±)

iii is the observed version with
random noise. We treat two-sided geometric noise as being the difference of two Poisson variables
g

(+)
iii and g(−)

iii , generated with Gamma-distributed priors λ(+)
iii and λ(−)

iii , respectively/ We define
ỹ

(+)
iii = yiii + g

(+)
iii and ỹ(±)

iii = yiii + g
(+)
iii − g(−)

iii . We can determine whether ỹ(±)
iii is positive or

negative by comparing the values of ỹ(+)
iii and g(−)

iii ; we refer to the minimum of these two as miii.

P
(
g

(+)
iii , g

(−)
iii , (yiiik)

K
k=1 , yiii, ỹ

(+)
iii , ỹ

(±)
iii ,miii

)
. (9)

The most straightforward factorization of this joint first generates all the Poisson random variables,
then computes the remaining variables given their deterministic relationships to the underlying
Poissons:

P
(
g

(+)
iii , g

(−)
iii , (yiiik)

K
k=1 , yiii, ỹ

(+)
iii , ỹ

(±)
iii ,miii

)
= Poisson

(
g

(+)
iii ;λ

(+)
iii

)
Poisson

(
g

(−)
iii ;λ

(−)
iii

)( K∏
k=1

Poisson (yiiik; θdkφkv)

)
1

(
yiii =

K∑
k=1

yiiik

)
1

(
ỹ

(+)
iii = yiii + g

(+)
iii

)
1

(
ỹ

(±)
iii = ỹ

(+)
iii − g(−)

iii

)
1

(
miii = min{ỹ(+)

iii , g
(−)
iii }

)
. (10)

We can equivalently first generate the sums of Poissons and then thin them using multinomial and
binomial draws. In the following equation, the delta functions are implicitly present in the multinomial
and binomial PMFs. Note that we write the probability parameters in the multinomial and binomial
PMFs as unnormalized vectors. Also note that µiii =

∑
k

∏
d θ

(i)
id,k

, where id is the index into the dth

2Parts of this and Appendix D have been excerpted from supplementary material in a prior preprint version
of (author?) [20].
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dimension of index vector iii.

P
(
g

(+)
iii , g

(−)
iii , (yiiik)

K
k=1 , yiii, ỹ

(+)
iii , ỹ

(±)
iii ,miii

)
= Poisson

(
g

(−)
iii ;λ

(−)
iii

)
Poisson

(
ỹ

(+)
iii ;λ

(+)
iii +µiii

)
Binom

(
(yiii, g

(+)
iii ); ỹ

(+)
iii , (µiii, λ

(+)
iii )

)
Mult

(
(yiiik)

K
k=1 ; yiii,

(∏
d

θ
(i)
id,k

)K
k=1

)
1

(
ỹ

(±)
iii = ỹ

(+)
iii − g(−)

iii

)
1

(
miii = min{ỹ(+)

iii , g
(−)
iii }

)
. (11)

We can equivalently first generate the difference ỹ(±)
iii and minimum miii as Skellam and Bessel

random variables. Conditioned on these variables, we can then compute ỹ(+)
iii and g(−)

iii via their
deterministic relationship and, finally, thin ỹ(+)

iii using binomial and multinomial draws:

P
(
g

(+)
iii , g

(−)
iii , (yiiik)

K
k=1 , yiii, ỹ

(+)
iii , ỹ

(±)
iii ,miii

)
= Skel

(
ỹ

(±)
iii ; λ

(+)
iii +µiii, λ

(−)
iii

)
Bes

(
miii; |ỹ(±)

iii |, 2

√
λ

(−)
iii (λ

(+)
iii + µiii)

)
1

(
ỹ

(+)
iii = miii

)1(ỹ
(±)
iii ≤0)

1

(
g

(−)
iii = miii

)1(ỹ
(±)
iii >0)

1

(
ỹ

(±)
iii = ỹ

(+)
iii − g(−)

iii

)
Binom

(
(yiii, g

(+)
iii ); ỹ

(+)
iii , (µiii, λ

(+)
iii )

)
Mult

(
(yiiik)

K
k=1 ; yiii,

(∏
d

θ
(i)
id,k

)K
k=1

)
. (12)

It is this last factorization that enables us to derive the variational distribution.

B The Bessel distribution as exponential family

Theorem 1 The Bessel distribution m ∼ Bes(ν, a) for fixed ν is an exponential family with
sufficient statistic Tν(m) = 2m+ ν, natural parameter ην(m) = log

(
a
2

)
, and base measure

hν(m)= 1
m! Γ(m+ν+1) .

Proof. The Bessel distribution [28] is a two-parameter distribution over the non-negative integers:

f(n; a, ν) =

(
a
2

)2n+ν

n! Γ(n+ν+1)Iν(a)
, (13)

where the normalizing constant Iν(a) is a modified Bessel function of the first kind—i.e.,

Iν(a) =

∞∑
n=0

(
a
2

)2n+ν

n! Γ(n+ν+1)
. (14)

For fixed and known ν, we can rewrite the Bessel PMF as

f(n; a, ν) =
1

n! Γ(n+ν+1)
exp

(
(2n+ν) log

(a
2

)
− log Iν(a)

)
. (15)

We can then define the following functions:

hν(n) =
1

n! Γ(n+ν+1)
(16)

Tν(n) = 2n+ ν (17)

ην(a) = log
(a

2

)
(18)

Aν(a) = log Iν(a). (19)

Finally, we can rewrite the Bessel PMF in the exponential-family form:

f(n; a, ν) = hν(n) exp (ην(a) · Tν(n)−Aν(a)). (20)
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C The mode and mean of the Bessel distribution

Theorem 2 The mode of a Bessel distribution for parameters a, ν can be a constant-bounded
approximation of the mean:

∣∣EBessel(m;ν,a))[m]−mode(Bessel (m; a, ν))
∣∣ ≤ 1.

The intuitive meaning of this is that the mode of the Bessel distribution is guaranteed to be one of
the two integers closest to the mean of the distribution. Given one of these two integers will always
be the best integer approximation of this number, we can also say that there cannot exist an integer
approximation of the mean of the Bessel that is strictly between the mode and the mean of the Bessel
distribution.

Proof. A Bessel distribution takes two arguments, which we refer to as its order, ν and coordinate, a.
The distribution is defined as:

p(x = n|x ∼ Bessel (ν, a)) =
1

Iν(a)n!Γ(n+ ν + 1)

(a
2

)2n+ν

,

where Iν(a) is a modified Bessel function of the first kind. The arithmetic mean of the distribution is

EBessel(m;ν,a))[m] =
a

2
Rν(a),

with Rν(a) referring to the ratio of two Bessel functions:

Iν+1(a)

Iν(a)
.

The Bessel distribution has one or two neighboring integer modes. The mode can be computed
directly from the parameters of the distribution without Bessel functions:

mode(Bessel (ν, a)) =

⌊√
a2 + ν2 − ν

2

⌋
.

Unlike the mean, which can take arbitrary non-negative real values, the mode is guaranteed by the
floor function to be a non-negative integer.

We use the following bound on the mean of a Bessel ratio from (author?) [11]:

a

ν + 1 +
√
a2 + (ν + 1)2

≤ Rν(a) ≤ a

ν +
√
a2 + ν2

. (21)

We multiply through by a
2 to bound the mean of the Bessel distribution:

a2

2(ν + 1 +
√
a2 + (ν + 1)2)

≤ EBessel(m;ν,a))[m] ≤ a2

2(ν +
√
a2 + ν2)

. (22)

We can rewrite these bounds using a difference-of-squares:

a2

2(ν +
√
a2 + ν2)

=
a2(
√
a2 + ν2 − ν)

2(ν +
√
a2 + ν2)(

√
a2 + ν2 − ν)

=
a2(
√
a2 + ν2 − ν)

2a2 + ν2 − ν2

=

√
a2 + ν2 − ν

2
.
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This upper bound coincides with the unrounded formulation of the mode. Because the mode is the
floor of this quantity, we know it is less than or equal to this upper bound with a difference of less
than 1.

We can convert the lower bound in the same way:

a2

2((ν + 1) +
√
a2 + (ν2 + 1))

=

√
a2 + (ν + 1)2 − (ν + 1)

2
.

We are interested in bounding the difference between the upper and lower bounds:
√
a2 + ν2 − ν

2
−
√
a2 + (ν + 1)2 − (ν + 1)

2
=

√
a2 + ν2 + 1−

√
a2 + (ν + 1)2

2
. (23)

Knowing that ν is positive, we can state that
√
a2 + ν2 <

√
a2 + (ν + 1)2, or

√
a2 + (ν + 1)2 −√

a2 + ν2 > 0. Based on the upper slice of the triangle in the figure below, the triangle inequality also
gives us another bound, that

√
a2 + ν2 +1 >

√
a2 + (ν + 1)2, or 1 >

√
a2 + (ν + 1)2−

√
a2 + ν2.

Together, these imply that

0 ≤
√
a2 + ν2 + 1−

√
a2 + (ν + 1)2 ≤ 1.

Substituting this in to our computation of the distance between the upper and lower bounds of the
mean, we find that √

a2 + ν2 + 1−
√
a2 + (ν + 1)2

2
<

1

2
, (24)

or that the inferred upper and lower bounds for the mean of the Bessel distribution produce an interval
no larger than 1

2 . The upper bound of this 1
2 interval is the same as the upper bound of the length-1

open interval of the mode of the Bessel. In the most extreme case when the mode is at the bottom end
of its range and the mean is at the top, we have

EBessel(m;ν,a))[m]−mode(Bessel (ν, a)) < 1.

In the opposite case, we have

mode(Bessel (ν, a))−EBessel(m;ν,a))[m] ≤ 1

2
< 1.

D Deriving the CAVI updates for the variational distribution

Recall that the observed data consists of the difference variables ỹ(±)
iii .

Q
(
miii, ỹ

(+)
iii , g

(+)
iii , g

(−)
iii , yiii, (yiiik)

K
k=1

)
∝ GQ

[
P (ỹ

(±)
iii ,miii, ỹ

(+)
iii , g

(+)
iii , g

(−)
iii , yiii, (yiiik)

K
k=1 | −)

]
.

(25)
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Because the likelihood (i.e., the Skellam term) in equation 12 does not depend on any of these latent
variables, it disappears entirely. We can then rewrite the right-hand side of equation 25 as:

GQ

[
P (miii, ỹ

(+)
iii , g

(+)
iii , g

(−)
iii , yiii, (yiiik)

K
k=1 | ỹ

(±)
iii −)

]
= GQ

[
Bes

(
miii; |ỹ(±)

iii |, 2

√
λ

(−)
iii (λ

(+)
iii + µiii)

)]
1

(
ỹ

(+)
iii = miii

)1(ỹ
(±)
iii ≤0)

1

(
g

(−)
iii = miii

)1(ỹ
(±)
iii >0)

1

(
ỹ

(±)
iii = ỹ

(+)
iii − g(−)

iii

)
GQ

[
Binom

(
(yiii, g

(+)
iii ); ỹ

(+)
iii , (µiii, λ

(+)
iii )

)
Mult

(
(yiiik)

K
k=1 ; yiii,

(∏
d

θ
(i)
id,k

)K
k=1

)]
. (26)

Theorem 6.1 states that the Bessel distribution for fixed first parameter is an exponential family. We
can therefore use standard results to push in the geometric expectations:

GQ

[
P (miii, ỹ

(+)
iii , g

(+)
iii , g

(−)
iii , yiii, (yiiik)

K
k=1 | ỹ

(±)
iii −)

]
= Bes

(
miii; |ỹ(±)

iii |, 2

√
GQ

[
λ

(−)
iii

]
(GQ

[
λ

(+)
iii + µiii

]
)

)

1

(
ỹ

(+)
iii = miii

)1(ỹ
(±)
iii ≤0)

1

(
g

(−)
iii = miii

)1(ỹ
(±)
iii >0)

1

(
ỹ

(±)
iii = ỹ

(+)
iii − g(−)

iii

)
Binom

(
(yiii, g

(+)
iii ); EQ

[
ỹ

(+)
iii

]
, (GQ [µiii] ,GQ

[
λ

(+)
iii

]
)
)

Mult

(
(yiiik)

K
k=1 ; EQ [yiii] ,

(
GQ

[∏
d

θ
(i)
id,k

])K
k=1

)
. (27)

There are two expectations that do not have an analytic form:

GQ

[
λ

(+)
iii + µiii

]
= exp

(
EQ

[
ln

(
λ

(+)
iii +

K∑
k=1

∏
d

θ
(i)
id,k

)])
(28)

and

GQ [µiii] = exp

(
EQ

[
ln

(
K∑
k=1

∏
d

θ
(i)
id,k

)])
; (29)

however, both can be very closely approximated using the delta method [24], which has been
previously used in variational inference schemes to approximate intractable expectations [5, 25]. In
particular, for some variable Y = f(X), expectation E[Y ] is approximately:

E[Y ] = E[f(X)] ≈ f (E[X]) +
1

2
f ′′ (E[X])V[X]. (30)

In our case, we can consider the two-dimensional Poisson matrix factorization case where iii are
represented by row d and column v. We therefore have

EQ [lnµdv] = EQ

[
ln

(
K∑
k=1

θdkφkv

)]
≈ ln

(
EQ

[
K∑
k=1

θdkφkv

])
−

VQ

[∑K
k=1 θdkφkv

]
2
(
EQ

[∑K
k=1 θdkφkv

])2

(31)

= ln

(
K∑
k=1

EQ [θdk]EQ [φkv]

)
−

∑K
k=1VQ [θdkφkv]

2
(∑K

k=1EQ [θdk]EQ [φkv]
)2 .

(32)

Finally, because θdk and φkv are independent, we have

VQ [θdkφkv] = VQ [θdk]VQ [φkv] +VQ [θdk] (EQ [φkv])
2

+VQ [φkv] (EQ [θdk])
2
. (33)
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Figure 1: Demonstration of the results of the VI inference process for a 20-word, 20-document
synthetic dataset with 3 latent topics. The true data parameters (a) are recovered well by our inference
procedure (d), even though the noisy data (d) is much denser than the true data (c). The mean average
error (MAE) between the true model parameters and the inferred parameters under privacy is 0.507,
with the individual errors pictured in (e).

E Validation

In order to test this result, we generated synthetic count data using a Poisson matrix factorization
formulation analogous to the LDA topic model [4] with D documents, V unique terms in a document
vocabulary, and K latent topics. We first used a Gamma prior to generate two matrices of latent
parameters, θ of dimensionD×K and φ of dimensionK×V . We then compute the product of these,
θφ = YYY , as the Poisson prior of our data generation process. Finally, we add two-sided geometric
noise scaled to ε/N = 1, a ratio that applies when the privacy budget ε and the maximum allowed
difference between documents N are equal (e.g., a privacy budget of 2 to privatize 2-word spans). We
then test our inference procedure to see how closely it estimates the true parameters of the original
model. We find that our model successfully converges to within a reasonable estimate of the true
model parameters given the data, as demonstrated in a small example in Figure 1.

Using a larger example of a synthetic 1000-by-1000 matrix of count observations, we test the
performance of this algorithm as compared to the performance using inference with MCMC [20].
We observe that a single-threaded version of the code from the MCMC implementation, even with
optimizations such as reducing the frequency of parameter resampling for the noise distributions,
each iteration of inference takes approximately 0.8 seconds. Using 5000 iterations of burnin and 2500
to collect samples, this takes a combined 1.67 hours to infer, with a final mean average error (MAE)
of 0.36. In contrast, our variational inference model takes approximately 2.8 seconds per iteration,
and typically requires 100 iterations to converge, resulting in a combined 5 minutes of inference to
reach error of 0.52.
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