INVESTIGATIONS ON SETS AND TYPES

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Wojciech Tomasz Moczydtowski
August 2007



© 2007 Wojciech Tomasz Moczydlowski
ALL RIGHTS RESERVED



INVESTIGATIONS ON SETS AND TYPES
Wojciech Tomasz Moczydtowski, Ph.D.

Cornell University 2007

There are two major foundational frameworks used in mathematics and computer
science — set theory and type theory. The former is widely accepted as the foun-
dation of classical mathematics, the latter is being successfully applied in computer
science, for the purpose of program verification, programming languages semantics,
software engineering and modeling physical systems. We investigate connections
between these worlds. More specifically, we prove a normalization theorem for a
constructive impredicative set theory IZF. This result makes it possible to exhibit
computational content hidden in set theories. We show how to use normalization
to extract programs from IZF proofs. We also demonstrate that a small change to
IZF can destroy the normalization property.

Furthermore, we investigate two extensions of our framework. We first extend
IZF to incorporate inaccessible sets, providing a framework powerful enough to
provide constructive semantics for popular type theories. We demonstrate that the
normalization property holds for the extension, thus enabling program extraction
from its proofs. Second, we extend the logic of IZF to incorporate features typical
of dependent type theories. We show that unless such extension is done very
carefully, the theory will become inconsistent. However, we present a consistent,
normalizing extension — a “dependent” set theory 1ZF . We show that the proof-
theoretic power of IZFp equals that of Zermelo-Fraenkel set theory with Choice,
7ZFC, the standard foundation of mathematics.

Finally, we apply our results to a constructive version of Higher-Order Logic



(HOL). Namely, we show how to refine the standard set-theoretic semantics for
HOL so that it maps a constructive core of HOL to IZF. Using our normaliza-
tion result for IZF, we utilize this semantics to provide the program extraction

capability from constructive HOL proofs.
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CHAPTER 1
INTRODUCTION

1.1 Sets

The concept of a set is likely the most successful mathematical abstraction in the
history of humankind. It is very simple: high school students can easily grasp the
idea and experiment on finite sets. It can be described concisely: the number of
axioms and axiom schemas in modern set theories is usually smaller than 10. Yet,
at the same time, the concept of a set is powerful enough to encompass almost
all of modern mathematics. And indeed, the Zermelo-Fraenkel set theory with
Choice, ZFC, is widely accepted as the foundation of mathematics.

The origins of ZFC can be traced to Georg Cantor, a German mathematician.
His work on convergence of Fourier series led him to investigate, starting in 1879,
the nature of numbers and infinity [Canb5|. At the time, mathematicians thought
that the infinity was uniform and that there was no difference between the quantity
of natural and real numbers. Cantor’s results destroyed this view forever, when he
invented the “diagonal method” argument to show that in fact there are more reals
than natural numbers. As sets were an important tool in his studies, he started
investigating them for their own sake. Soon, formal axiomatizations of set theory
by Zermelo [Zer08] and Fraenkel [Fra22| followed. Later, Kuratowski invented a
simple encoding of ordered pairs as unordered pairs, von Neumann showed how to
uniformly encode natural numbers and ordinals as sets and Bourbaki gave a unified
treatment of a large part of contemporary mathematics based on sets [Bou49,
Bou68b, Bou68a|. These developments convinced most mathematicians that set
theory was a valid foundation of mathematics.

This view has changed litle since then. In 2007, set theory is as relevant for



mathematics as it was 60 years ago. As no widely accepted substitutes to ZFC

have arised, it is still considered as the foundation of pure classical mathematics.

1.2 Types

In the meantime, quietly, a new world of computation was coming into existence.
In 1936, Alan Turing described [Tur36] a seminal theoretical model of computa-
tion. The first digital computers were built during the Second World War. As
computers evolved, so did programming languages, indispensible tools to control
the complexity of tasks assigned to machines. The ARPANET was born in 1969
and evolved into the Internet through 1970s and 1980s. Search engines arrived
in mid 1990s. Since then, there was no way back; nowadays, computers are an
essential and indispensible part of human society and programming languages are
the medium we use to communicate with machines.

Throughout the evolution of programming languages, the concept of a type
proved to be increasingly useful. Its advantages were noticed very early; the first
programming language with very rich user-defined types was ALGOLG68, designed
in the 1960s. Types made the task of writing correct programs much easier. They
provided means to classify data and helped the compiler find common mistakes
and notify the programmer.

The full importance of types came to be realized a few years later. The es-
sential role in this discovery was intuitionism, also called constructivism, a philo-
sophical approach to mathematics advanced by the Dutch mathematician L. E. J.
Brouwer [Bro07, vS90, van99|. Briefly, constructivism is occupied with effective
methods in mathematics. The law of excluded middle is rejected, as inherently
non-constructive. A detailed description of intuitionism can be found for example

in [Hey66]. Brouwer’s ideas were essential to the following three mostly indepen-



dent lines of research, which in the end made the type theory an integral part of
computer science.

On the computer science side, researchers were trying to develop new tools
for software correctness. Most approaches were based on axiomatic logics, such
as Hoare’s logic [Hoa69| or Floyd’s method [Flo67]. An important exception was
Robert Constable’s group at Cornell, trying to apply constructive mathematics
for the purpose of program synthesis [Con71]. A synthesized program could be
correct-by-construction, with no need for further testing and verification.

On the mathematical side, logicians such as Haskell B. Curry [CFC58|, Dag
Prawitz [Pra65|, William Howard [How80|, Hans Lauchli [Lau70] and Jean-Yves
Girard [Gir72] were investigating the properties of proofs in constructive logics.
The Dutch mathematician N. G. de Bruijn built a system Automath [dB70] to
formalize and verify mathematical proofs. In retrospect, Automath introduced
and utilized important features of type theory. Dana Scott [Sco70| described a
setting very close to modern type theories; had it not been for his postscript to
the paper, effectively denouncing the framework, he might very well be termed as
the originator of modern type theory.

The final piece of the puzzle came from the philosophical side. In 1973, a
Swedish mathematician Per Martin-Lo6f noticed an amazing thing. He showed
that the concept of a type, extended to the extreme, is a valid foundation for
constructive mathematics [ML73|. His type theory was a new foundational basis,
an important discovery for constructive mathematicians and philosophers. Soon
after, Constable’s group realized that as computation is an integral part of type
theory, the theory can and should be applied for the purpose of assuring soft-
ware correctness. They plunged forward and built a proof assistant PRL based

on Martin-Lo6f’s predicative type theory [CABT86, Con98|. An important feature



of PRL and type theory was that it enabled program extraction from formalized
proofs; the process of software development was reduced to the activity of theo-
rem proving. The research program of Constable’s group, now almost 30 years
old, bore numerous fruits. See [ABCT06| for a partial account. Other computer
science researchers noticed type theory as well; it is now being successfully applied
on a large scale for the purpose of program verification, programming languages
semantics and software engineering.

Type theory is not without its limitations, however. It lacks the power of set
theory: the strongest type theories are much weaker than ZFC. It is more difficult
to understand — the concept of a type, although familiar to programmers, is not
nearly as intuitive as the concept of a set. Moreover, its mechanisms for abstraction
are different than those that have been developed for years by mathematicians; it
is therefore a remarkable challenge to code all mathematical knowledge in type
theories.

On the other hand, set theory turned out to be a very inconvenient setting to
reason formally about computation. As it is inherently static (sets are thought of as
static objects, existing Platonically), computation needs to be somehow modelled
inside. Although various embeddings of computation in the world of sets exist,
from Turing machines, via Post systems and lambda calculi, to denotational and
operational semantics, most turned out to be impractical. Indeed, we are aware of
only one tool based on set theory [Abr96], compared with more than 20 based on

different foundational bases.

1.3 Thesis map

In this thesis, we investigate whether it is possible to bring these two worlds closer.

We first show in Chapter 2 that the world of sets is not as static as it seems. We



investigate a constructive set theory IZF and exhibit computation hidden inside the
layers of sets and logic. For this purpose, we develop a typed lambda calculus \Z,
corresponding to proofs in IZF via the so-called Curry-Howard isomorphism. Using
realizability inspired by McCarty’s thesis [McC84|, we show the normalization
property of the calculus and explain how to use it for the purpose of providing
software correct-by-construction. As the normalization proof is quite intricate, we
approach IZF and A\Z in stages, applying our techniques first for simpler, well-
known constructive systems: propositional logic, Heyting Arithmetic and second-
order Heyting Arithmetic. We then show how to apply normalization to extract
programs from IZF proofs.

In Chapter 4, we discuss some possible extensions of these ideas. We first show
in Section 4.1 how to enhance IZF to incorporate inaccessible sets while still sup-
porting program extraction capability. This extension makes the set theory more
powerful than all type theories used in practice. Furthermore, in Section 4.2 we
show that features characteristic of the world of types can play an important role
in the world of sets and we expose the danger resulting from its mixture. More
specifically, we investigate a dependent set theory 1ZF p, resulting from extending
the first-order logic underlying IZF with typical type-theoretic features such as
d-types. We show that unless Y-types are restricted, the resulting theory is in-
consistent; however, with restricted Y-types, it has the proof-theoretic power of
ZFC.

In Chapter 5 we show that our constructive set theories can be used to pro-
vide program extraction capability for existing theories. We consider the pop-
ular Higher-Order Logic (HOL), a basis for popular proof assistants such as Is-
abelle/HOL and PVS. We provide a constructive semantics in IZF for the con-

structive core of HOL and show that the semantics itself can serve as a tool for



program extraction.

We believe our results bring better understanding of the nature of sets and
types. Our hope is that the discovery of underlying computation can make sets
more relevant in the 21st century, which is very likely to become more dominated
by computation. At the same time, further integration of sets and types, such
as the one we present in Section 4.2, can bring the unfamiliar world of types
closer to mathematicians, in turn making it easier for computer science to utilize
mathematics in formal as well as informal ways. We are hopeful that such a unified

setting can be constructed.



CHAPTER 2
TOWARDS COMPUTATIONAL UNDERSTANDING OF SET
THEORY I : PROPOSITIONS AND NUMBERS

In the previous chapter, we briefly presented the history of set theory, widely
accepted as the foundation of mathematics. It is known how to model every
mathematical object of interest as a set with little difficulty. The abstraction of a
set is easy to understand and the picture of the universe built of sets is simple and
compelling.

An important characteristic of the set-theoretic universe is that it is an inher-
ently static entity. Sets are Platonic objects and the axioms of set theory capture
some truths about them. Since the proof rules of the underlying first-order logic
are intuitively true, mathematics is viewed as discovering the truth about the uni-
verse. Logic and mathematical proofs therefore serve as witnesses to externally
true facts. However, in some sense they are superflous; if mathematicians could
somehow tap into the fabric of the universe and “see” the sets directly, no proofs
would be necessary, as the truth they are trying to discover would become self-
evident. One prominent example of this view is the still unfinished search for an
intustively appealing axiom which could decide the Continuum Hypothesis.

In 1958, an innocous remark by an American logician Haskell B. Curry started
a revolution against this view of the world: “Note the similarity of the postulates
for F' and those for P. If in any of the former postulates we change F' to P and
drop the combinator we have the corresponding postulate for P” [CFC58|. With
this remark, a new, ground-breaking idea was born. Although it took a significant
number of years for this idea to ripen, in our opinion the view of the world of
mathematics has been changed forever. This idea is usually called the Curry-

Howard isomorphism, although see page viii of [SU06| for a name more faithful to



the contributing researchers.

The ground-breaking change brought about by this isomorphism can be sum-
marized briefly as follows. There is more to proofs than meets the eye. More
specifically, proofs are a link between the static, 2000 year-old world of mathemat-
ics and the young, dynamically expanding world of computation. They provide
access to the computation hidden deeply among formulas, numbers, species and
sets. In fact, proofs are the computation. A statement “p is a proof of formula ¢”
can be viewed at the same time as “p is a program satisfying the specification ¢”.
The former is of fundamental importance to mathematics; the latter to computer
science. The isomorphism brings these two worlds together.

It is surprisingly easy to overlook the consequences of the isomorphism on
the view of the world of mathematics. The language of mathematical proofs is
no longer simply a mere, imperfect tool used to discover distant, static Platonic
truths. It is an essential and lively part of mathematics. It provides a connection
to the world of computation and in fact embodies computation within. The isomor-
phism has therefore significantly expanded our knowledge in the fields of linguistics
(as mathematical developments are usually written using informal language, close
to the natural one), computer science (which is a field concerned in large part
with computation), mathematics (as it greatly deepened our understanding of the
foundations of mathematics) and philosophy.

We now embark with the reader on a quest of defining, understanding and
applying the isomorphism to set theory. We will start from one of the simplest
instances of the isomorphism, propositional logic, and culminate in a full-blown
set theory. We hope that our presentation will shed light on the technical issues
involved and make the relevant proofs easier to understand. Most importantly, we

wish to make the reader grasp the source of computation in the world of mathe-



matics.

The isomorphism is usually used for constructive theories, without the ex-
cluded middle rule. This is not surprising, as the excluded middle is flagrantly
anti-computational. For example, using the rule one may prove that “every Turing
machine either terminates or not”, while it is well-known that there is no computa-
tion which could decide which is the case. From our point of view, constructivism is
a tool which serves to understand the computational nature of formal systems. We
view the standard classical systems as consisting of a constructive core, essential
for understanding the computational content and the rest of the system, resulting
from the excluded middle rule. In other words, we factor classical systems into a
constructive core and the excluded middle rule. Whether the constructive core is
in some sense a better theory than the whole system, is a question we prefer to
leave to philosophers. Instead, we now plunge with the reader into the constructive
cores of well-known and established formal systems, often taught in undergraduate

logic courses: propositional logic and arithmetic.
2.1 Propositional calculus

We will start with one of the weakest logics in existence, which at the same time
is an indispensible core of almost all formal systems designed to capture human
reasoning. Before we start the formal presentation, we encourage the reader to read
the previous sentence again. That nowadays we can define and discuss “logics” is
a result of an important paradigm shift, which was an essential step on the road
to the Curry-Howard isomorphism.

Indeed, logic became a valid subject of discourse remarkably late. Although
already Aristotle discovered some laws of logic, called syllogisms, it was not until
George Boole in the 19th century that logic in the modern sense started to be

formalized. Boole, however, was occupied mainly with propositional equivalences



between formulas, such as “a A (bV c) = (a Ab)V (a Ac)”.

The three essential steps were undertaken by Gottlob Frege, David Hilbert
and Gerhard Gentzen. Frege [Fre67| gave the first formal definition of formulas
of first-order logic, in particular inventing the modern notion of a quantifier. He
thus showed that the language of mathematics is amenable to formal treatment.
Hilbert [HA28] provided the first proof system for first-order logic. He wanted to
use the system for the purpose of his formalist program, to show consistency of
mathematics. Although this task was doomed to failure [G6d31], his system is still
used for the purpose of studying logic.

The main fault of Hilbert’s system is that it is extremely inconvenient to use
to formalize real mathematical arguments. A German mathematician Gerhard
Gentzen thus came up with different, yet equivalent systems, called natural de-
duction and the sequent calculus [Gen69]. His systems allowed reasoning under
assumptions, formalized the idea of logical consequence and were much closer to
mathematical practice. He also found a way to simplify formal proofs in his sys-
tems and investigated the properties of such simplifications. This was the last
necessary step on the side of proof systems to find computation in mathematics.
Natural deduction is very close to the type systems of real programming languages
and proof simplification corresponds to program computation. Indeed, all the sys-
tems in this section will be based on Gentzen’s natural deduction, presented in a
sequent calculus style.

Our starting point is one of the simplest logics in existence: Intuitionistic
Propositional Calculus (IPC). It is a core of almost every reasonable logic in ex-
istence and indeed, it will be a part of all logics we investigate. IPC consists of
syntaz and proof rules. The syntax specifies the language of the logic. The proof

rules specify the derivable statements. These are deemed to be true and the logic

10



is supposed to capture some truths about the world.
The propositional calculus is parameterized by a countable set of propositional
variables which we denote by PVar. We will use the letters p, ¢, r for propositional

variables. The formulas of IPC are generated by the following abstract grammar:

¢ == plL]loAd[oVo|od—0

Thus, IPC can be used to reason about only relatively simple formulas. The
propositional variables intuitively denote statements whose precise formulation
does not concern us.

The proof system for IPC allows to derive judgments of the form I' - ¢, read as
“in the context I', the formula ¢ is derivable”. A context is a finite set of formulas,
which intuitively are assumptions, under which ¢ is true. The notation I', ¢ stands
for the context I' U ¢. The proof system is generated inductively by the following

proof rules:

kL o9y '-o—y T'Ho
TéFd TFo TF6—0 TF o
TFo Tk THovy T,0F9 T,0F4d
TFovy TFovy TFo
TF¢ Thy  TrHoAY TFOAY
TFoAY TFo TF o

We shall now present the computational content of IPC proofs. To show the
reader just a glimpse of its source, consider the proof: “If ¢ A 1), then ¢.” Given a
proof of ¢ A, we can produce a proof of ¢, just as given a pair of natural numbers,
we can produce the first component of a pair. For the general, formal account of

computation in IPC, we are going to introduce a lambda calculus, which we call

AT
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2.1.1 )\~ calculus

The last missing ingredient to define the Curry-Howard isomorphism and discover
computation in proofs was invented by Alonzo Church in 1930s. This ingredi-
ent was the famous lambda calculus, a system of notation for functions. Church
thought it could be used to serve as a foundation for mathematics. Although this
application did not work in the end, a couple of years later the logicians Haskell
B. Curry and William Howard noticed an amazing similarity between Church’s
lambda calculus and natural deduction proofs. We are now ready to present the
lambda calculus and the similarity, nowadays called isomorphism, which we will
express formally in Lemma 2.1.5.

A lambda calculus, similarly to a logic, is a purely syntactic system. We are
interested in typed lambda calculi, which are essentially programming languages
with types. The reason for our interest is that some lambda calculi correspond
exactly to logical systems and capture their computational nature. The calculi we
consider are also called monomorphic intensional type theories.

Simpler calculi can be introduced in several well-separated stages. First, the
types and terms of the system are defined. Along with the terms come the reduction
rules, which make the calculus a computational system. Finally, the typing system
is described. We will present now present our first lambda calculus A™~. This
calculus corresponds to IPC; the correspondence is captured formally by Lemma
2.1.5.

We first fix a countable set of variables Var. These are completely unrelated
to PVar. Variables from Var will be denoted by letters z,y, 2. We will usually
call them proof variables.

The types of A~ are IPC formulas. We will therefore use Greek letters ¢, v,

to stand for A~ types.

12



The terms of A™, denoted by M, N, O, are generated by the following abstract

grammar:

M = 2| MN|Xe:¢. M ||inl(M) | inr(M) |

case(M,z : ¢. Nyx : 1. O) | (M, N) | fst(M) | snd(M) | magic(M)

Intuitively, these terms are notations for proofs and, at the same time, they
are programs. For example, M N is an application term; if M is a notation for a
proof of » — ¢ and N is a notation for a proof of ¢, then M N is a notation for a
proof of . This corresponds to the situation when we have a Lemma L showing
¢ — 1 and a proof p of ¢; then we can obviously apply Lemma L to p to show .
The terms inl(M), inr(M) and case(M,x : ¢. N,z : 1b. O) correspond to the proof
rules for disjunction. Similarly, the terms (M, N), fst(M),snd(M) correspond to
the proof rules handling conjuction. The magic(M) term corresponds to the rule
handling absurdity (). Finally, lambda abstractions and applications are used to
handle implication. Formally, the correspondence will be captured by the typing
system for A~ and Lemma 2.1.5 below.

The variable x in Ax : ¢. M and case(M,z : ¢. N,z : 9. O) terms binds its
occurrences in M, N, O, respectively. We consider terms differing only in their
bound variables (also called a-equivalent) the same. The free variables of a term
M, denoted by F'V (M) and capture-avoiding substitution are defined as usual. A
term M such that F'V(M) = () is called closed. The notation M[z := N] stands
for the term M with N substituted for x. To the reader unfamiliar with these
notions we recommend the first chapter of [SUO06|.

The computational nature of A~ is exhibited by the deterministic reduction

relation —. We first define the base reductions:

(Ax:¢p. M) N — Mz := N]

13



case(inl(M),x : ¢. N,z : 1. O) — N[z := M]

case(inr(M),x : ¢. N,z : 1. O) — Olx := M|

fst((M,N)) — M snd((M,N)) — N

In an arbitrary term M there can be many subterms amenable to the base reduction
rules. For example, if I, = Az : p. z, then there are three ways in which we could

a priori reduce fst((l, I,, I, I,)):

fst({Lp Ip, 1p Ip)) — Ip I

fst((Lp Iy, Ip Ip)) — fst((Lp, I, 1))

fst((Ip Ip, Ip Ip)) — 1st((Lp Ip, L))
As we want our reduction system to be deterministic, we need to fix a strategy
for applying the base reductions in an arbitrary term. A convenient method is
to split the set of terms into values (also called canonical forms) and non-values.
Intuitively, a value is the result of the computation process and does not allow any

further reductions. Formally, we define the values of A~ as the terms generated

by the following abstract grammar, where M is an arbitrary lambda term:
Vi oo=Xx:¢. M | inl(M) | inr(M) | (M, N)

In terms which are not values, we shall designate a principal argument, denoted

by [o]. Informally, the reduction of a term M proceeds as follows:

e If M is a value, stop.

e If M is not a value, inspect its principal argument:

— If it is a value, apply one of the base reduction rules.

— If it is not a value, reduce this principal argument.

14



We define the principal arguments in A7, also called evaluation contexts, by

the following abstract grammar:
o] = [o] M | case([o], @ : 6.,z : 10.0) | fst([o]) | snd([e]) | magic([o])

Formally, we extend our base reduction relation — to all lambda terms by the

following inductive definition:

M — M’ M — M’
MN— M N case(M,x : ¢. N,z : 1. O) — case(M',x : ¢. N,x : 1. O)

M — M’ M — M’ M — M’
fst(M) — fst(M") snd(M) — snd(M") magic(M) — magic(M’)

This evaluation order is usually called lazy evaluation or call-by-name and our
method of introducing the reduction relation is called small-step operational se-
mantics. See [Pie02]| for more information on programming languages and opera-
tional semantics.

To show one example, the reduction sequence starting from fst((1, I, 1, 1))
is:

fst({Lp Lp, Ip Ip)) — I, I, — I,

It is straightforward to translate a definition using principal arguments to the
inductive rules. From now on, we will be extensively using principal arguments to
define our reduction relations.

Note that there are no reductions possible from values. This confirms the
intuition of a value being the result of a computation, as no further computation

starting from a value is possible.

Definition 2.1.1 We write M | if the reduction sequence starting from M ter-
minates. In this situation we also say that M normalizes. We write M | v if we
want to state that v is the term at which this reduction sequence terminates. We

write M —* M’ if M reduces to M’ in some number of steps.
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As A7 is a system corresponding to a very simple logic, its computational

capabilities are not very impressive. Nevertheless, we exhibit one example:

Example 2.1.2 A term I,_., = M\x : p — p. x applied to any term M returns
M. For example: I,,, (Ax : p. x) — Az : p. x. Thus I,_,, is computationally an

identity function.

The example shows how lambda terms are interpreted as computational func-
tions, or programs — the result of a program M on an argument N is the value to
which M N reduces. Once our lambda calculi become more complicated, we shall
see more interesting examples. For now, we proceed to the type system of A™.

The typing judgments of \— are of the form I' = M : ¢, read as “in the
context I, the term M is of type ¢”. In A~ contexts are sets of pairs (z, ¢), where
x € Var and ¢ is a type. The domain of a context I', denoted by dom(I"), is the set
{z | (x,$) € '}. The range of a context I', denoted by rg(T"), is the corresponding
IPC context {¢ | (x,¢) € I'}. The notation I', z : ¢ stands for I' U {(x, ¢)}, where
x ¢ dom(T"). The typing system follows.

'=M: 1
Lz:obFax:o I' - magic(M) : ¢

ex:oFM: o '-M:¢p—1¢ I'EN:¢
'FXe:p. M:¢p— I'-MN v
'eM:¢ L' M:q
CEinl(M):oVey CFinr(M): oV
'EM:¢oVvy Tx:¢oFN:9 Diz:yEO:9
'tk case(M,z: ¢. Nyx 1. O) : 0
'-M:¢ T'EN:9 F'EM:oNY F'EM:opNY
C'E(M,N): ¢ N ['Ffst(M) : ¢ I'Fsnd(M) : 9

x ¢ dom(I")

Lemma 2.1.3 IfI' M : ¢, then FV (M) C dom(I").

Proof Straightforward induction on the proof tree I' = M : ¢. [ |

16



Definition 2.1.4 A term M 1is typable if there is a formula ¢ such that = M : ¢.
We say that a typed lambda calculus normalizes, if every typable term M normal-

1zes.

With the typing system in hand, we can state and prove the correspondence

between A\~ and IPC:

Lemma 2.1.5 IfT'H O : ¢ then rg(I') & ¢. If T b1pc ¢, then there exists a term
M such that T = M : ¢, where T = {(z4,9) | ¢ € T'}.

Proof Straightforward induction on the proof trees I' - O : ¢ and I" F;p¢ ¢. Note
that each typing rule corresponds to a proof rule in IPC. For the first part of the
claim, simply erase lambda terms from the proof. The second part follows easily.
|

Thus indeed the lambda terms of A~ are exactly the proofs of IPC. A differ-
ent, equally valid point of view, is that any formula ¢ of IPC is a specification
and lambda term of type ¢ realizes the specification. This is often called the
propositions-as-types principle. The reader will need to wait until the next section
to see a realistic example of the principle in action.

In order to exhibit the connection of the computational nature of A~ with IPC
and to provide a mechanism to access the computational content in IPC, we first

need to show several standard technical properties of A™.

2.1.2 Properties of \™

We start with two technical properties. First, unnecessary extra assumptions can

be added to the proof with no harm:

Lemma 2.1.6 (Weakening) If '+ Q : V and y ¢ dom(I'), then ',y : Y F Q :
v,

17



Proof Induction on I' = @ : U. Most of the cases follow by a straightforward
application of the induction hypothesis. Consider the following interesting cases

of the last rule applied in the proof:

x:okFx:0

By the assumption, y # x. Thus also trivially I,z : ¢,y : ¥ -y : ¢.

F,ZL’IQSl}_MIQbQ
'EXe:¢pr. M :py — ¢

x ¢ dom(T")

Take any y ¢ dom(I"). Without loss of generality we may assume that y # x.
Therefore, by the induction hypothesis, I',x : ¢,y : v = M : ¢, so also

Dy:vEXx:or. M: oy — ¢o. [ |

Second, the Substitution Lemma roughly says that we can replace a free variable
in a term by a term of the same type. This Lemma is strictly technical and used

only as a tool in the proof of Lemma 2.1.10.

Lemma 2.1.7 (Substitution Lemma) If 'z : ¢+ M : ¢ and ' N : ¢, then
I'F Mz := NJ : 9.

Proof By induction on I';z : ¢ = M : 9. We show several interesting cases. Case

Diz:9pF M : 4 of:

Fy:drFy: ¢y

If y =z, then M[x := N| = N and ¢; = ¢, so we get the claim easily. If
y # x, then M|z := N| = M =y. We need to show that I'\ {(z,¢)} F vy : .
But (y,v) € (I'\ {(z,9)}), so we get the claim.

18



F>I:¢7y:¢1}_M1:w2
Loz Ay Myocapy — 1o

y ¢ dom(I",z : @)

Without loss of generality we can assume that y is fresh, so in particular
y ¢ FV(N). By the induction hypothesis, I,y : {1 = Mi[z := NJ| : 1o,
so also I'  (Ay : ¢1. My[x := NJ) : ¢e. Since y ¢ FV(N), I' - (\y :
Y1 M)z == N : ¢y,

[ |
The next lemma analyzes the last typing rule applied, depending on the form

of the lambda term in the conclusion.

Lemma 2.1.8 (Inversion) Suppose I'+ Q : W. Suppose Q is of the form:

e M N. Then there is ¢ such that ' - M : ¢ — ¥V, I' = N : ¢ and the proof

ends with:
'-M:¢—-V¥ T'EN:o¢

'EM N:V

o \x: ¢. M. Then for some ), V. =¢ — ¢, 'z : ¢ = M : ¢ and the proof

ends with:
Fex:pFM: 9

F'FXe:¢. M:¢p—

e inl(M). Then for some ¢,0, V=0¢ Vi, ' M : ¢ and the proof ends with:

THM:é
TFinl(M): oV

e inr(M). Then for some ¢, ¥ =V ip, ' = M : 4 and the proof ends with:

I'EM:y
F'Finr(M) : oV

o case(M,z:¢. Nyx :4¢. O). ThenT' M : 9oV, iz: b NV T z: ¢+

O : ¥V and the proof ends with:
'EM:ovey Tiz:pFN:9 Tx:pFO: VU
't case(M,z:¢. Nyx:1. O): U

19



fst(M). Then for some i, ' = M : W A1) and the proof ends with:

THM:UAY
Tk fst(M): U

e snd(M). Then for some ¢, ' = M : ¢ AV and the proof ends with:

THM:pAW
I'Fsnd(M): ¥

(M, N). Then for some ¢, V=p AN, ' M :¢, ' N : 1 and the proof

ends with:
'EM:¢p T'EN: 9

TF(M,N): oA

e magic(M). Then '+ M : L and the proof ends with:

'=M:1
I' - magic(M) : ¥

Proof Straightforward inspection of the typing rules of A™. [ |
We will often invoke Inversion implicitly to determine the last rule applied in
the proof.

The next lemma shows that the form of a value is determined by its type:

Lemma 2.1.9 (Canonical Forms) If M is a value and = M : U, then if ¥ is:
e p—Y —then M=Xx:¢. Nandz:oF N .
o ¢V — then either M = inl(N) and bt N : ¢ or M = inr(N) and - N : 9.
e )Ny —then M = (N,O),F N:¢ andF O : .
e | — never happens.

Proof Straightforward inspection of the typing rules and possible values. Wi
We can now show the main properties of the computational behavior of A~

First, we show that computation preserves meaning. In other words, program

execution cannot change the program’s properties, captured by its type. Formally:
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Lemma 2.1.10 (Subject Reduction, Preservation) IfI' - P : ¥ and P —
Q, thenT' HQ : V.

Proof By induction on the definition of P — (). Case P — (@) of:

e (M\z:¢. M) N — M|z := N|. By Inversion, I' - Az : ¢. M : ¢ — V¥ and
' = N : ¢. By Inversion again, I';x : ¢ = M : W. By Substitution Lemma,
I'F M[z:= NJ]: .

e case(inl(M),xz : ¢. N,z : . O) — N[z := M]. By Inversion, I' - inl(M) :
oViyand 'z : ¢ N : W. By Inversion again, I' = M : ¢. By Substitution
Lemma, I' - Mz := N| : ¥, which shows the claim.

o case(inr(M),xz : ¢. N,z : 9. O) — O[z := M]. Symmetric to the previous
case.

o fst((M,N)) — M. By Inversion, I' = (M, N) : ¥ A ¢ for some 1. By

Inversion again, I' = M : ¥ which shows the claim.

e snd((M, N)) — N. Symmetric to the previous case.

M—>M1
M N — My N

By Inversion, for some ¢, ' - M : ¢ — W and I' - N : ¢. By the induction
hypothesis, I' - My : ¢ — ¥, thus also ' - M; N : W,

M—>M1
case(M,x : ¢. N,z : 1. O) — case(My,z : ¢. N,z : 1. O)

By Inversion, ' - M : ¢V, Iz : ¢ N : U, 'z : ¢y = O : U. By the
induction hypothesis I' = M; : ¢ V1), so also I' - case(M;,x : ¢. N,z : . O) :
v,
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M — M1
fst(M) — fst(M)

By Inversion, I' = M : ¥ A 4 for some 1), by the induction hypothesis
I'F M : WU AY, soalso T fst(M;) : .

M — M1
snd(M) — snd(M;)

Symmetric to the previous case.

M — Ml
magic(M) — magic(M;)

Straightforward. [ |

Furthermore, the computation cannot get “stuck” before it reaches a value,

considered to be the result of the computation.

Lemma 2.1.11 (Progress) If = P : U then either P is a value or there is Q
such that P — Q).

Proof By induction on the length of P. Case P of:

e 1. By Lemma 2.1.3, this situation cannot happen.

e \z:¢. M. Then P is a value.

e M N. By Inversion, for some ¢ we have - M : ¢ — V. By the induction
hypothesis, either M is a value or for some ), M — (). In the latter case,
M N — ) N. In the former, by Canonical Forms M = Az : ¢. O for some
O. Therefore M N = (Az : ¢. O) N — O[x := N].

e inl(M),inr(M). These are values.

e case(M,z : ¢. N,z : 1. O). Similar to the case where P = M N.
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e (M, N) is a value.
o fst(M),snd(M). Similar to the case where P = M N.

e magic(M). By Inversion, - M : 1. By the induction hypothesis, either M is
a value or there is M’ such that M — M’. By Canonical Forms the former

case is impossible. In the latter case, magic(M) — magic(M’). [
Subject Reduction and Progress together provide useful corollaries.
Corollary 2.1.12 If- M : ¢ and M | v, then - v : ¢ and v is a value.
Proof By Subject Reduction, - v : ¢. By Progress, v is a value. [ |
Corollary 2.1.13 If+ M : L, then M does not normalize.

Proof If M normalized, then by Corollary 2.1.12 we would have a value of type L,
which by Canonical Forms is impossible. |
The importance of normalization from the logical point of view is shown in the

following Corollary:
Corollary 2.1.14 Normalization of A\~ implies consistency of IPC.

Proof Suppose A~ normalizes and there is an IPC proof of 1. By Lemma 2.1.5, we
can find a term M such that = M : 1. By Corollary 2.1.13, M does not normalize.
This contradiction shows the claim. |

From our point view, however, an equally important property of normalization
is that it provides a means to access computational information hidden in proofs.
The reader will need to wait until the section 2.2 to see this mechanism in action,
as IPC is a bit too simple for realistic examples.

Having established the importance of normalization, we proceed to show that
A~ indeed normalizes. There are many known techniques used to prove normal-
ization. Our choice of a technique called realizability stems from the fact that it is

the only known technique which generalizes smoothly from A™ to set theory.
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2.1.3 Realizability for IPC

Realizability is a technique introduced by Kleene in 1945 [Kle45]; see [vO02] for a
historical account. It provides a formal account of the so-called Brouwer-Heyting-
Kolmogorov (BHK) interpretation of constructive logic. The BHK interpretation
explains what the construction, or a constructive proof of a formula is. We present

the clauses following [SUO06|.

The construction of a propositional variable p is unspecified. This is because

intuitively propositional logic only captures generic statements which hold

no matter what the actual content of p is.
e There is no construction of L.

e The construction of a conjunction ¢ A is a pair consisting of a construction

of ¢ and a construction of .

e The construction of a disjunction ¢ V ¢ is either a construction of ¢ or a

construction of .

e The construction of an implication ¢ — 1 is a method, which transforms

every construction of ¢ to a construction of 1.

An important thing to note about the interpretation, often confusing to new-
comers, is that it is not a mathematical definition. In particular, the notion of a
method in the clause for implication is left unspecified. The BHK interpretation
provides a set of intuitions which can be formalized in various ways. One such
interpretation, which we pursue in this section, is realizability.

Traditionally, a realizability relation, written as n IF ¢, relates natural numbers
with formulas. The natural numbers are constructions from the BHK interpre-
tation; some are interpreted as pairs, some as methods, implemented as Turing

machine indices.
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We are interested in using realizability to show normalization of lambda calculi.
For this purpose, it is much more convenient to use lambda terms as realizers.
However, lambda terms of A\~ are slightly inconvenient for this purpose. They
contain more information than necessary; while in A~ the resulting nuisance is
not significant, with more complicated calculi it would significantly obscure the
presentation. We therefore use a simplified lambda calculus, which we call A=, for

realizability.

Realizability terms

The terms of A\~ arise by erasing formulas from the terms of A~. Formally, A~

terms are an image of the following erasure map M — M on terms of \~:

x N=MN Ao M=X\xe. M

T

inl(M) = inl(M) inr(M) = inr(M)

case(M,x : ¢. N,x : 1. O) = case(M,z.N,z.0)

(M,N)=(M,N) fst(M) = fst(M) snd(M) = snd(M)

magic(M) = magic(M)

We will use letters M, N to denote the terms of A\—~. This will not lead to any
confusion, as the context will make it clear whether we are discussing the terms of
A~ or of \~.

The notions of reductions and values are induced from A~ in an obvious way.

Formally, the reduction relation is generated by the following rules:
(Ax. M) N — M|z := N]
case(inl(M),x.N,2.0) — Nz := M| case(inr(M),x.N,z.0) — Olx := M]
fst((M,N)) — M snd((M,N)) — N
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and evaluation contexts:
[o] == [o] M | case([o],x.N,z.0) | fst([o]) | snd([o]) | magic([o])
The values are generated by the following abstract grammar:
Vo ou=Xe. M | inl(M) | inr(M) | (M, N)
The following intuitively obvious properties of the erasure hold:
Lemma 2.1.15 M[z := N] = M[z := N]
Proof Straightforward induction on M. [ |
Lemma 2.1.16 M — N implies M — N.
Proof By induction on M — N. We show two representative cases of the proof:

e (A\r:¢. M) N — Mlx := N]. Then (\z. M) N — M|z := N|. By Lemma

2.1.15 we get the claim.

e M N — M' N, provided that M — M’. By the induction hypothesis,

M — M, so also N=MN —-M N=MN. [ |

Lemma 2.1.17 If P — @', then P — Q and Q = Q.

Proof By induction on P — . We show two representative cases of the proof:

o (Az. M) N' — M’[z := N'|. By the definition of the erasure map, P = (A\z :
¢. M) N for some ¢ and M = M’', N = N'. Thus P — M|[z := N]. Lemma
2.1.15 shows the claim.

e M N — O N, provided that M — O. By the induction hypothesis, M — M’
and M’ = O. Thus M N — M’ N and we get the claim. [
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These properties make it possible to prove the following, intuitively obvious

lemma:

Lemma 2.1.18 If M | then M |. In other words, the erasure map preserves

normalization.

Proof Lemma 2.1.17 shows that the reduction sequence M — ... — v’ entails the
existence of the sequence M — ... — v, where 7 = v’. As it is easy to see that v’
being a value entails v being a value, the claim follows. |

The crucial feature of A~ which makes the proof of Lemma 2.1.18 possible, is
that types in lambda terms do not play any role in reductions. In other words,
evaluation is type-oblivious. While this might not seem to be that interesting in
the case of A7, we shall see more significant examples of obliviousness of calculi

corresponding to stronger systems later.

Realizability relation

Having defined the terms of A=, we proceed to define the realizability relation. We
remark that our presentation is very close to logical relations, used in the world of

programming languages. See [Mit96] for more information on this subject.
Definition 2.1.19 A realizer is a closed term of \—.

Definition 2.1.20 The binary realizability relation \F relates realizers to formulas
of IPC. We write the relation as an infix operator: M I+ ¢ should be read as “M
realizes ¢”. The relation is defined by structural induction on ¢:

e MIFp=M]|

e MIF1l=1

o MIFpAp=M]| (M, M)A (M IF @) A (M- 1)
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e MIFopVvy=(M | inl(My)AMIF @)V (M | inr(My) A My IF 1))

e MIF¢p—1y=(M| Ix. My) AVYN. (N IF ¢) — (M[z:= N|IF )

The reader should now go back to the BHK interpretation and convince herself
that realizability does provide a reasonable implementation of the interpretation.

We proceed to show several easy properties of realizability, which are crucial to

the normalization proof and which hold for all realizability relations we consider

in this thesis.

Lemma 2.1.21 If M I+ ¢, then M |.

Proof Straightforward — if ¢ = L, the claim is trivial, all other cases of the

definition start with a clause assuring normalization of M. |

Lemma 2.1.22 If M —* N, then M IF ¢ iff N IF ¢.

Proof For ¢ = 1, the proof is straightforward. For the rest of the cases, M
realizing ¢ depends only on its normalization and value which do not change with

reductions. n

Lemma 2.1.23 If M |- ¢ — ¢ and N I+, then M N I+ 1.

Proof By M |+ ¢ — 4, then M | Ax. O and O[x := N] Ik ¢. Since M N —*

(Ax. O) N — Olz := N|, Lemma 2.1.22 shows the claim. |

2.1.4 Normalization of \™

With realizability, we have at our disposal sufficient means to prove normalization
of A™. We need the following technical tool to handle possible free variables in

lambda terms:
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Definition 2.1.24 An environment, denoted by p, is a finite partial function from
Var to realizers. For a term M, M|[p] denotes Mz, := p(z1), ..., 2, = p(zn)].
We write p =T if for all (x,¢) € T, p(x) IF ¢.

Theorem 2.1.25 IfI'+ M : U, then for all p =T, M|p] IF V.

Proof The proof proceeds by induction on the proof I' H M : W. To increase
readability, we will write M’ in the proof to denote M|p], where M and p are clear
from the context. Note that by Lemma 2.1.3 and the definition of the erasure map,

M{|p] is closed and so M[p] I ¥ is defined. Case I' = M : W of:

rx:opkFx:0

Then M’ = p(x) and the claim follows.

* T-M:¢—¢ THN:6
TFMN:o
By the induction hypothesis, M’ I ¢ — ¢ and N’ I+ ¢. Lemma 2.1.23 gives
the claim.
°

Fex:pFM: 9
'FXe:¢p. M:¢p— 1

We need to show that for any N I+ ¢, M'[z := N] IF ). Take any such N.
Let p' = p[z := NJ]. Then p' = T',x : ¢, so by the induction hypothesis
M{[p'] IF 1. As it is easy to see that M[p'] = M|p][x := N] = M'[z := N, we
get M'[x := N]IF .

M. 1
I' F magic(M) : ¢

By the induction hypothesis, M’ |- 1, which is not the case, so anything

holds, in particular magic(M’) IF ¢.
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'EM:opNY
T+ fst(M) : ¢

By the induction hypothesis, M’ Ik ¢ A1, so M’ | (My, Ms) and M; I ¢.
Therefore fst(M) —* fst((M;, M3)) — M,;. Lemma 2.1.22 gives the claim.

'EM:opNY
I'Fsnd(M) : 9

Symmetric to the previous case.

I'-M:¢ THN:vy
TF(M,N): oA

All we need to show is M’ IF ¢ and N’ |F ¢, which we get from the induction

hypothesis.

THM:¢
T'Finl(M): ¢V

We need to show that M’ |- ¢, which we get from the induction hypothesis.

I'EM:y
F'Finr(M) : oV

Symmetric to the previous case.

'EM:¢oVvy T,x:¢pFN:9 Tiz:ypE0O:9
't case(M,z: ¢. Nyx 1. O) : 0

By the induction hypothesis, M’ I ¢ V @. Therefore either M’ | inl(M;)
and My IF ¢ or M’ | inr(M;) and M; |- 1. We only treat the former case,
the latter is symmetric. Since p[z := M| IF I';z : ¢, by the induction
hypothesis we get N|p[z := M,]] IF 9. We also have case(M’, z.N', 2.0") —*
case(inl(My),xz.N',2.0") — N'lx := M,|. It is easy to see that N'[z :=

M,] = N|plx := M,]], so Lemma 2.1.22 gives us the claim. |

30



Corollary 2.1.26 (Normalization) Ift M : ¢, then M |.

Proof Take the empty p. Then p = (). By Theorem 2.1.25, M[p] normalizes. By

the definition of p, M[p] = M. By Lemma 2.1.18, M normalizes. |
Corollary 2.1.27 [PC is consistent.

As stated before, we will present some realistic applications of applying nor-
malization to extract computational content from proofs in the next section. Here

we present, however, an important theoretical application.
Corollary 2.1.28 (Disjunction Property) IfF ¢V 1, then either = ¢ or .

Proof Suppose = ¢ V1. Then there is a term M such that = M : ¢ V1. Since A~
normalizes, M | v and by Lemma 2.1.12 - v : ¢ V 9. By Canonical Forms, either
v=inl(N)and - N : ¢ or v =inr(M) and - N : 9. By Lemma 2.1.5, in the first
case - ¢, in the second - 1. |

This concludes our account of propositional logic. We now move to more so-
phisticated systems. However, the list of lemmas in all systems we consider in
this chapter will always include the lemmas we showed in this section. Moreover,
the proofs and systems we consider are modular — proofs of cases in lemmas for
A~ and IPC still work, possibly with minor modifications, in more complicated
systems. This will vastly simplify our account, as we will need to show only the

new cases in proofs.

2.2 First-order arithmetic

We now extend the system presented in the previous section to the constructive

version of the first-order arithmetic, called Heyting Arithmetic (HA).
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Heyting Arithmetic is based on the constructive version of the first-order logic,
one of the most successful logics in existence. First-order logic is widely used as
a basis for theorem provers. Moreover, it is an underlying logic of set theory, the
foundation of mathematics.

The constructive version of first-order logic is called intuitionistic first-order
logic (IFOL). The propositional variables from IPC are replaced by much more
concrete entities in IFOL. The logic allows its user to make statements about
arbitrary domains. These domains can have distinguished elements, operations on
such elements and their properties. The syntactic counterparts in IFOL are called
constants, function symbols and relational symbols, respectively. Their list is called
a signature; any IFOL theory is parameterized by a signature.

We are interested in the domain of natural numbers, formalized as HA. HA has
one constant 0, one unary function symbol S, which intuitively corresponds to the
successor function, two binary function symbols +, x and one relational symbol =.

For the formal presentation, we first fix a countable set F'Var of the first-order
variables. We will use the letters a,b,c,n, m for the first-order variables. The

syntactic counterpart of an element of a domain is called a term:

Definition 2.2.1 The terms of HA are generated by the following abstract gram-

mar:

t o= a|0|S>E)|t+t]|txt

In this section, letters ¢, s, u will denote exclusively the terms of HA. A term is
closed if it has no variables. The set of all HA terms will be denoted by T'ms and

the set of all closed terms T'ms,.

Definition 2.2.2 We call any term of the form S(S(S(...(0)))) a numeral.
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Definition 2.2.3 The formulas of IFOL are generated by the following abstract

grammar:
6 w= t=t|Ld—v|6AY |V |V é|3n ¢

The variable n in quantifiers binds its occurrences in respective formulas. The
free first-order variables of a formula ¢ are denoted by FVg(¢) and defined in
a standard way along with substitution. The notation @ is used for sequences,
treated as sets when convenient. The notation ¢(a) is used in the situation where
all free variables of ¢ are among a. The following standard substitution lemma is

proven easily:

Lemma 2.2.4 For any formula ¢, ¢la := t|[b = ula := t]] = ¢[b := u]a :=t], for

b FV(1).

Proof Straightforward structural induction on ¢. [ |

The proof system, similarly to IPC, is used to derive judgments of the form
“I' = ¢”. The contexts are still finite sets of variables. The logic arises by extending
the rules of IPC by the following clauses:

T+ Va. ¢
I'F ¢la:=t]

T+ o

TFva ¢ ¢ FVp(T)

I'F ¢la =t '3a.¢ T,oFy
I'-da. ¢ 'Evy

Finally, as HA is an axiomatic theory, we list its axioms:
o (eqRefl) Vn. n=n

e (eqSymm) Vn,m.n=m —m=mn

e (eqTrans) Vn,m,o.n=mAm=0—n=o

e (eqS) Vn,m.n=m — S(n) = S(m)
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(P3) Vn. S(n) =0 — L

e (P4)Vn,m. S(n)=S(m) - n=m

(plusZ) Vn. n+0=0

(plusS) Vn,m. n+ S(m) = S(n +m)

(mulZ) Vn. nx0 =0

e (mulS) Vn,m. n*xS(m)=n*m+m

o (indy(nq) Va. ¢(0,a) — (Yn. ¢(n, @) — ¢(S(n),a)) — Vn. ¢(n,a).

The last axiom is the induction axiom schema. This means that this is actually
an abbreviation for an infinite family of axioms — there is one instance of the
schema for every possible formula ¢(n,@). We use the notation I Fy4 ¢ if ¢ can
be derived from I' and the axioms of HA.

For any closed term ¢, there is a unique natural number denoted by ¢, which

we denote by [t] and define as follows:

o [txu] = [t] * [u].

Definition 2.2.5 We denote by t,, the unique numeral such that [t] = [t,]. Sim-
tlarly, for any natural number m we denote by m, the unique numeral such that

[m,] = m.

Lemma 2.2.6 For any formula ¢, closed term t and variable a, I' Fya ¢la := t]

i T hga ¢la:=t,].
Proof Easy induction on the proof tree. [ |
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t = al0|S@E)|t+t]|t=t

b i= t=t| L=y | dAY|HVE|Vn o] In o
I't¢g—y TEo

Lkl Lordy

oo ko I'Fo—9

T+

n;m—>S(n_):S(m)
S(n)=S(m) =n=m
n+ S(m)=S(n+m)

I'Fo Tk TFovVey D,oFd T,Fd
'V 'FovVvay |
¢ Tk | ROV | NN WT
TFoAg TFo TFo
ko Tk Va. ¢
T va g ¢ £ FVr(D) TF ¢la =1
'k =1 '+ da. otk
Yn.n=n (eqSymm) Vn,m.
Yn,m,o.n=mAm=o0—n=o0 (eqS) Yn,m.
Vn.S(n)=0— L1 (P4) Vn,m.
Vn.n4+0=0 (plusS) Vn,m.
Vn.nx0=0 (mulS) Vn,m.

n*xS(m)=nxm-+m

(indg(n,a)) Va. ¢(0,a) — (Yn. ¢(n,a@) — ¢(S(n),a)) — Vn. ¢(n,a)

Figure 2.1: Heyting Arithmetic
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2.2.1 M\H calculus

We now extend A~ from the previous section to encompass HA. The new calculus
will be called AH. Its terms arise by extending the grammar generating terms of
A~ by the following clauses. The first group of new clauses corresponds to the
proof rules of the first-order logic. The correspondence will be captured formally

by the type system.
M == ... |Xa M |Mt]|[t,M]]|]let|a,x:¢|:=Min N
The second group corresponds to HA axioms:

M == ... |eqReflRep(t) | eqSymmRep(t, s, M) | eqTransRep(t, s, u, M) |
caSRep(t, 5, M) | p3Rep(t, M) | p3Rep(t, s, M) |
plusZRep(t) | plusSRep(t, s) | mulZRep(t) |

mulSRep(¢, s) | ind,, g ¢(mn.a) (t,t, M)

The Rep suffix in these terms refers to the fact that these terms are represen-
tatives of the corresponding axioms — given a proof M of t = s, eqSRep(t, s, M)
represents a proof of S(t) = S(s). The notation a,7. ¢(n,d) denotes a formula ¢
with its variables a,7 bound. The ind, 7. 4. (t, ﬁ M) term in the grammar is a
term schema, describing a family of terms and parameterized by the formula ¢.
There is thus one term for each formula n, @. ¢(n,d). In any such term, the number
of terms in the sequence ¢ is the same as the number of variables in the sequence
a.

A subtle point in the definition of first-order substitution on lambda terms is

that it is extended to the formulas parameterizing ind terms:

5 e =y

(indg 7. gm,a)(t,t, M))[b:=u] = indez. gpmujmna) ([0 := u], t}b:= u], M[b := u])
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This is the reason for the adoption of binders in the parameterizing formula; had
it not been for them, the variables n,d in the term indg, z might be considered
free and a subject to substitution, which is not a desired behavior.

The reduction system is expanded by adding the following clauses to the re-

duction relation.
(M. M) t — Mla = t] let [a,x : ¢| :==[t, M] in N — Nla := t][x := M]

indy, g g(na) (0,1, M) — fst(M)
ind,, g gm.a(S1),t, M) — snd(M) t ind, z gma(t T, M), where ¢ is a numeral.
t — t,, for any closed t that is not a numeral.

The new evaluation contexts are:

—

o] == ...|[o]t]]let [a,x:¢]:=[o] in N |ind,a ¢mal(lc] t, M)

The new values are \a. M, [t, M] and all Rep terms.

A new feature in \H is a second reduction relation, defined on formulas and de-
noted by —,. Intuitively, we will consider formulas with closed terms denoting the
same natural numbers as being the same. This is because the ind, z ¢(n,a)(t, t, M)
term can only reduce if ¢ is a numeral. For this reason we have a rule t — '
along with the evaluation context ind, z (n,a)([o], t. M ), in order to force the first
argument of the ind term to reduce to the corresponding numeral. If we want to
be able to prove Subject Reduction, these reductions must have their counterpart
in the logic. This is the reason for the new relation —,, which is formally defined

as follows:
¢la :=t] —, ¢la :=t,],for any ¢, a and closed term ¢.

Definition 2.2.7 We write ¢ <, 1 if either ¢ —, 1 or ¢ —, ¢. We will denote

by =, the smallest equivalence relation extending —.,.
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We now move on to define the type system for A\H. It arises by extending the
system for A\ presented in the previous system. The contexts are still finite sets
of pairs (x, ¢). The new rules corresponding to the first-order logic are:

I'EM:¢ I'FM:Va. ¢
T v g “E VPN T ol =1

D'EM: ¢la:=t] 'EM:3a.¢ Tix:9pFN:9Y
CE[t,M]:3a. ¢ I'Flet [a,z:¢]:=Min N : v

The rules corresponding to HA axioms are:

'-M:s=t
I'F eqReflRep(t) : t =t I'F eqSymmRep(t, s, M) : t = s

'EFM:t=sAs=u
I'F eqTransRep(t, s,u, M) : t = u

'EM:t=s
'+ eqSRep(t, s, M) : S(t) = S(s)
TEM:S(t)=0 I'EM:S(t)=S(s)

' p3Rep(t, M) : L 't pdRep(t,s, M) :t =s

I'F plusZRep(t) : t+0=0 I'F plusSRep(t, s) : t + S(s) = S(t + s)

I' F mulZRep(t) : tx 0 =0 I'F mulSRep(t,s) : tx (S(s)) =t*xs+t

L+ M :$(0,8) AVn. ¢(n,8) — ¢(S(n), #)
'+ indn,d’. ¢(n,6)(ta t_: M) : gb(t?ﬂ

In addition, there is a rule corresponding to Lemma 2.2.6:

T'-M:é
T My @Y

Definition 2.2.8 We call the last proof rule inessential and all other proof rules

essential.

Lemma 2.2.9 If ¢ =, ¢, then T M : ¢ iff T = M : .
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Proof Straightforward induction on the definition of =,,. |
In order to smoothen further presentation, we remark that all rules involving

Rep terms are of the same form:

I M:¢a(t)
I axRep(t, M) : 4a(t)

Y

for appropriate number of terms ¢ and formulas ¢4 and 4. The term M and
the assumptions might be not present. For example, for ax = eqReflRep we have
t =1t, M is not present and 14 =t = t. For ax = eqSRep, t = t,5, p4 =t = s
and ¥4 = S(t) = S(s). We will therefore use meta-level schemas using axRep,
¢4 and ¥4 to talk about all these terms and rules at once. For example, using
this convention, we can specify the typing rules corresponding to HA axioms apart

from the induction axiom concisely as:

TEM:pa(t)
I axRep(t, M) : a(t)

The following Lemma shows that AH calculus is a faithful representation of

HA.

Lemma 2.2.10 (Curry-Howard isomorphism) If '+ O : ¥ then rg(T') Fya

U. IfT bFya U, then there exists a term M such that T + M : U, where I =
{(zg,0) | 9 €T}

Proof The first part is obvious — for the new typing rules use the corresponding
HA axioms and Lemma 2.2.6 to derive the formulas. For the second part, we
proceed by induction on the proof tree just as in case of A™. The proofs of the
cases corresponding to the rules of A~ are the same as before. We show the new

cases in the proof. Case the last rule in the proof I' Fy 4 ¥ of:

I'F3a.¢ T,0F W
TFo
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By the induction hypothesis we get terms M, N such that I' - M : Ja. ¢ and

[,zy: ¢ N:U. The following proof tree shows the claim:

THM:3a.¢ T,ap:0FN:U
T'klet [a,z4: ¢ :=Min N: ¥

'-o¢

ma¢FVF(F)

By the induction hypothesis we get a lambda term M such that T - M : ¢.
Therefore I' - Aa. M : Va. ¢.

I'FVa. ¢
I'F ¢la =1
By the induction hypothesis we get a lambda term M such that I' - M :
Va. ¢. Therefore ' = M t : ¢[a = t].

I'F ¢la =1
I'-da. ¢
By the induction hypothesis we get a lambda term M such that T - M :
@la := t]. Therefore T' & [t, M] : ¢la := t].

One of the axioms “ax” of HA. Then ¥ = V7i. ¢4(7) — 1(77). The following
proof tree shows the claim. To increase readability, we compress several steps

introducing the universal quantifier into one:

z:ga(@) b ¢A( 1)
T: ( ) = axRep(

m, T
F Az 1 §a(i). axRep(7, x) : A(ﬁ) — Pa(i)
= A Az ga(7). axRep(7, x) : V

The induction axiom. Then ¥ = Va. ¢(0,d) A Vn. ¢(n,d) — ¢(S(n),d) —
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Vn. ¢(n,d). The following proof tree shows the claim.

x: ¢(0,a) AVn. ¢(n,d) — ¢(S(n),d) Fx: ¢(0,a) ANVn. ¢p(n,d) — ¢(S(n),ad)
z:¢(0,a) ANVn. ¢(n,a) — ¢(S(n),d) Find, g ¢ma)(n,d ) : ¢(n,ad)
z:¢(0,d) AVn. ¢(n,d) — ¢(S(n),a) = An. ind, g g(mn,a)(n, d@, ) :

F AdAz = ¢(0,a) AVn. ¢(n,d) — ¢(S(n),d)An. ind, g ¢m,a(n

!
SRS

, A, T)

2.2.2 Properties of \H

The lemmas proved for A~ extend in a natural way to encompass \H.

Lemma 2.2.11 (Weakening) IfI' - Q : ¥ and y and FVg(¢) are fresh to the
proof tree ' =Q : U, then ',y : Y = Q : V.

Proof By induction on I' = @) : ¥. We show the new cases in the proof. Case
'EQ:Vof:

I'EM:¢
I'FXa. M :Va. ¢

a ¢ FVp(T)

By the induction hypothesis, ',y : ¢y = M : ¢. By y and FVg(¢)) being fresh
to the proof tree, a ¢ FVp(I',y : ¢). Therefore, I',y : ¢ - Aa. M : Va. ¢.

T M:Va. ¢
C'EMt: dla:=1

Straightforward.

L'EM: ¢la:=t1
TF M 3a ¢

Straightforward.
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I'-M:da.¢ T,z:¢F N0
I'Flet [a,z:¢]:==Min N : v

a¢ FV(T,¢)

Similar to the first case in the proof.

[ M : ¢a(t)
I axRep(t, M) : 4a(t)
Straightforward.
* THM:¢
Ty 7Y
Straightforward. [ |

The “propositional” substitution lemma is proved in exactly the same way as
its counterpart in IPC. As the new typing rules do not interact with propositional
substitution, the proof for the corresponding cases follows by a straightforward

application of the induction hypothesis.

Lemma 2.2.12 If'z: ¢ M :¢p and ' - N : ¢, then I' F M[z := N] : 1.

Since \H introduces first-order binders, a new, first-order substitution lemma
is necessary. Similarly to Lemma 2.2.12, it is used only in the proof of Subject

Reduction.

Lemma 2.2.13 IfI' = Q : V, then for any first-order variable b and term u,

Lo :=u] - Qb :=u]: V[b:=ul.

Proof By induction on the proof tree I' = @) : ¥. Most of the rules do not interact
with first-order substitution, so we show the proof only for the four of them that

do. Case I' - Q@ : ¥ of:
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I'EM:¢
I'-Xa. M :Va. ¢

aéFVF(F)

Without loss of generality we can assume that a ¢ FVp(u) U {b}. By the
induction hypothesis, I'lb := u] = M[b := u| : ¢[b := u]. Therefore I'[b :=
u] F Aa. Mi[b := u] : Va. ¢[b := u| and by the choice of a, I'[b := u] F
(Aa. M)[b:=u]F (Va. ¢)[b = ul.

T+ M:Va. ¢
TFMt:dla=1{

Choosing a to be fresh, by the induction hypothesis we get I'[b := u|
M[b = u] : Ya. (¢[b:=u]), so I'[b:=u] = M[b:=u] t{b := u] : ¢[b := u][a :=
t[b := u]]. By Lemma 2.2.4 and a ¢ FV(t), we get I'lb := u] b (M t)[b :=
ul = Pla == t][b = u].

I M:¢(0,8) AVn. ¢(n,t) — ¢(S(n), 1)
Tt ind,a gma(t,t, M) : 6(t,1)

By the induction hypothesis, I'[b := u] = M[b := u| : ¢[b := u](0,t[b := u]) A

B —

Vn. ¢[b := ul(n, t[b := u]) — ¢[b := u|(S(n),t[b := u]). Therefore I'[b := u] -

I
£
=

I
£,
-
=

I
£,
=
=

I
=
\‘&k
=

I

2
=

indy,,z. glp=ujn,a) (b == u], t[b:

The claim follows.

I'-M:¢
T Mg @Y

To fix our attention, assume ¢ —, 1. Therefore for some ¢; and a fresh

variable a, we have:
C'EM: ¢1]a:=1]

C'EM: ¢1a:=1,]

By the induction hypothesis, I'[b := u| &= M[b := u] : ¢1]a := t][b = u].
As t is closed and a is fresh, I'|b := u| = M[b := u] : ¢1[b := ulla = t],
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so I'lb :=u] F M[b := u] : ¢1]b := u]la = t,]. As t, is closed as well,
C[b:=ulE M[b:=u] : ¢1]a := t,][b := u], which shows the claim. |

Taking into account the relation <, the lambda terms still determine formulas:

Lemma 2.2.14 (Inversion) Suppose I' - Q : V. Suppose Q) is of the form:

e M N. Then there is ¢ such that '+ M :¢ — VW, ' N: ¢ and ¥, =, V.
o \x:¢. M. Then for some ¢, v, V=, ¢ = and ', x: ¢ = M : 1.

e inl(M). Then for some ¢, 0, V=, ¢V and '+ M : ¢.

e inr(M). Then for some ¢,1, ¥V =, ¢V and T'+ M : ).

o case(M,z: ¢.N,x :¢.0). ThenT' - M : oV, iz : o N: U T x: 0k
O : \I’l and \Ifl =0 v,

o fst(M). Then for some ), ' M : Uy Ay and ¥y =, V.

e snd(M). Then for some ¢, ' M : o ANV and Uy =, V.

e (M ,N). Then for some ¢, V=, oAV, 'FM:¢ and '+ N : .
e magic(M). Then '+ M : L.

e \a. M. Then V¥ =, Va. ¢, a ¢ FV(I') and I' = M : ¢.

e M t. Then for some term t and a formula ¢, ¥ =, ¢la :=t] and ' - M :
Ya. ¢.

o [t,M]. Then V =, Ja. ¢ and ' - M : ¢la :=t].

o let [a,x:¢] =M in N. Thena ¢ FVp(I';¢),' M :3a. ¢, 'z : o F N :
U, and ¥, =, W.

e axRep(t, M). Then ¥ =, Y4(t) and T+ M : ¢pA(t).
o ind,a gna)t,t, M). Then U =, ¢(t,t), T = M : ¢(0,1) A Vn. ¢(n, ) —

¢(S(n), ).
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Moreover, in all the cases, the proof trees in the conclusion are subtrees of I' - () :

v,

Proof The proof tree ends with (possibly zero) applications of the inessential proof
rule, preceded by an essential rule. An inspection of the latter shows the claim. W

The new formulas still determine values:

Lemma 2.2.15 (Canonical Forms) Suppose M is a value, = M : VU and V is

of the form:

e o — 1. Then M =Xz : ¢1. N and x : ¢1 = N : 9y, where ¢ — b =, ¢ —
.

o ¢V 1. Then either M = inl(N) and = N : ¢1 or M =inr(N) and = N : iy,
where ¢1 =, ¢ and VY, =, V.

e o ANY. Then M = (N,O), b N : ¢1 and = O : iy, where ¢ =, ¢1 and
(CEPEE

e | . This never happens.

VYa. ¢. Then M = Xa. N and = N : ¢1, where ¢1 =, ¢.

Jda. ¢. Then M = [t,N] and = N : ¢1]a := t], where ¢ =, ¢.

e t =wu. Then M is one of axRep terms.
Proof Straightforward. |

Lemma 2.2.16 (Subject Reduction, Preservation) IfT' - P : ¥ and P —
Q, thenT'HQ :W.

Proof By induction on the definition of P — (). Case P — (@ of:
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e Az :¢. M) N - M|z := N|. By Inversion, there is a ¢; such that I' -
X o.M ¢y — Uy, ' N : ¢ and ¥, =, ¥. By Inversion again,
e :o b M: Uy ¢ =, ¢ and ¥y =, U;. Therefore I' - N : ¢, so
by Lemma 2.2.12, T' - M[z := N]| : ¥y. Since ¥, =, ¥, by Lemma 2.2.9
I'F M[z:= NJ]: .

case(inl(M),x : ¢. N,z : 9. O) — N[z := M]. By Inversion, I' F inl(M) :
oV, I'x:¢9pF N : ¥, and ¥, =, V. By Inversion again, I' = M : ¢; and
¢1 =, ¢, s0 also I' = M : ¢. By Lemma 2.2.12, I' = M|z := N]| : Uy, so by
Lemma 2.2.9 also I' = M [z := N]| : .

case(inr(M),xz : ¢. N,z : 9. O) — O[z := M]. Symmetric to the previous
case.

fst((M,N)) — M. By Inversion, I' F (M, N) : ¥; A ¢ for some ¢ and
¥, =, V. By Inversion again, I' - M : ¥, and ¥, =, ¥y, so also ' M : .
snd((M, N)) — N. Symmetric to the previous case.

(Aa. M) t — M]a := t]. By Inversion, I' - Aa. M : Va. ¢ and ¥ =, ¢p[a := t].
By Inversion again, I' = M : ¢1, ¢1 =, ¢ and a ¢ FVp(I'), so I'la :==t] =T.
By Lemma 2.2.13, I' - Mla := t] : ¢1]a := t]. As it is easy to see that
¢la = t] =, ¢1]a := t], the claim follows.

let [a,x: ¢] :=[t, M] in N — N|a := t|[x := M]. Choose a to be fresh, so in
particular Ma :=t] = M. By Inversion, a ¢ FV(I', V), I I [¢t, M] : Ja. ¢,
e : ¢ N : Uy, I'la :=t =T and ¥; =, V. By Inversion again,
' M : ¢1la := t] and ¢; =, ¢. Therefore, I' = M : ¢la = t]. As
a ¢ FV(V), also a ¢ FV(VU,), so Vy[a := t] = ¥;. By Lemma 2.2.13 we
get I'la :=t],x : pla :=t] F Nla :=1t] : ¥i[a := 1], so also ',z : ¢la :=t] I
Nla :=t] : U;. By Lemma 2.2.12, we get I' = Nla := t|[x := M] : ¥y, so also
I'F Nla :=t][z := M] : L.
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o ind, g gm,a(t &M ) — indp g g(n.a)(tn &M ). This reduction rule is the rea-
son for the inessential proof rule in the typing system for A\H. By Inversion,
I'F M : ¢0,%) AVn. ¢(n,t) — ¢(S(n),t) and ¥ =, ¢(t,7). Thus also
I indyg gna(tn,t, M) : d(t,, D).

e ind, g gma(0,f, M) — fst(M). Then ¥ =, ¢(0,%). By Inversion, I' - M :
#(0,) AVn. ¢(n,t) — ¢(S(n),t). Therefore, T+ fst(M) : ¢(0,) and conse-
quently I' - fst(M) : W.

o ind,a smay(S(t), 6, M) — snd(M) tind,a sma(t,t, M). Then U =, ¢(S(t), ).
By Inversion, I' = M : $(0) A Vn. ¢(n,t) — ¢(S(n),t). The following proof
tree shows the claim.

[ sud(M) : ¥n. ¢(n, 1) = ¢(S(n),1) T =M : $(0) AVn. ¢(n,t) — ¢(S(n), )
IFsnd(M) t: ¢t 1) — ¢(S(t),1) T'Find, g gma(t,t, M) : ¢(t, 1)
Tt snd(M) tind, g gma(t,t, M) : ¢(S(t),?)

T snd(M) ¢ ind,, g gma(t,t, M) :

e The induction steps are easy. |

Lemma 2.2.17 (Progress) If- P : VU and FVp(P) =0, then either P is a value
or there is QQ such that P — Q and FVr(Q) = 0.

Proof Induction on the length of P. We show the cases for the new terms. In all
cases, the claim about F'Vg(Q) is trivial to verify. Case P of:
e \a. M, [t, M]. These are values.

e M t. By Inversion and Canonical Forms, ¥ =, ¢[a := t] and - M : Va. ¢.
By the induction hypothesis, either M = Aa. N in which case P — NJa :=t],
or M — M’ and also M t — M’ t.

e let [a,x : ¢] := M in N. By Inversion, = M : Ja. ¢. By the induction

hypothesis and Canonical Forms, either M = [t,0] in which case P —
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Nla = t][x := O], or M — M’ when also let [a,z : ¢| == M in N —
let [a,x : ¢] := M’ in N.

e axRep(t, M). These terms are values.

o ind,z ¢(na) (t,t,M). Since FVp(P) = 0, t is closed. If ¢ is a numeral, the
term immediately reduces. If not, then ¢t — ¢, and ind, g gm.q(t &M ) —

indn,&. o(n,a) (tnv t_: M) u

By composing Subject Reduction and Preservation as before, we get:

Corollary 2.2.18 If - M : ¢, M s closed and M | v, then v : ¢ and v is a

value.

Corollary 2.2.19 If+- M : 1 and M is closed, then M does not normalize.

2.2.3 Realizability for HA

We will extend realizability for IPC to encompass HA. For this purpose, we will

first present a BHK interpretation for the first-order arithmetic:

e The construction of an atomic formula ¢ = s exists only if if the numbers

corresponding to the terms are equal.
e There is no construction of L.

e The construction of a conjunction ¢ A is a pair consisting of a construction

of ¢ and a construction of .

e The construction of a disjunction ¢ V 1) is either a construction of ¢ or a

construction of .

e The construction of an implication ¢ — 1 is a method, which transforms

every construction of ¢ to a construction of .
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e The construction of an existential dn. ¢ is a pair consisting of a term ¢ and

a construction of ¢[n := t|.
e The construction of Vn. ¢ is a method transforming any term ¢ into ¢[a := t].
We proceed to implement the new BHK interpretation via realizability. We

first extend the erasure map so that it maps AH to AH, by adding the following

clauses to its definition:

[t, M] = [t, M] let [a,y: @] := M in N =let [a,y] :== M in N

Mt=Mt \a. M = \a. M

axRep(t, M) = axRep(t, M) ind,, g g(nay(t,t, M) = ind(t, £, M)
It is easy to see that the main lemma still holds:
Lemma 2.2.20 If M | then M |.

IFOL expands IPC by quantifiers, terms and equality relational symbols. The
realizability relation has to account for these new features. We define realizability

only on closed formulas. The definition of realizers stays unchanged:

Definition 2.2.21 A realizer is a closed term of AD.

Definition 2.2.22 The realizability relation M I ¢ between realizers M and

closed formulas ¢ is defined by the following clauses:

Mibt=s = M|A[]=][s]

MIF L = 1

MIF¢Ay = M| (M, M)A (M IF@)A (M)

MIFovey = (M | inl(M) A M IF @)V (M | inr(M,) A My IF )
MIF¢—¢ = (M| x. M) AYN. (N IF ¢) — (Mi[z := N] I )
MIF3a. ¢ = M|t NJANIF ¢la:=1]

MIFVa. ¢ = M| Xa. NAVEtE Tms.. N[a :=1] - ¢la = t]
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It is easy to see that all the properties of realizability proved for A~ hold for
AH as well:

Lemma 2.2.23 If M I+ ¢, then M |.
Lemma 2.2.24 If M —* N, then M I+ ¢ iff N I ¢.
Lemma 2.2.25 If M |- ¢ — ¢ and N I+, then M N I+ 1.

One new property is necessary in order to treat applications of the inessential

proof rule:
Lemma 2.2.26 If ¢ <, ¢' then M Ik, ¢ iff M I, ¢'.

Proof Straightforward induction on the definition of realizability, using the fact

that for any term t, [t] = [t,]- |

2.2.4 Normalization of \H

The normalization proof proceeds mostly unchanged. The definition of an environ-

ment must be updated to account for the free first-order variables in the sequent.

Definition 2.2.27 An environment, denoted by p, is a finite partial function from
Var to N\H and from FVar to closed HA terms. For a term M, M|p] denotes
Mz, = p(x1), ..., xn = p(xn),a1 == plar),...,an = play)]. Similarly, ¢[p]
denotes ¢la; = p(ar),...,am = plam)]. We write p = T' = M : ¢ if for all
a € FVp(I', M, ¢), p(a) is defined and for oll (z,¢) € T, p(x) IF ¢|p].

Theorem 2.2.28 (Normalization) If ' F Q : U, then for all p =T - Q : 'V,
M]p] I Wp].
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Proof For any AH term M, M’ in the proof denotes M|p] and ¢’ denotes ¢[p].
We proceed by induction on the proof tree I' = ) : W. As the cases corresponding
to A~ do not interact with first-order substitutions, the proofs remain unchanged

from Theorem 2.1.25. We therefore show only the new cases. Case I' - Q) : U of:

I'EM:¢
I'-Xa. M :Va. ¢

By the induction hypothesis, for all p = T' = M : ¢, M|[p] I ¢[p]. We need
to show that for all p = T'F Xa. M : Va. ¢, (\a. M)[p] IF (Va. ¢)[p]. Take
any such p. It suffices to show \a. M[p] I Va. ¢[p], which is equivalent to
vt € Tms.. M|p|la = t] IF ¢[p][a := t]. Take any t € T'ms.. We know that
pla ==t ET = M: ¢ Mplla = 1] = Mlpla := t]] and ¢[p]la = 1] =
d[pla := t]]. Thus, by the induction hypothesis M[p][a := t] I+ ¢[p][a = ¢]

which is what we want.

T M:Va. ¢
C'EMt: dla:=1

Take any p =I'F M t : ¢[a := t]. By the induction hypothesis, M’ I Va. ¢/,
so M’ | Aa. N and Yu € Tms.. Nla := u] IF ¢'la := u]. As t[p] € Tms., we
get in particular N[a := t[p]] I+ ¢'[a := t[p]]. Since M t[p] = M’ (t[p]) —*
(Aa. N) t[p] — Nla := t[p]] and (p[a := t])’ = ¢'[a := t[p]], Lemma 2.2.24

gives us the claim.

I'EM: ¢la:=1
TF [, M] : 3a. ¢

By the induction hypothesis, M’ I ¢'[a := t[p]]. Thus [t, M][p] = [t[p], M'] IF

Ja.¢’ which is what we want.
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I'-M:da.¢ T,z:¢F N0
I'Flet [a,z:¢]:==Min N : v

a¢ FV(T,¢)

Let p = I' & let [a,z : ¢] == M in N : ¢p. We need to show that

let [a, 2z : ¢] := M in N|p] = let [a,z] := M’ in N[p] IF 9. By the induction
hypothesis, M’ I Ja. ¢, so M’ | [t, M;] and M, IF ¢'[a := t]. By the induc-
tion hypothesis again, for any p' =T, 2 : ¢ = N : ¢ we have N|[p/] IF ¢[p/].
Take p' = plr := M, a :=t]. Since a ¢ FV (), ¥[p] = ¢', so N[p'] I+ 9.
Now, let [a,z : ¢] :== M’ in N[p| —* let [a,z] := [t, M1] in N[p] — N|p]la :=

t][x := M;] = N[p]. Lemma 2.2.24 gives us the claim.

LM :pa(f)
I axRep(t, M) : 4a(t)

By the induction hypothesis, M’ I+ gb’f;(zfp]) ). Since possible ¢/, are all atomic
formulas, this means that gb;‘(sz]) ) holds in the real world. It suffices to show
that axRep(t|p], M") IF w;‘(zfp])) Again, all possible ¢/, are atomic, so since
axRep(sz]), M) is a value, we only need to verify the truth of 1/1’A(1Tp]>) in
the real world. As the real natural numbers satisfy axioms of HA, the claim

follows.

L'F M :¢(0,t) AVn. ¢(n,t) — ¢(S(n),t)
Tk indna gma(t,t, M) : tf}

By the induction hypothesis, M’ IF ¢'(0, t[ ) AVn. ¢'(n, t[ ) — gb’(S(n),tTp]).

—

Therefore, M' | (M, M), My I+ ¢'(0,t]p]) and My I+ Vn. ¢'(n,t[p]) —

l

'S (n),t[ |). By Lemma 2.2.24 therefore also fst(M) IF ¢(0, tp]) an

snd(M) I Vn. ¢/ (n, 2]p]) — &(S(n), t[p]). Since p |= T'F indoa ot ﬂ, M) :

—
o(t,t[p]), tlp] is closed, so it is either a numeral or it reduces to a numeral.
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By Lemma 2.2.24, it suffices to show that for all numerals m, ind(7, M) I+

—

¢ (m,t[p]). We proceed by induction on m:

— —

— If m = 0, ind(m, t[p], M") — fst(M’). Since fst(M’) IF ¢'(0)AVn. ¢'(n, t[p]) —

H
¢'(S(n),t[p]), Lemma 2.2.24 shows the claim.

— It m = S(k), ind(m, t[p, M) — snd(M’) k ind(k, [p], M"). We know
that snd(M’) | An. O and Oln = k| Ik ¢'(k,t[p]) — qb’(S(E),t[_p])).

— —

By the induction hypothesis ind(k, t[p], M") I ¢'(k, t[p]), so by Lemma

o

!

—

2.2.25 Oln := k] ind (%, tp], M") IF ¢/(S(), [p]). Lemma 2.2.24 applied

again shows the claim.

I'-M:¢
T Mg @Y

Straightforward by Lemma 2.2.26. [ |
Corollary 2.2.29 (Normalization) Ift- M : ¢, then M |.

Proof Take p mapping all free first-order variables of M, ¢ to themselves. Then
p - M : ¢. By Theorem 2.2.28, M|[p] IF ¢[p], so by the choice of p, M IF ¢.
Lemmas 2.2.23 and 2.2.20 show the claim. |
By Corollary 2.2.19, we have just shown consistency of HA. As HA is equicon-
sistent with PA [G6d65], by Godel’'s Second Theorem we must have used more
power than available in PA. However, it might seem that it is not the case; after
all, the proof amounts to simple induction and verification of atomic formulas.
The answer lies in the induction axiom. In PA, it is impossible to formalize
the proof of all instances of the schema at the same time, because there is no way
to carry out the inductive proof in the normalization theorem “uniformly” for all
formulas. However, for any finite number of formulas, the proof can be formalized,

so PA can prove consistency of any finite fragment of its constructive counterpart.
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The Disjunction Property (DP) still holds, for closed formulas. A technical

lemma is useful:

Lemma 2.2.30 IfFy4 M : ¢ and ¢ is closed, then there is a term N such that
I_HA N . ¢ and FVF(N) = @

Proof Let FVp(M) = d. By ¢ being closed and Lemma 2.2.13, -y M[d := 5] ;.

Corollary 2.2.31 (Disjunction Property) If Fya ¢ V ¢ and ¢,v are closed,

then either Fya ¢ or Fya .

Proof By Lemma 2.2.10, there is a lambda term M such that = M : ¢ V. By
Lemma 2.2.30, we may assume that FVp(M) = (). Thus we can use Lemma 2.2.18
and the proof of the Disjunction Property from the previous section. [ |

From the point of view of computational information, the more important prop-

erty is Numerical Existence Property (NEP):

Corollary 2.2.32 (Numerical Existence Property) If g4 Ja. ¢ and Ja. ¢

is closed, then there is a natural number n such that Fga ¢la := ny,).

Proof By Lemma 2.2.10, there is a lambda term M such that = M : Ja. ¢. By
Lemma 2.2.30, we may assume that FVp(M) = (. By Corollary 2.2.18, M | v,
F v : Ja. ¢ and v is closed. By Canonical Forms, v = [t, N|]. By Inversion,
F N : ¢i[a :=t] and ¢1 =, ¢. By Lemma 2.2.6, - N : ¢[a := t,], so by Lemma
2.2.10, HAF ¢la := [t].). u

2.2.5 Computation in HA

We have finally arrived at the stage where we can present a realistic example of

computation hidden in proofs. Consider a simple example — a function, which
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given any natural number returns 0 if the number is even and 1 otherwise. Let us

first write the specification:

¢p(n,m) = (m=0Vm=1)A
(m=0—30.n=0+0)A
(m=1—3Jo.n=S(0+0)))

Specification : Vn3dm. ¢(n,m)

We prove this simple theorem by induction on n. For n = 0, take m = 0. For
n = S(k), take m from the induction hypothesis. If m is 0, return 1, otherwise
return (0. The correctness follows easily.

By the Curry-Howard isomorphism, there is a lambda term M such that
M : ¥nam. ¢(n,m). A proof assistant, such as Nuprl or Coq, could produce M
automatically during the process of proving Vndm. ¢. We show only the part
of M which is relevant for the computation, leaving the reconstruction of the
omitted terms (denoted by the “ ” character), types and of the proof tree - M :

VYnam. ¢(n,m) to the reader.

M

A indy, . g(n,m) (1, (M, My))
M, = [0, (inl(eqReflRep(0)), )]
M, = An. Azx.let [m,y] =z in Mj

M; = case(fst(y), z. [1, (inr(eqReflRep(1)), )], z. [0, (inl(eqReflRep(0)), _)])

We want to use M as a program P which, given any n, produces a number m

such that m = n mod 2. The program P, given n, works as follows:

e It constructs M n, which is of the type Im. ¢(n, m).

e By Normalization, M n | v. By Lemma 2.2.18, v : Im. ¢(n, m). By Canon-

ical Forms, v = [m, N] for some natural number m and term V.
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o It therefore normalizes M n to [m, N| and returns m.

Let us denote by P(n) the result of P on a number n. By the definition of P and

the properties of AH, for any natural number n we have HA F ¢(n, P(n)). Thus,

the program P satisfies its specification.
us see the computation of P(0)

To make this account a bit less abstract, let

and P(1). For P(0), we have:

M0O=

(An. indp . gn,m) (1, (M1, M2))) 0 — indy . gmm) (0, (Mi[n := 0], Ma[n :=0))) —

fst((My[n == 0], Ma[n := 0]))) — Mi[n := 0]

[0, (inl(eqReflRep(0)), )]

Therefore, P(0) returns 0.
The reduction sequence for P(1) is a bit longer. We abbreviate eqReflRep by
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eqRR.

M1=

(An. indp m. g(n,m)(n, (Mi, Ms))) S(0) —

indnm. g(nm) (5(0), (Mi[n := S(0)], My[n = S(0)]))) —
snd((Mi[n := S(0)], Ma[n := S(0)]))) 0 indpm. g(n.m)(0,

(Mi[n := 5(0)], Ma[n := 5(0)]))) —

Myfn == S(0)] 0 indy . gm0, (Mafn := S(0)], Ma[n = S(O)]))
(An. Az. let [m, y] =z in My) 0 indygm (0, (Mi[n = S(0)], Mafn == S(0)]))) —
Az let [m,y] = 2 in M) 0 indggm (0, (Mi[n == S(0)], Ma[n := S(0)]))) —

let [m, y] = indym, sy (0, (Mifn := S(O)], Maln := S(0)])) in My —*

let [m, y] == [0, (inl(€RR(0)), )] in M; —

My[m = 0]y := (inl(eRR(0)), _)] =

case(fst({inl(eRR(0)), _)), 2. [L, (inr(eRR(1)), _)], 2. [0, (inl(eRR(0)), _)]) —
case(inl(eRR(0)), z. [1, (inr(eRR(1)), )], z. [0, (inl(eRR(0)), )]) —

[1, (inr(eRR(1)), )]

Therefore, P(1) returns 1.

The programs that can be extracted from HA proofs include all functions prov-
ably recursive in PA. This class includes all primitive recursive functions, Acker-
mann’s function and much more. See [AZ97] for an example of a function which

is mot provably recursive in HA.
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CHAPTER 3
TOWARDS COMPUTATIONAL UNDERSTANDING OF SET
THEORY II : SETS

Having defined the isomorphism for simple systems, we can now move towards
more powerful and abstract systems. Whereas in the previous chapter the main
role was played by the natural numbers, one of the most concrete mathematical
objects in existence, this chapter will be dominated by much more abstract entities:
sets. While we will consider only sets of natural numbers in Section 3.1, the full

set theory will enter in Section 3.2.
3.1 Second-order arithmetic

The formulation of arithmetic presented in the previous chapter was developed
carefully by logicians trying to capture intuitions about numbers using first-order
logic. However, the original Peano axiomatization is not first-order. The induction
axiom in [Pea89] is “Any set containing 0 and closed under the successor operation
contains all natural numbers”. Thus, an abstract notion of a set of natural numbers
was deemed necessary to talk about natural numbers.

Although first-order axiomatization is more elementary and useful for various
purposes, a second-order! axiomatization is closer to Peano’s original ideas, much
more expressive and, most importantly from our point of view, it is a significant
step in our journey toward understanding computation in set theory. Thus in this
section we investigate second-order Heyting arithmetic, which we call HAS. More
information on second- and higher-order logics can be found in [Lei94].

The intuitionistic second-order logic, underlying HAS, is an extension of IFOL.

Informally, the extension consists of adding sets of individuals to the language,

lsecond” refers to the fact that a logic encompasses sets of individuals.
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together with the capability of quantifying over them and discussing whether a
number is a member of a set.

Formally, we first fix a countable set of set variables SV ar. Elements of SVar
will be usually denoted by letters X, Y, Z. We will sometimes also call them second-
order variables. Furthermore, we extend the definition of terms and formulas. One
significant difference from IFOL is that in second-order logic terms and formulas are
defined together, by mutual induction. More specifically, there is a new syntactic
kind of terms, which we call set terms. The set terms are generated by the following

abstract grammar:

A= X [{a] ¢},

where ¢ is an arbitrary formula with the first-order variable a bound inside. Intu-
itively, the term {a | ¢} denotes the set of all n such that ¢[a := n] holds. Thus,
the only sets HAS can mention are sets of natural numbers. We will call the {a | ¢}
terms comprehension terms or set terms. We will use letters A, B, C' exclusively in
this section to denote set terms. The set of all set terms will be denoted by STms
and the set of all closed set terms by STms..

We extend the definition of formulas to incorporate reasoning about set terms.

The extension consists of adding one new atomic formula and two new quantifiers:
pu=...|teA|VX. 9| 3IX. ¢

The variable X in the definition binds in ¢. Formulas can therefore have two
kinds of variables — first- and second-order. We denote the free first-order variables
in a formula ¢ by FVg(¢), the free second-order variables by F'Vs(¢) and all free
variables by F'V(¢). These definitions are extended to contexts in a natural way.

The need for mutual induction in the definition should now be clear — formulas

can mention set terms, while set terms may contain formulas.
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t = al|l0|S@E)|t+t]|t=t
A u= X [{al¢}
— t=t|L6—¥ [ 6AY|SVE|Vn 6| Tn o
teA|VX. ¢|3X. ¢
LF1 Lo PFo—y TH¢
ot ¢ I'kFo I'ko—9 I'Fy
I'kFo T'Fy 'Fovey Ty Liykd
TFove TrFove TFo
Tk¢ Ty TrHoAY TrHGAY
T'Fony I'kFo 'y
I '+ VYa. ¢
I'FVa. ¢ L'k ¢la =t
'k ¢la:=t] '+3da.¢ T,pkF1
TF3a ¢ TF ¢
T'F ¢la =] F'tte{a| ¢}
FHted{a] ¢} 'k ¢la =t
I'ko I'-vX. ¢
TFVvX. ¢ Tk o[X = A]
TH¢X =4 TF3X. ¢ T,6F
TF3x. ¢ TF ¢

<
|

a ¢ FVF(F)

a ¢ FVp(I') U FVE(Y)

X ¢ FVg(T)

X ¢ FVs(T',¢)

Vn.n=n (eqSymm) Vn,m.n=m —m=n

Yn,m,o.n=mAm=0—n=o0 (eqS) Vn,m.n=m — S(n) = S(m)
Vn.S(n)=0— L (P4) Vn,m. S(n) =S(m) = n=m
Vn.n+0=0 (plusS) Vn,m. n+ S(m) = S(n+m)
Yn.n+x0=0 (mulS) Vn,m. nxS(m)=n*sm-+m

(IND)VX.0e X - (Vn.ne X - Sn)e X)—>Vn.ne X

Figure 3.1: Second-order Heyting Arithmetic (HAS)
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The logic rules are extended to take into account new formulas in the following
way:
'k ¢la:=1] I'-ted{al ¢}
'Fted{al o} 'k ¢la =t
'Fo '-VvX. ¢
-VvX. ¢ I'Fo[X = 4]
I'Fo[X = 4] '-3X. ¢ IokF9
'-3X. ¢ L4

X ¢ FVg(I)

The intuitive justification of new rules should be clear. Note the symmetry be-
tween the first two rules; it will be crucial for developing the lambda calculus
corresponding to HAS proofs.

HAS is deeply impredicative. Consider, for example, the set D = {n |VX. n €
X}. This is a set of natural numbers and as such, it can be used to instantiate any
second-order universal quantifier. Thus, since in order to determine whether n € D
we need to know whether VX. n € X, in particular we should know already whether
n € D. This perceived circularity is still disquieting to some mathematicians who
subscribe to the view that mathematics should be predicative. See [Fef05| for more
information.

Having extended the logic, we proceed to amend the axioms of HA. The amend-
ment amounts to axiomatizing induction in the spirit closer to the Peano’s original

definition:

Definition 3.1.1 HAS arises by replacing the induction axiom schema in HA by

one ariom:
(IND)VX.0e X > (Vn.neX - Sn)eX)—-Vn.neX

Note that HAS contains HA:

Lemma 3.1.2 HAS+ HA.
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Proof 1t suffices to show that all instances of the induction axiom schema are

provable. Recall that the schema has the following form:
(lnd(j)(n,?i)) . ¢(07ﬁ> - (vn ¢(n7ﬁ> - ¢<S(n)7ﬁ)) — Vn. (b(n?ﬁ)

Take any 7, suppose ¢(0,7) and Vn. ¢(n,n) — ¢(S(n),7) and take any n. We
need to show ¢(n,7). Take X = {a | ¢(a,7)}. Then 0 € X and Vm. m € X —

S(m) € X, so Vm. m € X. In particular, n € X so ¢(n, ). |

3.1.1 \S calculus

We now present a lambda calculus AS for HAS. We add to AH the new syntactic
category of set terms, which are exactly the set terms of HAS, generated by the

same grammar:
Auz=X[{a] ¢}
We eliminate the induction terms from HA and extend the resulting grammar by

the following clauses:

M o= MA|AX.M|[AM]|lets [X,2:¢] := M in N |

sepRep(t, M) | sepProp(t, M) | ind(t, M)

The first four new terms mirror their counterparts in the first-order logic.
The ind(¢, M) term corresponds to the induction axiom. The sepRep(¢, M) and
sepProp(t, M) terms correspond to the proof rules governing the comprehension
terms. Informally, if M is a proof of ¢(t), then sepRep(t, M) is a proof of ¢ €
{n | ¢(n)}. Symmetrically, if M is a proof of t € {n | ¢(n)}, then sepProp(t, M)
is a proof of ¢(t). This symmetry is crucial for the construction of \S.

The reduction system is extended by the following reduction relations:
(AX. M)A — M[X :=A] lets [ X,z : ¢] ;== [A, M]in N — N[X := A|[z :== M]

62



ind(0, M) — fst(M) ind(S(t), M) — snd(M) t ind(t, M), where t is closed
ind(t, M) — ind(t,, M), where ¢ is a closed non-numeral
sepProp(t, sepRep(u, M)) — M

The last reduction rule is significantly different from all rules we encountered so
far. It provides a way to eliminate possible redundancies introduced by the com-
prehension axiom. For example, the proof “0 = 0, so 0 € {a|] 0 = 0}, s0o 0 = 0”
is clearly redundant and the rule would reduce it to 70 = 0”. We retain the —,
relation unchanged.

The new evaluation contexts are:
o] u= ...|[o] A|lets[a,x:¢]:=[o]in N |ind([o], M)
The new values in the calculus are:
V= ...|sepRep(t,M) | AX. M | [A, M]

The typing system of AH is extended by the following typing rules:

THM:é
TFAX. M:VX. 6

T M:VX. ¢
'EMA:¢[X :=A]

X ¢ FVg(I)

I'EM:¢[X := A 'EM:3X. ¢ Tyx:9pFN: 9
I'F[A M]:3X. ¢ CElets [X,z:¢|:=Min N : ¢
'EM:0€6 AANVR.ne A— S(n)e A
MFind(t,M):te A
' M: ¢la:=t 'EM:telal o}
' sepRep(t, M) : t € {a | ¢} I' F sepProp(t, M) : ¢la :=t]

Note the similarity between the first four rules and the rules in the first-order case.
There is no significant difference; this will make our proofs of the standard lemmas
much shorter.

The correspondence continues to hold:
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Lemma 3.1.3 (Curry-Howard isomorphism) IfI' - O : ¢ then rg(I') Fpras
¢. IfT Fruas ¢, then there exists a term M such that T = M : ¢, where I' =

{(z4,0) [ 9 €T}

Proof Straightforward induction on the proof tree I' = O : ¢. [ |

3.1.2 Properties of \S
The properties are extended mostly in a predictable way.
Lemma 3.1.4 (Inversion) Suppose I' = Q : V. Suppose Q is of the form:

e NX. M. Then ¥V =_,VX. ¢pand ' - M : ¢.

o M A. ThenT F M:VX. ¢ and U =, ¢[X = A].

[A,M]. Then T+ M : ¢[X = A] and ¥ =, 3X. ¢.

lets [a,z : ¢] ;= M in N. ThenT' - M :3X. ¢ and T,z : ¢ = N : Uy and
U=, V.

sepRep(t, M). Then for some ¢, ¥ =, t € {a | ¢} and '+ M : ¢la :=t].

sepProp(t, M). Then for some ¢, ¥V =, ¢pla:=t] and '+ M :t € {a | ¢}.

ind(t, M). Then for some A, ¥V =, t€ AandT'-FM:0€ AANVn.n€ A —
S(n) € A.

Lemma 3.1.5 (Canonical Forms) Suppose Q) is a value, - Q : V and VU is of

the form:

ot c{al ¢}. Then Q = sepRep(t;, M), = M : ¢1[a == t1], ¢1 =o ¢ and

t =, t.

o VX. ¢. Then Q =2X. M, M : ¢, and ¢ =, ¢.
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o 3X. ¢. Then Q =[A, M], M : ,[X = A] and ¢, =, ¢.

The substitution lemmas are proved with no new difficulties:

Lemma 3.1.6 IfI'x: ¢ M :9¢ and ' N : ¢, then I' = M|z := N| : 1.

Lemma 3.1.7 If I' & Q : WV, then for any first-order variable b and term u,
Lo :=u] - Qb :=u]: V[b:= ul.

We need a new substitution lemma, for second-order variables:
Lemma 3.1.8 IfI'FQ : ¥, then I'[X := A| F Q[X = A] : V[X := A].

Proof Straightforward induction on I' + () : W. The proof is very similar to the

proof of Lemma 3.1.7. [

Lemma 3.1.9 (Subject Reduction, Preservation) If 'O : VU and O — P,
then '+ P . .

Proof By induction on the definition of O — P. The proofs of most of the new
cases mirror the first-order cases in the proof in Section 2.2. We present therefore

the only significantly new case. Case O — P of:

sepProp(t, sepRep(u, M)) — M

By Inversion, for some ¢, ¥ =, ¢[a :=t] and I' - sepRep(u, M) : t € {a | ¢}.
By Inversion again, for some ¢y, t =, u, ¢ =, ¢ and ' b M : ¢1[a := u].
Thus also I' = M : ¢la := t] and consequently I' = M : W. |

Lemma 3.1.10 (Progress) Ift P : VU and FVp(P) = () then either P is a value
or there is () such that P — ().
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Proof By induction on the length of P. The proofs of most of the new cases mirror

the first-order cases in Section 2.2. We present the remaining case:

e P = sepProp(t,M). By Inversion, for some ¢, ' - M : t € {a | ¢}.
By the induction hypothesis, either M is a value or M — M’. In the
former case, by Canonical Forms for some t;, M = sepRep(t;, N) and
since sepProp(t,sepRep(t1, M)) — M, the claim follows. In the latter case,
sepProp(t, M) — sepProp(t, M"). [ |

Note the importance of the reduction rule sepProp(¢,sepRep(u, M)) — M to
the proof; had it not been for this rule, the reductions might stop well before

reaching the values.

3.1.3 Realizability for HAS

In HAS, providing a BHK interpretation becomes challenging. What should the
construction for 3X. ¢ be? Presumably a set of natural numbers A along with the
construction of ¢p[ X := A|. However, such an approach would presume independent
existence of sets of natural numbers; entities not at all intuitive and acceptable
from a constructive point of view. Although some substitutes exist, such as the
set of all functions from N to a two-element set, in a constructive world they do
not reach full generality of arbitrary subsets of natural numbers.

We therefore at this point leave BHK interpretations behind, providing only
realizability relations instead. We are not worried about the existence of sets of
natural numbers, nor even arbitrarily large sets as we shall see later. We remind
the reader that in our view the theories we consider are constructive cores of
classical theories, providing information about their computational content. Their
philosophical justification is of no concern to us. What is important is the method

to tackle impredicativity, generalizing smoothly to our final goal: the set theory.
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As before, we start with the erasure map, erasing AS to AS. A important feature
of \S is that the second-order terms play no role in reductions; contrast this with
the first-order terms, which are necessary for the reduction rule corresponding to
the induction axiom. The erasure map takes this into account and replaces all the

second-order terms by the term () = {n | L}. We present the representative cases.

A=MO M. M=XX.M [AM]=]0,M]

lets [X,7:¢] := M in N =lets [X, 2] := M in N

sepRep(t, M) = sepRep(M) sepProp(t, M) = sepProp(M)

The main lemma is still valid:
Lemma 3.1.11 If M | then M |.

The moment we try to write a realizability relation in a naive way, we encounter
the following problem. The meaning of a term {a | ¢} should somehow be related
to whether ¢ is realizable or not. On the other hand, looking at realizability for
HA, we would probably like to have M |- VX. ¢ if for all terms A, M IF ¢[X = A].
As A may be arbitrary, in particular containing VX. ¢ again, it seems that some
circularity is involved. And indeed, there is no way to write a definition in this
manner. This should not come as a surprise, as HAS is much more powerful than
HA. Since realizability can be used as a tool to prove the normalization of AS and
consequently the consistency of HAS, simple induction formalizable in HA cannot
suffice.

We need to utilize in an essential way the impredicativity of “real” natural

numbers. For this purpose, we introduce a notion of \-set:

Definition 3.1.12 A \-set is a set of pairs (M,n), where M is a closed term of

\S and n is a natural number.
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The (uncountable) set of all \-sets will be denoted by H*. More formally:
H* = P(\S, x N),

where P denotes the power set operation and AS, denotes the set of all closed \S
terms.

H?* gives us the necessary leverage to define realizability for HAS. The elements
of H* will be denoted by letters D, E, F.

We will use the sets from H* in the realizability relation. For this purpose,
we introduce environments to our realizability relations as well. There will be no
confusion between these environments and the ones used for normalization proofs;

the context will always make the situation clear.

Definition 3.1.13 An environment is a finite function mapping second-order vari-

ables to H?.

We will use the letter p to denote environments.

From now on, realizability relations will be parameterized by environments. We
will write M I, ¢ and read “M realizes ¢ in an environment p”. We incorporate
the definition of a meaning of a term into the realizability relation. As before, we
define realizability only on formulas ¢ such that FVp(¢) = (. However, ¢ can have
free second-order variables; their meaning will be fixed by the environment. As

before, realizers are closed terms of \S.

Definition 3.1.14 The realizability relation for HAS, written as M I, ¢, relates
realizers with formulas ¢ such that FVp(¢) = 0 for environments p defined on

FVs(¢). The meaning of a closed term T in an environment p is denoted by [T],,.
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They are defined by the following clauses:

M, t=s
M, teA
M, L

Mk, ¢ At
Mk, ¢V
Mk, ¢ —
M-, Ja. ¢
M Ik, Va. ¢
Mk, 3X. ¢
M-, VX, ¢

Note that this definition is deeply impredicative. The meaning C' of a compre-
hension term {a | ¢} is a set from H*. In order to determine the members of C,

we may need to quantify over all sets in H*, including C. The two guilty clauses

in the definition are:

Ml teA

M-, VX. ¢

For example, taking
{(sepRep(M),m) | M |-, VX. m, € X} which is equal to {(sepRep(M),m) | VC €
H* M[X := 0] Ik, m, € C}. Since [D], € H?, in order to determine whether

M | (My, M) A (My Ik, ¢) A (My I, )

(M | inl(M;) A My b, @)V (M | inr(M;) A M I, )
(M | Ax. My) AVN. (N Ik, ¢) — (My[z := N] I, o)
M| [t,N]AN Ik, ¢[a = t]

M | Xa. N AVt € Tms,. Nla = 1] IF, ¢la = 1]

M | [0,N]A3D € H N I x—p) ¢

M | AX. NAVD € H* N[X :=0]IFyx.—p ¢

= M]vA(v, [[t]]p) < [[A]]p
= M | AX. NAVD € H* N[X = 0]IF x.—p] ¢
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(sepRep(M),m) € [D],, it seems that we already need to have the information

about members of [D],. Despite this fact, the definition is not circular:
Lemma 3.1.15 The definition of realizability is well-founded.

Proof Use the measure function m which takes a clause in the definition and

returns an element of N? with the lexicographical order:

m(M I+, ¢) = (“the number of comprehension terms in ¢,
“structural complexity of ¢”)

m([t],) = (“the number of comprehension terms in ¢, 0)

Then the measure of the definiendum is always greater than the measure of the
definiens. Note that in the clauses for formulas the structural complexity decreases,
while the number of comprehension terms does not grow larger. Moreover, in the
definition of [{a | ¢}],, one comprehension term disappears. [ |

It is easy to see that the standard lemmas continue to hold:

Lemma 3.1.16 If M IF, ¢, then M |.
Lemma 3.1.17 If M —* N, then M I, ¢ iff N I, ¢.

There is one new Lemma, stating that environments “commute” with substitu-

tions:

Lemma 3.1.18 [s[a := t]], = [s[a := ([t],)a]] and M I+, ¢la = t] iff M IF,
dla = ([tlp)n]. Also, [AX = B]], = [Al,x=[p),) and M -, ¢[X = B] iff

M1k pix.—1p],) ¢

Proof Straightforward induction on the definition of realizability. |
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3.1.4 Normalization of \S

The normalization proof is not changed much compared to A\H. We need to extend

the notion of an environment.

Definition 3.1.19 An environment, denoted by p, is a finite partial function from
Var U FVar U SVar to A\SUTms,U H* such that p~(Var) C AS., p~ (FVar) C
Tms. and p~ (SVar) C H>.

We define M|p| and ¢[p] essentially as before:

Mlp| = M[Z:=p(a),@ = p(a)]
olo] = old:=pla)]

Note that any p can be used as a realizability environment, by considering only its
part mapping second-order variables to sets from H?*. Therefore we will be using
the notation I, also for these environments p.

We write p =T'= M : ¢ if for all (z,¢) € I, p(z) I, ¢[p] and p is defined on
FV(I, M, ). Tt is easy to see that if p =T+ M : ¢, then M[p] I, ¢[p] is defined.

Lemma 3.1.20 (Normalization) If ' - O : U, then for all p ET F O : U,

Mp] Ik, W[p].

Proof For any lambda term M, M’ in the proof denotes M[p]. We proceed by
induction on the proof and show the new cases compared to HA. Case ' - O : ¥

of:

THM:é
THAX. M:VX. 6

X ¢ FVg(I)

Take any p = ' F AX. M : VX. ¢. We need to show that for all D,
Mp)[X = 0] IFpx.—p] ¢[p). Take any such D and let p' = p[X := DJ.
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Then p) =T+ M : ¢, so by the induction hypothesis, M[p'] IF, ¢[p/]. As
M|p][X := 0] = M[p'] and ¢[p'] = ¢[p], the claim follows.

'-M:VX. ¢
'EMA: X :=A]

Take any p =T'F AX. M : VX. ¢. Then also p = T'F M : VX. ¢. By the
induction hypothesis, M’ | AX. N and for all D, N[X := 0] IF,x.—p) ¢. In
particular, taking D = [A],, N[X := 0] IF,x.—[4),] ¢, so by Lemma 3.1.18,
N[X :=0] Ik, ¢[X := A]. Since M Afp] = M' ) —* (AX. N) ) — N[X :=

(], Lemma 2.2.24 shows the claim.

C'EM:¢lX = A
TF A M:3X. ¢

Take any p = T'+ [A, M] : 3X. ¢. It suffices to show that there is D such
that M’ IF,x.—p] ¢. By the induction hypothesis, M’ I-, ¢[X := A]. Taking

D = [A], and applying Lemma 3.1.18, we get the claim.

F'EM:3X. ¢ Tix:oFN:9Y
CElets [X,z:¢]:=Min N : 1

Take any p ="' F lets [X,x : ¢] := M in N : 9. By the induction hypothesis,
M' I, 3X. ¢[p],so M' | [, M;] and there is some D such that M; IF,x.—p) ¢

Since lets [X,z] := M in N —* lets [X,z]| := [0, M;] in N' — N'[z := M],
by Lemma 3.1.17 it suffices to show that N'[x := M;] Ik, ¢. Let p' = p[X =
D, x := M]. Note that o =T,z : ¢ F N : 9, so by the induction hypothesis
Np'| Iy lp]. As X ¢ FVs(v), it is easy to see that N[p] IF, ¥[p]. As

N[p'| = N'[x := M|, we get the claim.

F'EM:0€6 AANVR.ne A— Sn)e A
TFind(t, M):{c A
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The proof follows the steps of the proof of the corresponding case in AH.

I'EM: ¢la:=1
'+ sepRep(t, M) : t € {a | ¢}

Take any p |=I' - sepRep(t, M) : t € {a | ¢}. By the induction hypothesis,
M I, ¢'la = t[p]]. We need to show M’ I, ¢'la = ([t[p]],)n]. Lemma

3.1.18 shows the claim.

T-M:te{a| o}
I' F sepProp(t, M) : ¢[a = t]

Take any p = I' F sepProp(t, M) : ¢[a := t]. By the induction hypoth-
esis, M' | v and (v,[t[p]],) € [{a | ¢}],- This means that for some N,
v = sepRep(N) and N I, ¢la = ([t[p]],)n]. Since sepProp(M’) —*

sepProp(sepRep(N)) — N, Lemma 3.1.18 shows the claim. [
Corollary 3.1.21 (Normalization) If- M : ¢, then M |.

Corollary 3.1.22 HAS has the Disjunction Property and the Numerical Existence

Property.

As in case of HA, normalization provides the access to the computational con-
tent of HAS proofs. Second-order quantification enhances the specification lan-
guage significantly, as for example real and complex numbers can be easily encoded
as sets of natural numbers. There are many classical examples of such encodings
presented for example in [Sim99]. Constructively, coming up with a “correct” def-
inition of real numbers is more difficult. See [Lub07] for the description of the
issues involved.

At this point, our adventures with weak systems are over. We showed normal-

ization of propositional logic, using realizability. Later, we extended our methods
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to the first-order Heyting arithmetic, incorporating quantification to our proofs.
Finally, in this section, we showed how to tackle systems involving impredicativity
using our method. We are now ready to approach the strongest and the most

expressive formal system ever invented — ZFC set theory.

3.2 Set theory

In the introduction, we described the origins of ZFC, Zermelo-Fraenkel set the-
ory with Choice, now widely accepted as the foundation of mathematics. In the
previous sections we showed how to find computation in the constructive cores of
propositional logic, first and second-order arithmetic. We are now ready to expose
the computational content of the constructive core of ZFC. We assume basic fa-
miliarity with set theory, found for example in the first few chapters of [Kun80] or
[Jec03]. The results of this section can also be found in [Moc06a].

The constructive core of ZFC is called IZF, Intuitionistic Zermelo-Fraenkel. It
was first introduced by Myhill [Myh73]. It is essentially what remains of ZFC
after the excluded middle is carefully taken away. More specifically, apart from
eliminating the excluded middle, we also need to make two changes to the ax-
ioms of ZFC. First, as Choice is inherently nonconstructive, it needs to be taken
away. Second, surprisingly, Foundation in the standard formulation also implies
the Excluded Middle, so in IZF it is reformulated as €-Induction.

An important decision to make is whether to use the Replacement or the Collec-
tion axiom schema. We will call the version with Collection IZF~ and the version
with Replacement IZF . In the literature, IZF usually denotes IZFs. Both the-
ories extended with excluded middle are equivalent to ZF [Fri73| and thus proof-
theoretically as strong as ZFC. We will have more to say about the differences in

Section 4.2.
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Both versions have been investigated thoroughly. Results up to 1985 are
presented in [Bee85, 585]. Later research concentrated on weaker subsystems
[ARO1, Lub02]. A predicative constructive set theory CZF has attracted par-
ticular interest. [ARO1| describes the set-theoretic apparatus available in CZF and

provides further references.

3.2.1 The axioms of IZFg

IZF is a first-order theory. There are three binary relational symbols: €;, €, =. The
first one might look unfamiliar to the reader. It denotes an intensional membership
relation and it is used as a low-level mechanism to tackle the extensional nature of
set theory — see Lemmas 3.2.6, 3.2.7 and 3.2.8. In this section, we will focus on
[ZF g, as Collection is much more difficult to tackle using our methods. However,
it is possible to apply our methods also to IZF., as we show in Section 4.2.
Similarly to HAS, some terms of IZFy are parameterized by formulas. We
therefore define terms and formulas at the same time, by mutual induction and

the following abstract grammar:

tou= al0|{tt}|w] Ut | P(t) | Saf, ¢(a,f)(t>f> | R,Lbf_ ¢(a7b7f)(t>f§
¢ = L|tet|t=t|tet|oVo|oNd|d— ¢|Va. ¢ Ta. ¢
The terms S, » (a, ) (t,t) and RovF oanf (t,) could be displayed more familiarly
as{cet|o(c,D)}and {c| (Vz € ty. ¢(x,y, 1)) A3z € t. ¢(x, ¢, 1))}, respectively,
where Jly. ¢ is an abbrevation for “there exists exactly one y such that ¢”.
The rules of the first-order logic remain unchanged. The axioms follow, with
S(t) abbreviating t U {t,t}.
e (IN)Va,b.a€b—3dc.ce€fbha=c

e (EQ)Va,b.a=b—Vd. (d€ja—deb)AN(derb—d=a)
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(EMPTY) Ve. c €, 0 — L

(PAIR) Va,bVe. c €7 {a,b} < c=aVec=0>

(INF)Ve.c€jw—c=0V3Ibew. c=S5(b)

—

(SEP,., 7) vV fVYave. ¢ €; Saf sap @ feceandlef)

e (UNION): VaVe. c€r|Ja«— db€a. c€b

(POWER) VaVe. ¢ €7 P(a) < Vb.bec—b€Ea

. (REPL¢(a,b,f)) Vf, ave. ¢ €; R,, 7 ¢(a7b7f*)(a,f) — (Vzx € adly. qb(a:,y,f)) A

(Fz € a. ¢(z,c, f))

(IND,, ) Vf-(Ya.(¥b €1 a. $(b, f)) = (a, f)) — Va. ¢(a, f)

Extensionality and IZFp

There are two axioms seemingly missing from [ZFp. The first one is the Leibniz

axiom schema;:

—

(Lg) Ya,b, f. a=bA¢(a, f) — o(b, f)

The second is Extensionality:
(EXT) Va,b.a=b—Vc.c€a—ceb

Their presence in set theories is the reason for incorporation of the relational
symbol € in our logic along with (IN) and (EQ) axioms. We will now show that
both Leibniz and Extensionality axioms can be derived. Moreover, we shall see
that the rest of the axioms of IZF i hold with €; replaced by the more familiar €.
Therefore, a user of our presentation of IZF r does not need to worry about €;, as
the standard presentation is derivable.

From now on in this section, we work in IZF . The following sequence of lem-
mas establishes that equality and membership behave in the correct way. State-

ments similar in spirit are also proved in the context of Boolean-valued models.
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Our treatment slightly simplifies the standard presentation by avoiding the need

for mutual induction.

Lemma 3.2.1 For all a, a = a.

Proof By €-induction on a. Take any b €; a. By the induction hypothesis, b = b,

so also b € a. [ |

Corollary 3.2.2 Ifa €; b, then a € b.

Lemma 3.2.3 For all a,b, if a = b, then b = a.

Proof Straightforward. [ |

Lemma 3.2.4 For allb,a,c, ifa ="5b and b = ¢, then a = c.

Proof By €-induction on b. First take any d €; a. By a = b, d € b, so there is
e €7 bsuch that d =e. By b=c¢, e € ¢, so there is f € ¢ such that e = f. By the
induction hypothesis for e, d = f, so d € c.

The other direction is symmetric and proceeds from c to a. Take any d €; c.
By b =c¢, d € b, so there is e €; b such that d = e. By a = b, e € a, so there is

f €1 a such that e = f. The induction hypothesis gives the claim. [ |

Lemma 3.2.5 For all a,b,c, ifa € c and a = b, then b € c.

Proof Since a € c, there is d €; c such that a = d. By previous lemmas we also

have b =d, so b € c. [ |

Lemma 3.2.6 For all a,b,d, if a =b and d € a, then d € .

Proof Suppose d € a, then there is e such that e €;a and d =e. By a =0, e € b.
By Lemma 3.2.5, d € b. [ |
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Lemma 3.2.7 (Extensionality) If for all d, d € a iff d € b, then a = b.

Proof Take any d €; a. By Corollary 3.2.2 d € a, so by Lemma 3.2.6 also d € b.
The other direction is symmetric. [ |
All the lemmas above have been mechanically verified, with the help of a toy

prover we wrote to experiment with IZFp.

— —

Lemma 3.2.8 (The Leibniz axiom) For any term t(a, f) and formula ¢(a, f)

— —

not containing €1, if a = b, then t(a, f) = t(b, f) and ¢(a, f) < ¢(b, f)

Proof Straightforward mutual induction on generation of ¢t and ¢. We show some

representative cases. Case t or ¢ of:

e Jti(a). If ¢ €; Uti(a), then for some d, ¢ € d € t1(a). By the induction
hypothesis t,(a) = t;(b), so by Lemma 3.2.6 d € t,(b), so ¢ €; |Jt1(b) and
by Corollary 3.2.2 also ¢ € |J#1(b). The other direction is symmetric and by

the (EQ) axiom we get t(a) = t(b).

— —

o S, 7 ¢la, fl(ti(a),u(a)). If c €r S, 7 d(a, f)(ti(a),d(a)), then ¢ € ti(a)
and ¢(c,u(a)). By the induction hypothesis, t;(a) = t1(b), wW(a) = wu(b),

—

and thus ¢(c, ©(b)) and ¢ € t1(b), so ¢ €1 S, 7 d(a, f)(t:(b), d(b)) and also
c€ S, 7 dla, f)(t:(b), (D).
e t(a) € s(a). By the induction hypothesis, t(a) = t(b) and s(a) = s(b). Thus

by Lemma 3.2.6 t(a) € s(b) and by Lemma 3.2.5 ¢(b) € s(b).

—

e Ve gzﬁ(c,a,f). Take any ¢, we have ¢(c,a, f), so by induction hypothesis

—

o(c,b, f), so Ve, ¢(c,b, f). n
Lemma 3.2.9 For any term ta(d), ¢ € ta(a) iff ¢a(c,a).

Proof The right-to-left direction follows immediately by Corollary 3.2.2. For the
left-to-right direction, suppose ¢ € t4(a@). Then there is d such that d €; t4(a) and

¢ = d. Therefore ¢ 4(d, @) holds and by the Leibniz axiom we also get ¢4(c,a). B
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Lemma 3.2.10 For any aziom A of IZFg, IZFg- Ale:=€].

Proof Lemma 3.2.9 shows the claim for all the axioms apart from €-Induction. So

— —

suppose Va. (Vb € a. ¢(b, f)) — &(a, f). We need to show Va. ¢(a, f). We proceed

—

by €;-induction on a. It suffices to show Ve. (Vd €; c. ¢(d, f)) — ¢(c, f). Take
any c¢ and suppose Vd €; c. ¢(d, j?) We need to show ¢(c, f) Take a to be c in the
assumption, so it suffices to show that Vb € c. ¢(b, f) Take any b € c. Then there

—

is e €7 ¢ such that e = b. By the induction hypothesis ¢(e, f) holds and hence by
the Leibniz axiom we get ¢(b, f), which shows the claim. [
Therefore a user of IZF ; can ignore the €; symbol and thanks to Lemma 3.2.10

use the €;-free axiomatization.

The Replacement axiom

A more familiar formulation of Replacement could be: “For all F JA ifforallz € A
there is exactly one y such that ¢(z,y, ﬁ) holds, then there is a set D such that
Ve € Ady € D. ¢(x, v, ]3) and for all d € D there is x € A such that ¢(z,d, ]3)”.
Let this formulation of Replacement be called (REPLO0,), let (R4) be the term-free

statement of our Replacement axiom, that is:

— —

(Ry) =Vf,a3ld. Ve. c € d — (Vo € ay. ¢(x,y, /) A Gz € a. ¢(z, ¢, )

and let IZ denote IZF ; without the Replacement axiom and corresponding function
symbols. To justify our definition of Replacement, we prove the following two

lemmas:
Lemma 3.2.11 IZ+ (Ry;) —(REPLO,).

Proof Assume (R,), take any ﬁ, A and suppose that for all x € A there is exactly

one y such that ¢(z,y, 13) Let D be the set we get by applying (R4). Take any
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x € A, then there is y such that qb(:v,y,ﬁ), so y € D. Moreover, if d € D then
there is 2 € A such that ¢(z,d, F'). This shows (REPLO,). |

Lemma 3.2.12 [Z+ (REPLO0,) —(R;).
Proof Assume (REPL0), take any F , A and consider the set
B={aec A|Vxe Ay. ¢(z,y, F)}.

Then for all b € B there is exactly one y such that ¢(b,y, F). Use (REPLO,) to
get a set D. Then D is the set we are looking for. Indeed, if d € D, then there
is b € B such that ¢(b,d, F) and so by the definition of B, Vo € Adly. ¢(z,y, F)
and b € A. On the other hand, take any d and suppose that Vx € A3ly. ¢(x,y, ﬁ)
and there is z € A such that ¢(z,d, ]3) Then x € B, so there is 3/ € D such that
o(z,y, ﬁ) But 3’ must be equal to d, so d € D. As it is trivial to see that D is

unique, the claim follows. [ |

The terms of 1ZF;

The original presentation of IZF with Replacement presented in [Myh73| is term-
free. Let us call it IZF gy. We will now show that IZFy is a definitional extension
of IZF go.

In IZF g for each axiom (A) among the Empty Set, Pairing, Infinity, Separation,
Replacement, Union and Power Set axioms, we can derive Va3ldVe. ¢ € d <
¢a(c,d), using Lemma 3.2.12 in case of the Replacement axiom. We therefore
definitionally extend IZF gy, by introducing for each such (A) the corresponding
new function symbol t4(@) along with the defining axiom Vave. ¢ € t4(d) <
odalc,d).

We then need to provide the Separation and Replacement function symbols

R and S

of. olaf)’ where ¢ may contain the new terms. To fix our at-

ab,f. ¢(ab,f)

tention, consider the Separation axiom. For some function symbol S, » o(a. ) WE
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need to have:

= —

ijaVc.cGSa’ff sapa f) o ceanglcf)

As all terms present in ¢ were introduced via a definitional extension of IZF g,

there is a term-free formula ¢’ equivalent to ¢. We therefore have:

— —

V[, ave. CES,; waplaf)oceand(cf)

and consequently:

—

Vf aVe. c € S oF #a )(a, )<—>c€a/\¢(c,f)

We define S

W F. Saf) to be S

a.f. ¢'(a.f)" fo be

Similarly, we can define Ra b.F d(ab.f)

R, 7 & (@b, f) After iterating this process w-many times, we obtain all instances
of terms and axioms (A) present in IZFp.

In order to finish the demonstration that IZFy is a definitional extension of
IZF gy, it remains to justify the instances of the Leibniz and €-Induction axioms,
when the parameterizing formula contains terms. For the Leibniz axiom, take any
A, B,ﬁ and suppose A = B and ¢(A, F ). Then there is a term-free formula ¢’
equivalent to ¢, so also ¢'(A, 13) By the Leibniz axiom in 1ZF gy, ¢'(B, 13), so also
(B, F).

For the €-Induction axiom, take any F and suppose:
Va. (Vb € a. ¢(b, F)) — ¢(a, F)
Taking ¢’ to be the term-free formula equivalent to ¢, we get:
Va. (Vb € a. ¢/ (b, F)) — ¢/(a, F)

By e-Induction in IZF go, we get Va. ¢'(a, F), thus also Va. ¢(a, F).
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3.2.2 \Z calculus

The lambda calculus A\Z for IZF r can be seen as a generalization of ideas underly-
ing AH and AS. The first-order part of the calculus is the same as the first-order
part of A\H. As the axioms of IZF  have a similar form to the comprehension axiom
in HAS, similar Prop and Rep terms are used. Finally, the terms corresponding to
the induction axiom behave similarly to the induction terms in AH.

We proceed with the formal definitions. As this calculus is the culmination of
developments in the previous sections, we present it in its entirety.

The lambda terms in A\Z will be denoted by letters M, N, O, P. There are two
kinds of lambda abstraction in A\Z, one corresponding to the proofs of implication,
the other to the proofs of universal quantification. We use separate sets of variables
for these abstractions and call them proof- and first-order variables, respectively.
Letters x,y, z will be used for the proof variables and letters a, b, ¢ for the first-
order variables. Letters t, s, u are reserved for IZF i terms. The types in the system
are IZF p formulas. The terms are generated by the following abstract grammar.

The first group of terms is standard and comes from the first-order logic:

M = x| MN|Xa. M| x:¢. M |inl(M) | inr(M) | fst(M) | snd(M)
[t, M] | M t| (M,N) | case(M,z:¢. N,z :1. O)

magic(M) | let [a,x : ¢] := M in N
The second group of terms corresponds to the [ZF r axioms:
inProp(t,u, M) | inRep(t, u, M)

eqProp(t, u, M) | eqRep(t, u, M)
pairPrOp(t, Uy, Uz, M) ‘ pairRep(t, Uz, Uz, M)

unionProp(¢, u, M) | unionRep(t, u, M)
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Sepa,f ¢(a7ﬂpr0p(t7 u? ﬁ? M) | Sepa7f ¢(a,ﬂRep(t7 U, ﬁ, M)
powerProp(t, u, M) | powerRep(t, u, M)
infProp(t, M) | infRep(t, M)

repl, , 7 ¢(a7b7f~)Pr0p(t,u,ﬁ, M) | repl, , 7 ¢(a7b7f~)Rep(t,u,ﬁ, M)

The ind terms correspond to the (IND) axiom and Prop and Rep terms correspond
to the respective axioms of IZFr. As in case of HAS, we adopt a convention of
using axRep and axProp terms to tacitly mean all Rep and Prop terms, for ax
being one of in, eq, pair, union, sep, power, inf, repl, unless we list some of them
separately. With this convention in mind, we can summarize the definition of the

Prop and Rep terms as:
axProp(t, i, M) | axRep(t,u, M),

where the number of terms in the sequence «# depends on the particular axiom.
The variables in A, case and let terms bind respective terms. We denote all
free variables of a term M by F'V (M) and the free first-order variables of a term
by FVp(M). The free (first-order) variables of a context I' are denoted by F'V/(T")
(FVg(T')) and defined in a natural way.
The deterministic reduction relation — arises from the following reduction rules

and evaluation contexts:
(M :¢p. M) N — M[z := N| (Aa. M)t — Ma =1

fst((M,N)) - M snd((M,N)) — N
case(inl(M),x : ¢. N,z : 1. O) — N[z := M]

case(inr(M),x : ¢. N,x : . O) — Olx := M|
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let [a,2: ¢] :=[t, M]in N — Na :=t][x := M|
axProp(t, i, axRep(t, u, M)) — M

ind, 7 405 (M, 1) = Ae. M e N Az b €p e ind, 7 o, 5(M, 1) b)

In the reduction rules for ind terms, the variable x is new.

The evaluation contexts continue to describe the lazy evaluation order:

[o] == fst([o]) | snd([o]) | case([c],x.N,z.0)

axProp(t,w, [0]) | let [a, 2 : ¢] ;== [o] in N | [o] M | magic([o])

The values of A\Z are generated by the following abstract grammar, where M

is an arbitrary term.
Vi=Xda. M | Az :¢p. M |inc(M) | inl(M) | [t, M] | (M, N) | axRep(t,u, M)

The type system for A\Z follows. Types are IZF formulas, and terms are \7
terms. Contexts I are finite sets of pairs (x;, ¢;). The first set of rules corresponds
to the first-order logic.

''FM:¢p—¢v THEN:¢ Dz M9
x:obFx:0¢ I'EM N vy 'EXe:90. M:¢p—
'EM:¢ T'EN:9 F'EM:opNY 'EM:opNY
C'E(M,N): ¢ N ['Ffst(M) : ¢ I'Fsnd(M) : 9
I'-M:¢ I'EM:y
C'Einl(M): oV C'Finr(M): oV
'EM:¢oVvy T,x:¢pFN:9 Tiz:ypH-0O:9
I'Fcase(M,x:¢. N,z :1. O): 0

'EM:¢ I'-M:Va. ¢ D'EM: ¢la:=t
T oa i va o “E VP T ge=f] TR M Ja o
T'M: L '-M:da. ¢ Tyz:90F N0
[' - magic(M) : ¢ I'Flet [a,z: ]::MinN:wa¢FVF(F’¢)

The rest of the rules correspond to IZF r axioms:
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'EM:Vd (dejt—-deu)AN(deju—det)
'k eqRep(t,u, M) : t =u
'EFM:t=u
I'FeqProp(t,u, M) :Vd. (dejt —deu)N(d€fu—det)

I'EM:3dc.ce;unt=c I'Fteu
I'FinRep(t,u, M) : t € u I'F inProp(t,u, M) : dc. c € u Nt =¢

T M : dalt, @) TFM:te;ta(d)

I' F axRep(t, @, M) : t € ta() '+ axProp(t, @, M) : ¢4(t, W)
T'F M :Ve (Vb.berc— ¢(bt) — é(c,t)
Tk ind, ¢ o5 (M, 1) : Va. ¢(a, 1)

As expected, we have the correspondence between IZF and \Z:

Lemma 3.2.13 If '+ O : ¢ then IZFp+rg(l') = ¢, where rg(I') = {¢ | (z,¢) €
Y. If IZFr+T - ¢, then there emists a term M such that T = M : ¢, where

T'={(z4,0) | p €T}
Proof Both parts follow by easy induction on the proof. The first part is straight-

forward, to get the claim simply erase the lambda terms from the proof tree. For

the second part, we show terms and trees corresponding to IZF i axioms:

e Let ¢ be one of the [ZFi axioms apart from €&-Induction. Then ¢ =
Va. Ve. ¢ €1 ta(@) < ¢a(c,a) for the axiom (A). Recall that ¢; < ¢, is
an abbreviation for (¢1 — ¢2) A (¢2 — ¢1). Let T be the following proof
tree:

I'w: (bA(C? 6) Fa: ¢A<Cv 6)
Iz : ¢alc,a) FaxRep(e,d,x) : ¢ €5 ta(d)
I'F Az : ¢alc,d@). axRep(c, @, z) : pa(c,d) — c €1 ta(d)

Let M = (\x : ¢ €1 ta(d). axProp(c,d,z), \x : ¢pa(c,d). axRep(c, d, x)).

Then the following proof tree shows the claim:
F,l’ 1cEy tA(a) Fx:céer tA(a)
[,z c€;ta(a) FaxProp(c, d, x) : ¢palc,d)
I'F Az :cé€gta(d). axProp(e,d,x) : c €5 t4(d) — ¢alc,d) T
I'EM:ceg tA(6> — (bA(C, C_I:)
I'F A@Ae.M :Va. Ye. ¢ €1 ta(d) < ¢alc, d)
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e Let ¢ be the e-induction axiom. Let M = Afiz : (Va.(Vb. b € a —

—

(b, f)) — w(a, f)). indd}(a’f)(f, x). The following proof tree shows the claim:

\_/l

v(a, f

T,z :Va.(Vb. bera— (b, f)) — bla, f) bz : Va.(vb. bela—wp(b m—
T,z :Va.(vb. b€ a— o(b, f)) = v(a, f) - ind,, 5 (. 2) : Ya. ¥(a, )
T+ M :Yf.(Ya.(vb. b €ra— (b, f) = ¥(a, f)) — VYa. ¥(a, f)

3.2.3 Properties of \7

The properties are extended from AH in an entirely predictable way. Note that we
do not have to worry about the =, relation anymore, because there are no number

terms and corresponding reduction rules in the logic.

Lemma 3.2.14 (Inversion) Suppose I' - Q : V. Suppose Q) is of the form:

e inRep(t,u, M). Then V=t cuand ' M :3c. c€;unt =c.
e inProp(t,u, M). Then V =3c. c€;uNt=candTF M : t € u.

e eqRep(t,u, M). Then ¥V =t =wand T H M :Vd. (d€;t —-deu)A(de;

u—det).

e eqProp(t,u, M). Then ¥V =Vd. (de;t —-decu)AN(d € u—det)and
'FM:Vd. (dejt—deu)AN(deru—det).

o axRep(t,u,M). Then ¥V =t €;ts(d) and T'F M : p4(t,1).

o axProp(t,u, M). Then ¥ = ¢4(t, @) and ' F M :t €1 ta(u).

e ind, 5 4,7 (M1). Then ¥ = Va. ¢(a,t) and T b M : Ve (Vb b €5 ¢ —

¢(b, 1)) — ¢(c, ).

Lemma 3.2.15 (Canonical forms) Suppose Q is a value, - Q : ¥ and V¥ is of

the form:
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o t €;ta(tl). Then Q = axRep(t,u, M).
o t €ta(u). Then @ = inRep(t,u, M).
e t =u. Then Q = eqRep(t,u, M).

The propositional and first-order Substitution Lemmas continue to hold, together

with Weakening.

Lemma 3.2.16 (Subject Reduction, Preservation) If ' - P : ¥ and P —
Q, thenT'FQ : .

Proof By induction on the definition of O — P. As usual, we show the new cases.

Case O — P of:

e axProp(t, u, axRep(t, @, M;)) — M;. The proof tree must end with:
I'F M ga(t, )
I+ axRep(t, i@, My)) : t €1 ta(W)
I' - axProp(t, u, axRep(t, @, My)) : ¢a(t, u)

The claim follows immediately.

"dfw( (M, 1) — Xe. My ¢ (Ab.Azx bGICIdew(le,fjb The

proof tree must end with:
T'F M, :Ve. (V. berc— (b, 1)) — (e, t)
['Find (M, 1) : Va. ¥(a,t)

a,f. P(a f
We choose b, ¢, x to be fresh. By applying a-conversion we can also obtain a
proof tree of I' - M, : Ve. (Vd. d €; e — v(d,t)) — (e, 1), where {d, e} N
{b,c} = 0. Then by Weakening we get I',z : b €; ¢t M; : Ve. (Vd. d €; e —

U(d, 1)) — (e, t),soalso T,z : b €; ¢ ind (M, 1) : Va. i(a,t). Let

o.f. (ah)|
the proof tree 1" be defined as:
Foa:berckind, 7oy (M, 1) : Va. ¥(a, 1)
Poz:berekind, ¢ oo ( (M, 1) b:ap(b,t)
TEXe:bereind, pyop (M) b:berc— (b,

DXz b€ e ind, 55 (Mi,1) bV bere— (b1




Then the following proof tree shows the claim:
L'F M, :Ve. (Vb b e c— (b, 1) — (e, 1)
THM c:(Vb.berc—pbt) —(c,t) T
LM c(MbAz:bere ind, 5, 5(Mi,t) b) (et

THXe. My ¢ (AbAz : b€ e ind, 5y 5 (M1, 1) D) : Ve 9(c, 1)

Lemma 3.2.17 (Progress) If = P : U then either P is a value or there is Q
such that P — Q).

Proof Induction on the length of P. Case P of:

e axProp(t,u, O). By Inversion, the proof tree ends with:

FO:teg tA(ﬁ)
F axProp(t, 4, O) : ¢a(t, u)

By the induction hypothesis, either O is a value or there is O; such that O —
O;. In the former case, by Canonical Forms, O = axRep(t, 4, P) and M — P.

In the latter, by the evaluation rules axProp(t, u,O) — axProp(t, 4, Oy).
e axRep(t, u,O) is a value.

e The cases where P is a term corresponding to the equality and membership

axioms work in the same way.

e The ind terms always reduce. |

3.2.4 Realizability for I1ZFgr

Realizability for IZF was born and at the same time used for an amazing variety
of applications in the Ph. D. thesis of David McCarty [McC84|, written under the
direction of Dana Scott. The definition and the thesis were a major inspiration for

our proof of normalization of A\Z.
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McCarty’s realizability relation is presented in a conventional way. It relates
natural numbers, interpreted as pairs, Turing machine indices and other constructs,
with set-theoretic formulas. Our definition, as usual, uses lambda terms as vehicles
for computational content. It seems that the definitions behave mostly similarly
from the computational point of view. We conjecture, however, that if a formal
correspondence were to be defined and stated, some differences would show up in
the treatment of existential quantifier.

As usual, we start with the erasure map. In AZ, reductions are set-oblivious
— the set terms do not play any role in reductions. We therefore erase them to ().

The erasure map is induced by the following cases:

axRep(t, i, M) = axRep(M) axProp(t, @, M) = axProp(M)

ind, 7 .5 (M, 1) = ind(M)

M d. M =Xe. M let [a,z:¢]:=M in N =let [a,2] := M in N

case(M,r : ¢. N,z : 1. O) = case(M,x.N,1.0)

The erasure on the rest of the terms is defined in a natural way, for example

(M,N) = (M,N), [t, M] = [0, M] and M t = M (). As before, we call the closed
terms of \Z realizers. The set of all realizers will be denoted by \Z, and the set

of all \Z values which are realizers will be denoted by AZ,..
Lemma 3.2.18 If M normalizes, so does M.

Having defined realizers, we proceed to define the realizability relation. Just as

we used A-sets in HAS, we use A\-names in [ZF g:

Definition 3.2.19 A set A is a A\-name iff A is a set of pairs (v, B) such that

v € My and B is a \-name.
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In other words, A-names are sets hereditarily labelled by A\Z values which are

realizers.
Definition 3.2.20 The class of A\-names is denoted by V.
Thus, any A-name has the form:
{(v,A) |vE N e NA €TV}

Formally, V* is generated by the following transfinite inductive definition on
ordinals:

Vi=|JP\ZwexVy) V= |J W
B<a «cORD

Definition 3.2.21 The A\-rank of a A-name A, denoted by A\rk(A), is the smallest

« such that A € V.

We now define three auxiliary relations between realizers and pairs of sets in
VA, which we write as M I- A €; B, M I A€ B, M |- A = B. These relations

are a prelude to the definition of realizability.

MIFAe;B = M|vA(v,A) eB

MIFAeB = M |inRep(N)AN | [0,0] A3C € V* O | (01,0)A
O,IFC € BANOyIFA=C

MIFA=B = M | eqRep(My) A My | Xa. My AYD € VA My[a:=0] | (O, P)A

Ol Xx. Oy ANVYN. (NIFD €y A) — Oy[z:=N|IF D € BA
Pl M. PLAYN. (NIFDe&; B) - Pjz:=N]FDe A

The relations M |- A € B and M I A = B are defined together in a standard

way by transfinite recursion. See for example [Rat05a| for more details.

Definition 3.2.22 For any set C € V*, CT denotes {(M,A) | M I+ A € C}.
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In realizability for HAS, the environments were used to store “semantic” objects
— the elements of H*. This is also going to be the case in IZFy; however, in
order to give a smooth presentation and make the account closer to the standard
accounts of realizability for constructive set theories [McC84, Rat04, Rat06], we
make it possible for the formulas to mention constants from V* as well. Formally,

we extend the first-order language of IZF in the following way:

Definition 3.2.23 A (class-sized) first-order language L(V?) arises from enrich-

ing the IZFg signature with constants for all \-names.

We leave as an exercise a reformulation of our development not using L(V?).
From now on until the end of this section, symbols M, N, O, P range exclusively
over realizers, letters a, b, c vary over first-order variables in the language, letters

A, B,C vary over \-names. Environments are finite partial functions from first-

order variables in L(V?) to V.

Definition 3.2.24 For any formula ¢ of L(V?), any term t of L(V?), p defined
on all free variables of ¢ and t, any realizer M, we define by metalevel induction
a realizability relation M Ik, ¢ in an environment p and a meaning of a term [t],

m an environment p:

3. [w], = W', where w' is defined by the means of inductive definition: w' is the

smallest set such that:

e (infRep(N),A) € w' if N | inl(O), Olr, A=0 and A€ V).

e If (M,B) € w'™", then (infRep(N), A) € ' if N | inr(Ny), N7 | [0, O],
O | (M,P), P, A=S(B) and A€ V.
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10.

11.

12.

13.

Note that if (M, B) € w't, then there is a finite ordinal o such that B € V).

[ta(@)], = {(axRep(N), B) € AZye x V) | N Ik, ¢a(B, [d],)}. The ordinal
~ will be defined below.

Mk, L=1
Mk, t e s=MIF[t], € [s],

Mk, tes=MI-[t], € [s],

Mk, t=s=MI[t], =[s],

Mk, ¢ Ap= M | (M, My) A (M Ik, ¢) A (M IF, )

MIF, ¢V = (M| inl(M)AM I, ¢)V (M | int(My) A M IF, ¢)
Mk, ¢ — = (M | Ax. My) AVN. (N Ik, ¢) — (My[z := N] IF, ¥)
Mk, 3a. ¢=M | [),N]AJA € VA NIk, ¢la = Al

MIF,Va. $ =M | Aa. NAVA € VA Nla := 0] IF ¢[a := A]

The definition of the ordinal  in item 4 depends on ¢4 (). This ordinal is close

to the rank of the set denoted by ¢4(%) and is chosen so that Lemma 3.2.38 can

e e B
be proved. Let & = Ark(Ju],) and let & = (cv, ..., ). Case t4(u) of:
o {uj,us} — v =maz(ag,as)

Pu) —vy=a; + 1.

Uu—v=a.

Sa,f. qﬁ(a,]?)(u?ﬁ) - 7 = aq.

Ra,b,f. ¢(a7b7f~)(u, @). This case is more complicated. The names, such as Ny,
are chosen to match the corresponding clause in the proof of Lemma 3.2.38.
Let G = {(Nl, (Ngl,B)) S )‘Zc X [[U]];_ | dd € VA. @D(Nl,NQl,B,d)}, where
¢(N1,N21, B,d) = (N1 l Aa. N11> A (NH[CL = @] l AT O) A (O[Q? =
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—

Na] | [0,01) A O1 I+, &(B,d, [ul,) AVe. ¢(B,e,[u],) — e = d). Then
for all g € G there is D and (N, (Noy, B)) such that g = (Ny, (Noy, B)) and
(N1, Nat, B, D). Use Collection to collect these D’s in one set H, so that for
all g € G there is D € H such that the property holds. Apply Replacement
to H to get the set of A\-ranks of sets in H. Then § = J H is an ordinal and
for any D € H, Ark(D) < 3. Therefore for all g € G there is D € V' and
(N1, (Na1, B)) such that g = (Ny, (Nag, B)) and (N, N9y, B, D) holds. Set

v=p0+1

The proof of well-foundedness of the realizability definition is just a little bit

more difficult than the similar proof for HAS.

Definition 3.2.25 For any closed term s, we define number of occurrences of s
in any term t and formula ¢, denoted by Occ(s,t) and Occ(s, @), respectively, by
induction on the definition of terms and formulas. We show representative clauses

of the definition.:

e Occ(s,s) = 1.

e Occ(s,a) =0, where a is a variable.

o Oce(s, ta(@W)) = Occ(s, ) + . .. + Oce(s, up).
e Occ(s, Sy(t, @) = Occ(s, ¢) + Oce(s, t) + Oce(s,ur) + ... + Oce(s, uy,).
o Oce(s,t € u) = Occ(s, t) + Oce(s, u).

o Occ(s, ¢ Ab) = Oce(s, d) + Occ(s, ¥).

In a similar manner we define the number of function symbols F'S in a term and

formula.

Lemma 3.2.26 The definition of realizability is well-founded.
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Proof Use the measure function m which takes a clause in the definition and

returns an element of N3 with the lexicographical order:

m(M -, ¢) = (Occ(w,d), FS(¢),“structural complexity of ¢”)

m(lt],) = (Ocelw,t), FS(t),0)

Then the measure of the definiendum is always greater than the measure of the
definiens — in the clauses for formulas the structural complexity goes down, while
the rest of parameters do not grow larger. In the definition of [w],, one w disap-
pears. Finally, in the definition of [t4(%)],, the topmost ¢4 disappears, while no
new V;’s and w’s appear. |

The three critical clauses of our realizability definition are:

o [ta(@)], = {(axRep(N), B) € A\Z,. X V,YA | NI, ¢a(B,[d],)}

o M, ters=MIFt], € [s],

o MIF,Va. 6 =M | da. NAVA € V*. Nla :=0] I+ ¢la := A
These clauses exhibit deep impredicativity of set theory. The trick we use to tackle
the impredicativity is essentially the same as the one we applied for HAS. To define
the realizability clause for the universal quantifier, we quantify over all sets in V.
Since the meaning of any term is a member of V*, the construction makes sense,

as we just saw in Lemma 3.2.26.

As expected, realizability “commutes” with substitution:

Lemma 3.2.27 [tla := s]], = [t[a := [s],]], = [t]pja=[s1,) and M -, dla := s] iff
Mk, gla = [s],] if M I pja=ga,) ¢-

Proof By induction on the definition of realizability. We show representative cases.

Case t of:

o A — then [t[a:= s]], = [tla == [s],]], = [t p=rs1,] = A-



o a — then [tla = s]l, = [s],, [tla := [sl,]l, = [ls],]l, = [s], and also
[t pta=s1,1 = [s]p-
e t4(@). Then [tla := s]], = {(axRep(N),A) | N I, ¢a(A,Ula := s])}. By

the induction hypothesis, this is equal to {(axRep(N),A) | N IFjja=[q

3

Pa(A,10)} = [t]pja=rs1,) and also to {(axRep(N),A) | N Ik, ¢a(A, ila =

[s],])} and thus to [tja := [s],]],-

For formulas, the atomic cases follow by the proof above and the non-atomic cases
follow immediately by application of the induction hypothesis. |

The standard lemmas continue to hold:
Lemma 3.2.28 If (M I, ¢) then M |.
Lemma 3.2.29 If M —* M’ then M' -, ¢ iff M I+, ¢.
Lemma 3.2.30 If M Ik, ¢ — ¢ and N I, 4, then M N I, ).
The following Lemma is strictly technical:

Lemma 3.2.31 If p agrees with p' on FV(¢), then M -, ¢ iff M I+, ¢. In
particular, if a ¢ FV(¢), then M Ik, ¢ iff M ==y 6.

Proof Straightforward induction on the definition of realizability — the environ-
ment is used only to provide the meaning of the free variables of terms in a formula.
|

We now establish several properties of the realizability relation, which mostly
state that the truth in the realizability universe is not far from the truth in the
real world, as far as ranks of sets are concerned. Several lemmas mirror similar

facts from McCarty’s thesis [McC84].
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Lemma 3.2.32 If A € V), then there is 3 < « such that for all B, if M -,
B € A, then B € Vﬁ’\. If M-, B=A, then Be V). If M-, B €1 A, then
Ark(B) < A\rk(A).

Proof By induction on . Take any A € V. By the definition of V., there is
B < a such that A C \Z,, x Vﬁ)‘. Suppose M I, B € A. Then M | inRep(N),
N | [0,0], O | (Oy1,0,) and there is C such that O; I C €; A and Oy IF B = C.
Therefore, O; | v and (v,C) € A. Thus C € VﬁA, so by the induction hypothesis
also B € VﬁA and we get the claim of the first part of the lemma.

For the second part, suppose M I, B = A. This means that M | eqRep(M),
My | Aa. My and for all D, Mi[a := (] | (O, P). Moreover, O | A\x. O; and for all
N Ik, D €; B we have Oy[z := N| I, D € A. In particular, if (v, D) € B, then
O:lz == v] IF, D € A. By the first part of the lemma, any such D is in V' for
some 3 < a, so B € V.

The third part is trivial. |

Lemma 3.2.33 M I+, A = B iff M | eqRep(N) and N IF, Vd. (d €; A —
de B)AN(d e B — d € A). Also, M I+, A € B iff M | inRep(N) and
NlF,3c.cet BANA=c.

Proof Simply expand what it means for M to realize respective formulas. [ |

The following two lemmas will be used for the treatment of w in Lemma 3.2.38.
Lemma 3.2.34 If A, B € V}, then [{A, B}], € V.\,,.

Proof Take any (M,C) € [{A, B}],. By the definition of [{A, B}],, any such C'
isin V2, so [{A, B}], € V.. u

Lemma 3.2.35 If A€ V) and M I+, B = S(A), then B € V) 5.
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Proof M I, B = S(A) means M I, B = [J{A, {A, A}}. By Lemma 3.2.32,
it suffices to show that [U{4, {4, A}}], € V) ;. Applying Lemma 3.2.34 twice,
we find that [{A4,{A, A}}], € V.,. By the definition of [U{A4, {4, A}}],, if
(M, C) € [U{A, {A, A}}],, then C' € Vii(quiaa,apg,)s so C € V2,. Therefore
[U{A. {A, A}}], € V.5 which shows the claim. [ |

Lemma 3.2.36 If A,B €V} and M I+, C = (A, B), then C € V.,

Proof Similar to the proof of Lemma 3.2.35, utilizing Lemmas 3.2.34 and 3.2.32.
|

We will need one helpful realizer, mirroring the proof of Lemma 3.2.1:
Lemma 3.2.37 There is a term eqRefl such that eqRefl I, Va. a = a.

Proof Take the term eqRefl = ind(M), where M = Ac. Ax. eqRep(Ad. (N, N)) and
N = \y. inRep([0, (y,z 0 y)]). Then eqRefl — Xa. M a (Xe. Az. ind(M) e). It suf-
fices to show that for any A, M 0 (Xe. Az. ind(M) e) I, A = A. We proceed by in-
duction on A-rank of A. We have M () (Ae. Az. ind(M) e) | eqRep(Ad. (N, N)[x :=
Ae. Az. ind(M) e]). Tt suffices to show that for all D € VA, for all O Ik, D €; A,
inRep([0, (O, (Ne. Az. ind(M) e) 0 O)]) IF, D € A. Take any D and O I, D €; A.
By Lemma 3.2.32, A\rk(D) < Ark(A). We need to show the existence of C' such
that O IF, C €; A and (Ae. Az. ind(M) e) 0 O I-, D = C. Taking C = D,
the first part follows trivially. Since (Ae. Az. ind(M) e) § O —* ind(M) ) —
M @ (Xe. Xz. ind(M) (), we get the claim by Lemma 4.2.11 and the induction
hypothesis. [ |

The following lemma states the crucial property of our realizability relation.

Lemma 3.2.38 (M, C) € [ta(@)], iff M = axRep(N) and N IF, ¢4(C, [u],).
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Proof The proof proceeds by case analysis on ¢4(u). We first do the proof for
all terms apart from w, then we show the claim for w.

For all terms, save w, the left-to-right direction is immediate. For the right-to-
left direction, suppose N Ik, ¢4(C, M) and M = axRep(N). To show that
(M,C) € [ta(@)],, we need to show that C' € V. Let & = Ark([u],) =

(1, ..., ). Case ta(u) of:

o {uj,us}. Suppose that N |-, C = [u1], V C = [us],. Then either N |
inl(N1) ANy I, C = [uq], or N | inr(Ny) A Ny I, C = [us],. By Lemma

3.2.32, in the former case C' € Va’\l, in the latter C € V), so C € V*

az’ maz(a1,02)"
e P(u). Suppose that N IF,Vd. d € C' — d € [u],. Then N | Xa. N; and
VD. Nija :=0]IF, D € C — D € [u],, so VD. Ni[a := (] | Az. N, and for all
O,if OlF D € C then Ny := O] I, D € [u],. Take any (v, B) € C. Then
inRep([0, (v,eqRefl 0)]) Ik, B € C, so Ny[z := inRep([0, (v,eqRefl 0)]] IF,

B € [u],. Thus by Lemma 3.2.32 any such Bisin V), s0 C € V} .

e Ju. Suppose N I, Jc. ¢ € [u], NC € c. Then N | [0, N;] and there is B
such that Ny IF, B € [u], AC € B. Thus Ny | (N1, N2), Ny |-, B € [u],,

Ny Ik, C € B. By Lemma 3.2.32, any such B is in Voj\l, so also C' € Voj\l.

—
e S 7 ¢(a7f~)(u,ﬁ). Suppose N I, C € [u], A ¢(C, [u],). Then N | (Ny, Ns)

a

and Ny IF, C € [u],. Thus C € V.

* R, 7 ¢(a7b7f)(u,ﬁ). Suppose N Ik, (Vz € [u],3y. ¢(x,y, [[u_]]p))) Adr €
[u],. o(z,C, [[T]]p) Then N | (Ny, Ny) and N, Ik, 3z € [u],. ¢(z,C, ﬂuj]p).
Thus Ny | [0, Noo), Nag | (No1, Nag) and there is B such that Noy IF, B € [u],
and Ny IF, ¢(B,C, [uj]p). We also have N IF, Vz € [u],3y. ¢(z,y, ﬂu]p), SO
Ny | Aa. Nyp and for all C, Nyjfa :=0] | Az. O and for all P I, C € [u],,
Olz := P] IF, 3ly. ¢(C,y,[u],). So taking C = B and P = Ny, there

is D such that Nl l Aa. Nll; Nll[a = @] l Ax. O and O[CL’ = Ngl] l
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0,0,] and O -, ¢(B, D, [u],) A Ve. ¢(B,e,[u],) — e = D. Therefore
(N1, (Na1, B)) € G from the definition of ~, so there is D € V* such that
Nl l Q. Nll; Nll[a = @] l AT O, O[JT = Ngl] l [@,Ol] and 01 “_p

— —

(b(B,D, [[u]]p) A Ve. ¢(B,€, [[u]]p) —e=D. So 01 l <011,012> and 012 “_p

Ve. ¢(B,e, [u],) — e = D. Therefore, O | Aa. Q, Qa :== 0] | Az. @ and
Q1] := Nyp] IF, C = D. By Lemma 3.2.32, C € V'y/\'

Now we tackle w. For the left-to-right direction, obviously M = infRep(N). For

the claim about N we proceed by induction on the definition of w':

e The base case. Then N | inl(O) and OlF, A=0,s0 NI, A=0V 3y €
w'. A= S(y).

e Inductive step. Then N | inr(Ny), Ny | [0,0], O | (M', P), (M’,B) € w'*,
P+, A= S5(B). Therefore, there is C' (namely B) such that M’ I, C' € '
and P IF, A= S(C). Thus [0,0] Ik, Jy. y € &’ NA = S(y),so N |-, A =
OVIiyew. A= S(y).

For the right-to-left direction, suppose N IF, A =0V 3y. y € o' AN A = S(y)).
Then either N | inl(Ny) or N | inr(Ny). In the former case, N; IF, A = 0, so
by Lemma 3.2.32 A € V). In the latter, Ny I-, Jy. y € &' A A = S(y). Thus
N; | [0,0] and there is B such that O IF, B € w' A A = S(B). So O | (M, P),
(M',B) € w't and P I, A = S(B). This is exactly the inductive step of the
definition of ', so it remains to show that A € V. Since (M’, B) € w'", there is
a finite ordinal o such that B € V). By Lemma 3.2.35, A € V}\ 5, so also A € V}

and we get the claim. [ |
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3.2.5 Normalization of \7

In this section, environments p are finite partial functions mapping propositional
variables to realizers and first-order variables to V*. In other words, p : Var U
FVar — \Z. UV p~(Var) C MZ. and p~(FVar) C V*. As before, any p can
be used as a realizability environment by considering only the mapping of first-
order variables to V*. Therefore we will be using the notation I, also for these

environments p.

Definition 3.2.39 For a sequent ' = M : ¢, p = T' = M : ¢ means that p is
defined on FV(I', M, ¢) and for all (x;,¢;) € I, p(x;) Ik, ¢;.

Note that if p ="' = M : ¢, then for any term ¢ in I, ¢, [t], is defined and so

is the realizability relation M I-, ¢.

Definition 3.2.40 As usual, M[p] = Mz, = p(z1),...,2, = p(x,)], where
FV(M) ={x1,...,z,}.

Theorem 3.2.41 (Normalization) If ' = M : ¥ then for all p =T + M : 9,

M{p] IF, 9.

Proof For any \Z term M, M’ in the proof denotes M|p]. We proceed by metalevel
induction on I' = M : ¥ and show some cases where the treatment significantly

differs from the normalization proof for A\H. Case I' = M : 9 of:

TFM:o
TF \a. M :Va. ¢

By the induction hypothesis, for all p = ' = M : ¢, M[p] I ¢. We need

to show that for all p = T'F Xa. M : Va. ¢, (Aa. M)[p] IF, Va. ¢. This is

equivalent to Aa. M|p] I, Va. ¢. Take any such p. We need to show that
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VA. Mplla := 0] IF, ¢[a := A]. Take any A. Since pla:= AT+ M : ¢
and M |p|[a := 0] = M|[p|a := A]]la := ()], we get the claim by the induction

hypothesis.

T M:Va. ¢
C'EMt: dla:=1

By the induction hypothesis, M’ Ik, Va. ¢, so M’ | Aa. N and VA. Nfa :=
0] IF, ¢la := A]. In particular Na := 0] IF, ¢[a := [t],]. By Lemma 3.2.27,
Nla := 0] I, ¢[a := t]. Since M t[p] = M' ) —* (Aa. N) 0 — Nla = 0],

Lemma 3.2.29 gives us the claim.

L'EM: ¢la:=t]
TF M 3a ¢

By the induction hypothesis, M’ I, ¢[a := t], so by Lemma 3.2.27, M’ I,

¢la = [t],]. Thus, there is a lambda-name A, namely [t],, such that M’ IF,

¢la = A]. Thus, [t, M][p] = [0, M'] IF, 3a.¢, which is what we want.

PFM:3a. 6 T,o:6FN:
IC'Flet [a,z:¢]:=Min N : v

a ¢ FV(I, 1)

Let p =T F let [a,z : ¢] == M in N : ¢p. We need to show that

let [a,z : ¢] ;= M in N[p] = let [a,z] := M’ in N[p] I, ¥. By the induction
hypothesis, M’ I, Ja. ¢, so M’ | [0, M;] and for some A, M, Ik, ¢[a := A].
By the induction hypothesis again, for any p' = 'z : ¢ = N : ¢ we
have N[p] Ik, . Take p' = plx := Mj,a := A]. Since a ¢ FV(¢), by
Lemma 3.2.31 N[¢/] I, ¢. Now, let [a,z : ¢] := M’ in N[p] —* let [a,z] :=

[0, My] in N[p] — Nlp|la := 0][z := M,] = N[¢/]. Lemma 3.2.29 gives us the

claim.
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'EM:Vd (dejt—-deu)AN(deju—det)
'k eqRep(t,u, M) :t =u

By the induction hypothesis, M’ IF,Vd. (d€;t —decu)A(de€ju—det).
By Lemma 3.2.27, M’ |-, Vd. (d €; [t], — d € [u],) AN (d €; [u], — d € [t],)-
By Lemma 3.2.33, eqRep(M’) I+, [t], = [u],- Lemma 3.2.27 applied again

gives us the claim.

'EFM:t=u
I'FeqProp(t,u, M) :Vd. (dejt —-deu)N(d€ru—det)

By the induction hypothesis, M’ I, t = u. By Lemma 3.2.27, M’ I, [t], =
[u],- By Lemma 3.2.33, M’ | eqRep(N) and N IF, Vd. (d €; [t], — d €

[ul,) A (d € [u], — d € [t],). Since eqProp(t,u, M) = eqProp(M') —*

eqProp(eqRep(N)) — N, by Lemma 3.2.29 eqProp(t,u, M) Ik, Vd. (d &;
[tl, — d € [u],) A (d €1 [u], — d € [t],). Lemma 3.2.27 applied once again

gives us the claim.

For inProp and inRep, the proof is similar to the two previous cases.

D' M:pa(t,u)
'+ axRep(t,u, M) : t € t(u)

By the induction hypothesis, M’ IF, ¢ 4(t, @). By Lemma 3.2.27 this is equiva-
lent to M' I+, ¢a([t],, [[u—]];) By Lemma 3.2.38 (axRep(M'), [t],) € [ta(@)],.

so axRep(M') Ik, t €1 t4(u).

F"M:tE[T,A(ﬁ)
I' - axProp(t,u, M) : ¢pa(t,u)

By the induction hypothesis, M’ I, t €; t4(@). This means that M’ | v

and (v,[t],) € [ta(@)],. By Lemma 3.2.38, v = axRep(N) and N IF,
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oa([tl,, M) By Lemma 3.2.27, N I, ¢ 4(t, @). Moreover, axProp(t, 4, M) =

axProp(M') —* axProp(axRep(/N)) — N. Lemma 3.2.29 gives us the claim.

T'F M :Ve (Vb.berc— ¢(bt) — é(c,t)
I Find(M, 1) : Ya. ¢(a,t)

Since ind(M’) reduces to Ac. M’ ¢ (Ab. Az. ind(M") b), by Lemma 3.2.29 it
suffices to show that for all C, M’ () (Ab. Ax. ind(M’) b) I, #(C,t). We
proceed by induction on A-rank of C'. Take any C. By the induction hy-
pothesis, M’ I, Ve. (¥b. b €1 ¢ — ¢(b,1)) — ¢(c,t), so M’ | Ae. N and
Nic:=0]IF,¥b. b e; C — ¢(b, t). By Lemma 3.2.30, it suffices to show that
Ab. Az, ind(M") b Ik, ¥b. b €; C — ¢(b,1). Take any B and O I, B €; C, we
need to show that ind(M’)[z := O] 0 I, ¢(B,t). As x ¢ FV (M), it suffices
to show that ind(M’) 0 I+, ¢(B, t), which, by Lemma 3.2.29, is equivalent to
M' B (Ab. Az ind(M’) b) I, #(B,t). As O -, B €; C, the \-rank of B is
less than the A-rank of C' and we get the claim by the induction hypothesis.
|

Corollary 3.2.42 (Normalization) If- M : ¢, then M |.

Proof Take p mapping all free propositional variables of M to themselves, and all
free first-order variables a of M to (). Then p =F M : ¢. By Theorem 3.2.41, M o]
normalizes. By the definition of p, M[p] = M. By Lemma 3.2.18, M normalizes.
|

Normalization properties of set theories

All reduction systems we have considered so far are deterministic — the evaluation

contexts uniquely determine the place in the term where one of the reduction
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rules is applied. However, it is possible to imagine extended systems, where base
reduction rules can be applied anywhere in the term in a nondeterministic fashion.

In such extended systems, which are actually more common in the world of
applied type theories, such as Calculus of (Inductive) Constructions or Extended

Calculus of Constructions, the normalization has two aspects: weak and strong:

Definition 3.2.43 A calculus weakly normalizes if there is a reduction path ter-
minating in a value. It strongly normalizes if all reduction paths terminate in a

value.

Obviously, strong normalization implies weak normalization. The other direc-
tion needs not hold; however, the gap between weak and strong normalization for
the calculi used in proof assistants seems minimal. Apart from Martin-L6f’s type
theory, all of them strongly normalize. Many of them can be specified in the frame-
work of Pure Type Systems and it has been conjectured by Barendregt, Geuvers
and Klop that for Pure Type Systems, weak normalization entails strong nor-
malization. For more about Pure Type Systems see |Bar92|. Reasonable calculi,
such as Calculus of Inductive Constructions or Extended Calculus of Construc-
tions, have also the property that their inconsistency implies the existence of a
non-normalizing term, which violates even weak normalization of the calculus.

Suppose we extend our reduction systems to enable applications of base re-
ductions anywhere in lambda terms. Then A\~ AH and AS strongly normalize.
However, most surprisingly, A\Z does not. One trivial reason are the ind terms.
However, even without them, the system would not strongly normalize, as the fol-
lowing counterexample, invented by Marcel Crabbé and adapted to our framework
shows. The original counterexample was not a part of a published paper. Although
it is available on the author’s website [Cra|, our presentation is as comprehensive

as any other.
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Theorem 3.2.44 (Crabbé’s counterexample) There is a formula ¢ and term

M such that = M : ¢ and M does not strongly normalize.

Proof Recall that in set theory 0 =0. Let t = {x € 0 | x € x — L}. Consider the

terms:
N =)y :t €t snd(sepProp(t,0,y))y M =Xx:te0.N (sepRep(t, 0, (x, N)))

We first show that these terms can be typed. Let 7' denote the following proof

tree:

y:tethy:te{reld|zexr— 1}
y:t €tk sepProp(t,0,y)):t€ 0Nt et — L
y:t €tk snd(sepProp(t,0,y)):t€et— 1 y:tetby:tet
y:t €tk snd(sepProp(t,0,y)) y: L
F Ay :t €t snd(sepProp(t,0,y)) y:t €t — L

By Weakening, we can also obtain a tree 7 showingthat z : t € 0O N:t €t — L.

The following proof tree shows that - M :t € 0 — L:

T
r:tel0kFx:tel x:te0FN:tet— L
T, x:te0k(z,N)y:teOANtet— L
r:te0FN:tet— L x:t €0k sepRep(t,0,(x,N)):tet

x:t€ 0k N (sepRep(t,0,(x,N))): L
FAzx:te0. N (sepRep(t,0,(xz,N))):t€0— L

We now exhibit an infinite reduction sequence starting from M:

M =Xz :t€0.N (sepRep(t,0, (z,N))) =
Ar it €0. (\y:t et snd(sepProp(t,0,y)) y) (sepRep(t, 0, (z, N))) —
Az : t € 0. snd(sepProp(t, 0, (sepRep(t, 0, (z, N))))) (sepRep(t,0, (x,N))) —
Az :t € 0.snd({x, N)) (sepRep(t, 0, (z, N))) —
Ax:t€0. N (sepRep(t, 0, (z, N))) = M — ...
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Moreover, a slight (from the semantic point of view) modification to IZF,
namely making it non-well-founded, results in a system which is not even weakly
normalizing. A very small fragment is sufficient for this effect to arise. Let 7" be

an intuitionistic set theory consisting of 2 axioms:

e (C)Ya.ac€c—a=c

e D)Va.aed—acchaca—aca.

The constant ¢ denotes a non-well-founded set. The existence of d can be
derived from the separation axiom: d = {a € ¢ | a € a — a € a}. The lambda

calculus corresponding to 7' is defined just as for IZF .
Lemma 3.2.45 THdec

Proof 1t suffices to show that d = ¢. Take any e € d, then e € ¢. On the other

hand, suppose e € c. Since obviously e € e — e € e, we also get e € d. [ |

Theorem 3.2.46 There is a formula ¢ and a term M such that =7 M : ¢ and M

does not weakly normalize.

Proof Let N be the lambda term corresponding to the proof of Lemma 3.2.45

along with the proof tree Ty. Take ¢ =d € d — d € d. Consider the terms:
O = Az : d € d. snd(dProp(d, ¢, x)) M = O (dRep(d, ¢, (N, O))).

Again, we first show that these terms are typable. Let S be the following proof

tree, showing that O :d e d — d € d:

x:dedk-x:ded
x:dedFdProp(d,c,z)):d€chded—ded

x:dé€dtsnd(dProp(d,c,x)):ded—ded z:dedbFx:ded
x:d € dF snd(dProp(d,c,z)) z:d € d
FAx:de€d. snd(dProp(d,c,x)) x:d€d—ded
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Then the following proof tree shows that M is typable:

TN S
FN:dec FO:ded—ded
S F(N,O):dechded—ded

FO:ded—ded FdRep(d,c,(N,0):ded
- O (dRep(d, c, (N,0))) :d € d

Finally, we exhibit the only reduction sequence starting from M:

M = O (dRep(d, ¢, (N, O))) =
(Ax : d € d. snd(dProp(d, ¢,x)) x) (dRep(d, ¢, (N,0))) —
snd(dProp(d, ¢, dRep(d, ¢, (N, 0)))) (dRep(d, ¢, (N,O))) —
snd((V,0)) (dRep(d, ¢, (N, O))) —
O (dRep(d, ¢, (N,0))) =M — ...
[
Therefore constructive set theories dwell on a precarious border between nor-
malization and lack of thereof. An exciting theoretical challenge, which we leave

open, is to provide a more detailed map of this border.

Applications

As before, we can derive the standard properties of constructive theories:

Corollary 3.2.47 (Disjunction Property) If IZFr- ¢ \V 1, then IZFg- ¢ or
IZF - .

Proof Standard. [ |
To show Numerical Existence Property, we first define an extraction function
I which takes a proof H M : ¢t € w and returns a natural number n. F works as
follows:
It applies Lemma 3.2.9 to obtain a proof H N : t =0V 3y € w. t = S(y). F

then normalizes N to either inl(O) or inr(O). In the former case, I’ returns 0.
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In the latter, - O : Jy. y € w At = S(y). Normalizing O it gets [t1, P|, where
FP:t; € wAt=S5(t;). Normalizing P it obtains @) such that - @ : t; € w. Then
F returns F(FQ : t; € w) + 1.

To show that F terminates for all its arguments, consider the sequence of
terms t,t1,ts,... obtained throughout the execution of F'. We have 1ZFyt € w,
IZFgH t = S(t1), IZFg- t; = S(t2) and so on. The length of the sequence is

therefore exactly the natural number denoted by ¢.

Corollary 3.2.48 (Numerical Existence Property) If [ZFp- Jx € w. ¢(z),
then there is a natural number n and term t such that IZFr- ¢(), where  denotes

the IZFr numeral corresponding to n.

Proof As before, use the Curry-Howard isomorphism to get a value [t, M] such
that F [t, M] : 2. x € w A ¢(x). Thus - M : t € w A ¢(t), so M | (M, M)
and F M; : t € w. Take n = F(- M, : t € w). By patching together the proofs
IZF gt = S(t1), IZFRr- t; = S(t2), ... ,JZFgrF t, = 0 obtained throughout the
execution of F', we get IZF g+ t = m. By the Leibniz axiom, IZF g ¢(7). [ |

There are also two properties characteristic of constructive set theories:

Corollary 3.2.49 (Term Existence Property) If IZFg- 3x. ¢(x), then there
is a term t such that IZFgk ¢(t).

Proof By the Curry-Howard isomorphism, there is a AZ-term M such that - M :
Jdz. ¢. By normalizing M and applying Canonical Forms, we get [¢, N] such that
F N : ¢(t) and thus by the Curry-Howard isomorphism IZF g ¢ (). [ |

Corollary 3.2.50 (Set Existence Property) If IZFpt Jz. ¢(x) and ¢(z) is

term-free, then there is a term-free formula 1 (x) such that IZFrE \z. ¢(x) ANp(z).

108



Proof Take t from Term Existence Property, so that IZFgzH ¢(t). We showed
before that IZF r is a definitional extension of its term-free version, so there is
a term-free formula ¢ (z) defining ¢ such that IZFg- (3lz. ¢(x)) A 9(t). Then
1ZF gk 3lx. ¢(x) A 1(z) can be easily derived. |

We could now present a concrete example of program extraction in [ZF g, just
as we did for HA and A\H. However, such an example would be prohibitively large,
given the amount of prerequisite development in set theory necessary to define
even an addition function. Instead, we show a general way of program extraction
from IZFg, independent of the underlying lambda calculus and using only DP,
NEP and TEP.

3.3 Program extraction

We now describe a generic procedure of extraction from IZF g proofs. The results
of this section are also available in [CM06]. To facilitate the description, we will
use a very simple fragment of type theory, which we call T7°.

The types of TT? are generated by the following abstract grammar.
T =% | P, |nat | bool | (1,7) |7+ 7T |T—T

We associate with each type 7 of TT°, a set of its elements, which are finitistic
objects. The set of elements of 7 is denoted by El(7) and defined by structural

induction on T:

El(x) = {x}.

EIl(P,) is the set of all IZF i proofs of formula ¢.

e FEl(nat) = N, the set of natural numbers.

e El(bool) contains two objects: true, false.
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e M € El((m, 7)) is the set consisting of all pairs (M, N) such that M is in
El(m) and N is in El(y).

e M € El(r + 7o) iff either M = inl(M;) and M, € El(r) or M = inr(M;)
and M, € El(m).

e M € FEl(rp, — m) iff M is a method which given any element of Fl(m)

returns an element of Fl(7y).

In the last clause, we use an abstract notion of “method”. It will not be necessary
to formalize it, but for the interested reader, all “methods* we use are functions
provably recursive in ZF + Con(ZF’). This is because the normalization theorem
can be formalized given a model of IZF  and ZF is equiconsistent with IZF [Fri73].

The notation M : 7 means that M € El(1).

We call a TT? type pure if it does not contain x and P,. There is a natural

mapping of pure types T7° to sets 7 — [7], defined as follows:

e [nat] = N.

e [bool] = 2.

o [(r.0)] =[] x [o].

o [+ o] = [r] + [o], the disjoint union of [7] and [o].

o [r—oal=1[rl—Iol
If a set (represented by an IZF g term) is in a codomain of the map above, we call
it type-like. If a set A is type-like, then there is a unique pure type 7 such that
[7] = A. We denote this type T'ype(A).

Before we proceed further, let us extend T7° with a new type ., where 7 is any
pure type of TT°. The members of El(Q,) are pairs (¢, P) such that P+t € [7]

(P is an IZF g proof of ¢ € [7]). Note that any natural number n can be injected

into Qnat-
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We first define a helper function 7', which takes a pure type 7 and returns
another type. Intuitively, T'(7) is the type of the extract from a statement Jz. x €
[7]. T is defined by induction on 7:

e T'(bool) = bool.

e T'(nat) = nat.

o 7((r,0)) = (T(7), T(#))

o I'(t+o)=T(1)+T(0).

e I'(r — o) = Q; — T(0) (in order to utilize an IZF g function from [7] to

[o] we need to supply an element of a set [], that is an element of Q)

Now we assign to each formula ¢ of IZF a TT° type ¢, which intuitively
describes the computational content of an IZF i proof of ¢. We will use the type %

to mark parts of the proofs we are not interested in. We do it by induction on ¢:

[ ]
IS
Mm
SH
Il

X,

S
|

b = * (atomic formulas carry no useful computational content).
® 61V oy =01+ o

o 01 A P2 = (01, P2).

® o1 — g2 =Py — .

Ja € A. ¢ = (T(Type(A)), ¢1), if A is type-like.

e Ja € A. ¢ = %, if A is not type-like.
e da. ¢ = *.
o Va € A ¢ = Qrypea) — o1, if A is type-like.

Va € A. ¢1 = %, if A is not type-like.

Ya. ¢1 = X.
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The definition is tailored for the developments in Section 5, but it can easily
be extended to allow meaningful extraction from a larger class of formulas, for
example we could extract a term from da. ¢; using TEP. For now, we present

some natural examples of our translation in action:

1. 3z € N. x = x = (nat, ).

2. Vo € Ndy € N. ¢ = Qpay — (nat, @).

3. VfeN—- NIz e N. f(z) =0 = Quat—nat — (nat, *).

The extra * can be easily discarded from types (and extracts).

Lemma 3.3.1 For any term t, which is not type-like, ¢[a = t]

0.

Proof Straightforward induction on ¢. |
Lemma 3.3.2 (IZFg) (Ja € 2. ¢(a)) iff #(0) V ¢(1).

Proof Suppose there is a € 2 such that ¢(a). Then either a = 0 or a = 1. In the
former case ¢(0), in the latter ¢(1). In any case ¢(0) V ¢(1). [

We are now ready to describe the extraction function E, which takes an IZFp
proof P of a formula ¢ and returns an object of T7° type ¢. We do it by induction
on ¢, checking on the way that the returned object is of type ¢. Recall that
DP, TEP and NEP denote Disjunction, Term and Numerical Existence Property,

respectively. Case ¢ of:

® a €b— return *. We have * : *.
e a =b— return x. We have * : *, too.

e o1V ¢o. Apply DP to P to get a proof P; of either ¢, or ¢. In the former
case return inl(E(P;)), in the latter return inr(£(P;)). By the induction

hypothesis, E(P;) : ¢, (or E(Py) : ¢2), so E(P) : ¢ follows.
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e ¢ A ¢3. Then there are proofs P; and P, such that P; F ¢, and Py F ¢s.

Return a pair (E(P;), E(P;)). By the induction hypothesis, E(P;) : ¢; and
E(Py) : ¢a, 50 (E(P1), E(P2)) : ¢1 A 3.

® ¢ — ¢3. Return a function G which takes an IZFy proof Q of ¢, applies
P to Q (using the modus-ponens rule of the first-order logic) to get a proof
R of ¢5 and returns E(R). By the induction hypothesis, any such F(R) is

in El(¢y), so G : Py, — ¢s.

e Ja € A. ¢1(a), where A is type-like. Let T" = Type(A). We proceed by

induction on T, case T of:

— bool. By Lemma 3.3.2, we have ¢1(0) V ¢1(1). Apply DP to get a proof
Q of either ¢1(0) or ¢1(1). Let b be false or true, respectively. Return a

pair (b, £(Q)). By the induction hypothesis, £(Q) : ¢1([b]). By Lemma
3.3.1, E(Q) : 4.

— nat. Apply NEP to P to get a natural number n and a proof Q of ¢; (7).

Return a pair (n, £(Q)). By the induction hypothesis, F(Q) : ¢1(n),
by Lemma 3.3.1, E(Q) : ¢, so (n, E(Q)) : (nat, ¢1).

— (7,0). Construct a proof Q of Ja; € [r]3as € [0]. a = (a1, a2) A ¢1.

Let M = E(Q). By the induction hypothesis M is a pair (M;, Ms)

such that M; : T(7) and M, : Jas € [o]. a = (a1, a2) A ¢1. There-

fore My is a pair (Msy, Mas), My : T(0) and Moy : a = (a1, az) A ¢1.
Therefore Moy is a pair (N, O), where O : ¢;. Therefore (M, My;) :
T((1,0)), so {({My, My),0) : (T((1,0)),¢1) and we are justified to re-
turn ((M;, Ms,), O).

— 7+ 0. Construct a proof Q of (Ja; € [7]. ¢1) V (Jay € [o]. ¢1). Apply

DP to get the proof Q; of (without loss of generality) Ja; € [7]. ¢;. Let
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M = E(Q;). By the induction hypothesis, M = (M, Ms), where M, :
T(7) and My : ¢;. Return (inl(M;), M,), which is of type (T(T+0), ¢1).

— 7 — 0. Use TEP to get a term f such that (f € [7] — [o]) A é1(f).
Construct proofs Q; of Vo € [7]3y € [o].f(z) = y and Qs of ¢1(f).
By the induction hypothesis and Lemma 3.3.1, E(Qy) : ¢;. Let G
be a function which works as follows: G takes a pair ¢, R such that
R Et € [r], applies Q; to t, R to get a proof Ry of Jy € [o]. f(t) =y
and calls £ (R;) to get a term M. By the induction hypothesis, M :
dy € [o]. f(t) =y, so M = (M, M), where M; : T'(o). G returns
M. Our extraction procedure E(P) returns (G, F(Qs)). The type of

(G,E(Qy)) is (Q, — T(0), ¢1) which is equal to (T'(T — o), ¢1).

e Ja € A. ¢1(a), where A is not type-like. Return .
e Jda. ¢1(a), Ya. ¢1(a). Return *.

e Va € A. ¢1(a), where A is type-like. Return a function G which takes an
element (t, Q) of Qrype(a), applies P to t and Q to get a proof R of ¢4(t), and
returns £(R). By the induction hypothesis and Lemma 3.3.1, E(R) : ¢1, so
G : Qrype(ay — 1.

e Ya € A. ¢1(a), where A is not type-like. Return .

We have described a general method of extracting programs from IZF i proofs.
The salient feature of the method is that the only information it utilizes about
IZF i is that it possesses DP, NEP and TEP. Moreover, it can easily be seen that
foregoing the capability of higher-order program extraction, we could use only
DP and NEP. The method can therefore be applied to provide the extraction
mechanism from any constructive theory with these properties, for example CZF

|[Rat05a]. We believe an implementation of our ideas should not be very tedious.
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3.4 Historical context

While Brouwer created the philosophy of intuitionism, it was Arend Heyting who
formalized IPC and IFOL (against the spirit of Brouwer’s view of mathematics, we
might add). Heyting Arithmetic was defined not much later [Hey31|. Troelstra’s
book [Tro73] gives an excellent overview of research on constructive arithmetics.
For the description of constructivism and various constructive formal systems, we
recommend |Bee85| and [TvD88|. Godel’s System T [God58| exhibited computa-
tional content of arithmetic in a style close to modern lambda calculi.

Realizability originated with Kleene’s paper [Kle45], where he applied the tech-
nique to HA. Since then, it has been generalized and applied to a variety of systems
[Tro98]. The most impressive application from our point of view, developed by
David McCarty [McC84|, is of course set theory.

The Curry-Howard isomorphism can be traced back to the remark of Curry
[CFC58] which we cited in the introduction to this chapter. However, quoting
[SU06|: “ Brouwer - Heyting - Kolmogorov - Schonfinkel - Curry - Meredith - Kleene
- Feys - Gddel - Lduchli - Kreisel - Tait - Lawvere - Howard - de Bruijn - Scott
- Martin-Léf - Girard - Reynolds - Stenlund - Constable - Coquand - Huet - ...
tsomorphism might be a more appropriate name, still not including all the contri-
butions.”. We strongly recommend [SU06| as a textbook and a source of further
references regarding the isomorphism.

IZF in its version with Replacement was introduced by Myhill [Myh73|. In
that paper he showed DP, NEP, TEP and SEP for the theory, using a compli-
cated, nonconstructive method. Not much later, Friedman showed that IZF. is
equiconsistent with ZFC [Fri73| and that it has the same set of provably recursive
functions [Fri78]. In a joint paper with S¢edrov |Fv85|, they showed that IZF

is weaker that IZF.; the exact relation between these theories is still unknown.
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McCarty, a student of Dana Scott, wrote his thesis [McC84|, summarized nicely
by Lipton [Lip95], in 1985. A good description of the results up to 1985 can be
found in [Bee85, S85]. After that, the research on IZF slowed down. Before our first
paper [Moc06a] appeared, further research on constructive set theories was concen-
trated on weaker subtheories, such as Aczel’s CZF [Acz78, AR01] or Intuitionistic
Kripke-Platek [Lub02]. One notable exception was Lubarsky’s investigation of in-
tuitionistic L [Lub93]. Recently, Rathjen [Rat06] used realizability-with-truth to
show DP and NEP for extensions of IZFs with various choice principles.

Several normalization results for impredicative constructive set theories much
weaker than IZF ; exist. Bailin [Bai88| proved strong normalization of a construc-
tive set theory without the induction and replacement axioms. Miquel interpreted
a theory of similar strength in a Pure Type System [Miq04]. In [Miq03] he also de-
fined a strongly normalizing lambda calculus with types based on Fw.2, capable of
interpreting IZF - without the €-induction axiom. This result was later extended
— Dowek and Miquel [DMO06] interpreted a version of constructive Zermelo set
theory in a strongly normalizing deduction-modulo system.

Krivine [LKO01] defined realizability using lambda calculus for classical set the-
ory conservative over ZF. The types for the calculus were defined. However, it
seems that the types correspond more to the truth in the realizability model than
to provable statements in the theory. Moreover, the calculus does not even weakly

normalize.
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CHAPTER 4
BEYOND IZF

In this section we investigate some extensions to IZF . The first one, inaccessi-
ble sets, extends the theory with a capability of providing constructive set-theoretic
semantics for popular constructive theorem provers based on type theory. The
second one extends the logic of IZF g with features characteristic of dependent set
theories. The results of this chapter can also be found in [Moc06b] and [Moc07],

respectively.
4.1 Inaccessible sets

Since the advent of the Curry-Howard isomorphism, many systems exploiting
the isomorphism, with program extraction capability, have been built. They in-
clude Agda/Alfa [Coq, Hal|, Coq [The04], Lego [LP92], Minlog [BBS"98|, Nuprl
[CAB*86] — to name a few. Some are quite powerful — for example Coq can in-
terpret an intuitionistic version of Zermelo’s set theory [Wer97|. With such power
at hand, these systems have the potential of becoming very useful tools.

There is, however, one problem they all share, namely their foundational basis.
In order to use Coq or Nuprl, one has to master the ways of types, a setting
quite different from set theory, the standard framework for doing mathematics.
A newcomer to this world, presented even with II and ¥ types emulating familiar
universal and existential quantifiers, is likely to become confused. The fact that the
consistency of the systems is usually justified by a normalization theorem in one
form or other, does not make matters easier. Even when set-theoretic semantics
is provided, it does not help much, given that the translation of “the statement
Vx : nat, ¢(x) is provable” is “the set II,en[¢[z := n,]] is inhabited”, instead of the

expected “for all x € N, ¢(x) holds”. The systems which are not based on type
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theory share the problem of unfamiliar foundations. This is a serious shortcoming
preventing the systems from becoming widely used, as the initial barrier to cross
is quite high.

The work presented in the previous chapter can be seen as a first step toward
a solution to this problem, as IZFy enables extraction of programs from proofs,
while using the standard, natural language of set theory. However, even though
IZF R is quite powerful, it is unclear if it is as strong as type theories underlying
the systems of Coq and LEGO, Calculus of Inductive Constructions (CIC) and
Extended Calculus of Constructions (ECC), as all known set-theoretical interpre-
tations of these theories use w-many strongly inaccessible cardinals [Wer97, Acz99],
which are very strong set-theoretic constructs.

We therefore extend IZFy to incorporate w-many inaccessible sets, which we
call IZFg,. Our axiomatization uses an inductive definition of inaccessible sets.
[ZF g, extended with excluded middle is equivalent to ZF with w-many strong
inaccessible cardinals.

In a constructive setting inaccessible sets perform a similar function to strongly
inaccessible cardinals in the classical world and universes in type theories. They
are “large” sets/types, closed under certain operations ensuring that they give rise
to models of set/type theories. The closure conditions largely coincide in both
worlds and an inaccessible can be used to provide a set-theoretic intepretation of a
universe [Wer97, Acz99|. Both CIC and ECC have w-many universes. By results of
Aczel [Acz99|, IZF g, is strong enough to interpret ECC. It is reasonable to expect
that CIC could be interpreted too, as the inductive types in CIC need to satisfy
positivity conditions, and sufficiently strong inductive definitions are available in
IZF g, due to the presence of the Power Set and unrestricted Separation axioms.

Indeed, Werner’s set-theoretic interpretation [Wer97| of a large fragment of CIC
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uses only the existence of inductively-defined sets in the set-theoretic universe to
interpret inductively-defined types.

Our normalization result makes it possible to extract programs from proofs.
Thus IZF g, has all the proof-theoretic power of LEGO and likely Coq, uses familiar
set-theoretic language and enables program extraction from proofs. This makes it
an attractive basis for a powerful and easy to use theorem prover.

To extend IZFgy with inaccessible sets, we add a family of axioms (INAC;)
for ¢ > 0. We call the resulting theory 1ZFg,. The axiom (INAC,;) asserts the
existence of the i-th inaccessible set, denoted by a new constant symbol V;, and is

defined as follows:
(INAC;) Ve. c€; V; ¢i(c, Vi) A Vd. ¢§(d) —ced

Following the conventions set up for IZF i, ¢;yac, (¢) is @' (¢, Vi)AVd. ¢i(d) — ¢ € d.
The formula ¢! (c, d) intuitively sets up conditions for ¢ being a member of V;, while
#5(d) says what it means for d to be inaccessible. To streamline the definition, we

set V to denote w.

Definition 4.1.1 The formula ¢ (c,V;) for i > 0 is a disjunction of the following

five clauses:
1. c=V,4
2. there 1s a € V; such that ¢ € a.
3. there is a € V; such that c is a union of a.
4. there is a € V; such that c is a power set of a.
5. there is a € V; such that c is a function from a to V;.

Definition 4.1.2 The formula ¢(d) for i > 0 is a conjunction of the following

five clauses:
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1. Viy ed.

2. Ve, f.ecdNfece— fed.

3. Veed. |Jeed.

4. Veed. P(e) ed.

5. Veed Vfee—d. fed, wheree — d denotes the set of all functions from

e to d.

Briefly, the ¢-th inaccessible set is the smallest transitive set containing V;_;
as an element and closed under unions, power sets and taking functions from its
elements into itself. As in case of IZF g, we can derive the €;-free version of the

axiom:
Lemma 4.1.3 Vec. c € V; « ¢i(c, V;) AVd. ¢i(d) — c € d.

Proof The right-to-left direction is immediate. For the left-to-right direction, sup-
pose ¢ € V;. Then there is e €; V; such that ¢ = e. First we show that ¢¢(C,V;)
holds. We have five possible situations:

e ¢ =V,_41. Then also ¢ = V,_;.

e There is a € V; such that e € a. By the Leibniz axiom, ¢ € a as well.

e There is a € V; such that e is a union of a. Then also ¢ = Ja.

There is a € V; such that e is a power set of a. Then also ¢ = P(a).

There is a € V; such that e is a function from a to V;. This means that for

all © € a there is exactly one y € V; such that (z,y) € e and for all z € e
there is € a and y € V; such that z = (z,y). By ¢ = e and Extensionality
we also have for all € a there is exactly one y € V; such that (z,y) € c. If
z € ¢, then also z € e, so we get x and y such that z = (z,y), which shows

the claim.
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For the second part of the claim, note that if e is a member of every set d satisfying
#5(d), then by the Leibniz axiom so is c. This ends the proof. |

It is easy to see that IZFg,+ EM is equivalent to ZF with w-many strongly
inaccessible cardinals. For a theory T', let M (T') denote a sentence “T" has a model”.
To show that the set V; defined by (INAC;) behaves as an inaccessible set in IZF g,

we prove:

Theorem 4.1.4 (1ZFy,) Foralli >0, V; EIZFp+ M(IZFy) + M(IZFyz+ M(IZFy))

+ ... (i times).

Proof By Clause 2 in the Definition 4.1.1, V; is transitive, so the equality and
membership relations are absolute. Clause 1 gives us w € V; and since its definition
is Ag, V1 =(INF). Clauses 3 and 4 provide the (UNION) and (POWER) axioms.
Transitivity then gives (SEP) and (PAIR), while Clause 5, thanks to Lemma 3.2.12,
gives (REPL,). The existence of the empty set follows by (INF) and (SEP). For

the Induction axiom, we need to show:

VeV, VaeV,. (WeVibea—¢Vi(b ) — ¢Vi(a, f) = Va € Vi. ¢"(a, f)
Take any F € V;. It suffices to show that:

(Va.a €V, — (Vo.beV; »bea— ¢"i(b, F)) — ¢"i(a,F)) = Va.a € V; — ¢"i(a, F)
This is equivalent to:

(Va. (Vb.bea—beV,— ¢"i(b,F)) = aeV; — ¢"i(a, F)) = Va.a € V; — ¢"(a, F)

But this is the instance of the induction axiom for the formula a € V; — ¢¥i(a, f).
Thus Vi FIZFg. Since Vi € Vi, Vo | 1ZFp+ M(IZFg). Since V2 € Vj,
V3 EIZF g+ M(IZF g+ M(IZFR)). Proceeding in this manner by induction we get

the claim. [
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We now extend A\Z to the calculus A\Z, corresponding to IZF .. The new terms

are:

inac;Prop(t, M) | inac;Rep(t, M),

together with the obvious reduction rule:
inac; Prop(t, inac;Rep(t, M)) — M

Thus, inaccessibles fit neatly in the framework of Prop and Rep terms. It is easy
to see that the proofs of all properties proved for IZF z and \Z transfer unchanged
to IZF g, and A\Z,. We therefore pass without further ado to the definition of
realizability. The calculus AZ,, and realizers are defined just as for IZF 5.

As IZF r has w-many inaccessibles, it is not surprising that we need to work
in a meta-theory with w-many inaccessibles. We denote the i-th inaccesible by I';
and choose them so that I'; € T';,;.

We need to extend the definition of realizability by the meaning of inaccessible
terms. We set [V;], = U;, where U; is defined as follows. Recall first that the

axiom (INAGC;) has the following form:
(INAG)) Ve. c €1 V; < ¢i(c, V;) AVd. ¢h(d) — ¢ € d.
We define a monotonic operator F' on sets as:
F(A) = AU{(inac;Rep(N), C) € AZue x Vi | N Ik, ¢1(C, A)AVd. ¢(d) — C € d}.

We set U; to be the smallest fixpoint of F. Formally, U; is generated by the

following transfinite inductive definition on ordinals:

Un=F(JUp) U= |J U,
B<y 'yEORD

Since F adds only elements from \Z,,,. x VF);, any element of U; is in AZ,. X Vf\i,

so U; € VF’\M.
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The proof that the resulting realizability relation is not circular must be slightly

modified. We need one extra definition:

Definition 4.1.5 Let M(N) denote the set of all multisets over N. Formally, a
member A of M(N) is a function from N to N, returning for any n the number of
copies of n in A. We impose the standard well-founded ordering on M(N). Recall
from Definition 3.2.25 that Occ(V;, x) is the number of occurences of V; in x. We
define a function V taking terms and formulas into M(N): V(z) for any number

i returns Occ(V;, x), for x being either a term or a formula.
Lemma 4.1.6 The definition of realizability is well-founded.

Proof Use the measure function m which takes a clause in the definition and

returns an element of M (N) x N? with the lexicographical order:

m(M I, ) = (V(¢),Occ(w, ¢), FS(4), “structural complexity of ¢”)

m([tl,) = (V(t),O0cc(w,t), FS(t),0)

Then the measure of the definiendum is always greater than the measure of the
definiens — in the clauses for formulas the structural complexity goes down, while
the rest of parameters do not grow larger. In the definition of [V;],, one V; disap-
pears replaced by two V;_1’s. In the definition of [w],, one w disappears. Finally,
in the definition of [t4(%)],, the topmost t4 disappears, while no new V;’s and w’s
appear. |

We need a few more technical lemmas to reach Lemma 4.1.14. They amount to
tedious computations of ranks, necessary to show the new case in Lemma 4.1.14.

First, we fix one extra realizer:
Lemma 4.1.7 There is a realizer lei such that lei I, Va,b,c.a € cha=b— b € c.

Proof Follows by Lemmas 3.2.5, 3.2.13 and Theorem 3.2.41. [ |
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Lemma 4.1.8 \rk(C) < rk(CT) + w.

Proof If (M, A) € C, then M Ik, A €; C. We have inRep([0, (M, eqRefl 0)]) IF,
A € O, so (inRep([0({M,eqRefl 0)]), A) € C*. The extra w is there to deal with
possible difficulties with finite C’s, as we do not know a priori the rank of set-

theoretic encoding of inRep([0, (M, eqRefl 0)]. |

Lemma 4.1.9 If N Ik, Vo € A. ¢ then for all (O,X) € AT, N | Xa. N; and
Nifa := 0] | Ax. Ny and N[z := O] Ik, ¢p[z := X]. Also, if NI+, Iz € A. ¢ then
there is (O, X) € AY such that N | [0, N1], N1 | (O, Na) and Ny IF, o[z := X].

Proof If N I-,Vz € A. ¢ then N | Aa. Ny and for all X, Ni[a:=0]IF, X € A — ¢,
so Nifa := 0] | Az. Ny and for all O such that O |-, X € A, Na[z := O] Ik, ¢[z :=
X]. This implies that for all X, for all O, if O IF, X € A, then N | Xa. Ny,
Nija := 0] | Ax. Ny and Ns[z := O] Ik, ¢[z := X], which proves the first part of
the claim.

If NI, 3z € A. ¢, then N | [, Ny] and there is X such that Ny | (O, N),
OlF, X € Aand N, Ik, ¢[z := X], so there is (O, X) € AT such that N | [0, Ny],
N1 1 {0, No) and N, Ik, ¢fz = X]. n

Lemma 4.1.10 Suppose A € U; and N |+,7C' is a function from A into V;”. Then
Celp.

Proof First let us write formally the statement “C is a function from A into V;”.
This means “for all x € A there is exactly one y € V; such that (z,y) € C and for
all z € C there is x € A and y € V; such that z = (z,y)”. Thus N | (Ny, Ny),
Ny b, Ve e Adly € V;. (z,y) € C and Ny Ik, Vz € Cdr € Ay € V. z = (x,v).
So Ny Ik, Vo € Ady € V;. (z,y) € C AVz. (z,2) € C — z =y. By Lemma 4.1.9,
for all (O, X) € AT there is (P,Y) € U;" such that ¢(O, X, P,Y) holds, where
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#(0, X, PY) is defined as:

¢(O,X, P, Y) = (Nl l Q. Nll) N (Nll[a = @] l AT ng) VAN

(Nigz == O] | [0, Ni3]) A (N1 | (P, Q) A(Q | (Q1,Q2)) A
(1, (X,Y)e C)N(Q2F, V2. (X,2) e C = 2=Y)

Let ¥(O, X, P,Y) be defined as:
PO, X, PY)=30Q1,Q2. (Q11F, (X,Y) e C)AN(Q21F,Vz. (X,2) e C — 2=Y)

Obviously, if ¢(O, X, P,Y) then (O, X, P,Y). So for all (O, X) € AT there is
(P,Y) € U} such that (O, X, P,Y) holds.

Define a function F' which takes (O, X) € A" and returns the set {(P,Y) €
U7 | $(0,X,PY)}. Suppose (P1,Y1),(F%,Yz) € F((O,X)). Then there are
Q11, Q12, Q21 such that Q1 IF, (X, Y1) € C, Q2 Ik, V2. (X,2) € C — 2z = Y7,
Qa Ik, (X,Y3) € C. By Lemma 4.1.9, Q12 | Aa. Ry, Ri[a := 0] | Az. R, and
Ro[z := Qo] IF, Y2 = Y}. Since eqSymm () O Rz := Q2] IF, Y1 = Y5, by Lemma
3.2.32 the A-ranks of Y;, Y5 are the same and, since any such (P,Y’) is a member
of U}, they are smaller than T;. Also, for any (O, X) € A%, F(O, X) is inhabited.

Furthermore, define a function G from A™* to I';, which takes (O, X) € A*
and returns (J{\rk((P,Y)) | (P,Y) € F(O,X) AY(O,X,P,Y)}. Then for any
(0,X) € AT, G(O,X) is an ordinal smaller than T; and if (P,Y) € U, and
(0, X,PY), then (P,Y) € Vé\(o,X)' Moreover, as ['; is inaccessible, G € R(I';),
where R(I';) denotes the I';-th element of the standard cumulative hierarchy.
Therefore | Jran(G) is also an ordinal smaller than I';, 'We define an ordinal
to be max(Ark(A), Jran(Q)).

Now take any (M, B) € C*, so M I, B € C. Then, by the definition of N,
and Lemma 4.1.9 there is (O, X) € AT and (Oy, Z) € U;" such that Ny | Aa. Nay,
Noila == 0] | Az. Nag, Nyfx := M] | [0, Nag], Nag | (O, Nos), Noy | [0, Nos],
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Nos | (On,R) and R -, B = (X, Z). Let My = lei § 0 0 (M, R), then M I,
(X,Z) € C. Take any element (P,Y) € F(O, X) and accompanying ()1, Q2. Then
Q2 | Aa. Qs, Qsla = 0] | Xx. Q4 and Q4[z := M| IF, Z = Y. By Lemma
3.2.32, \rk(Z) < Mrk(Y) and thus A\rk(Z) < . Since (0, X) € AT, Mrk(X) < 3,
too. By Lemma 3.2.36, A\rk(B) < 3+ 2. By Lemma 4.1.8, 7k(B) < § + w, so
rk(C*) < f+w+ 1. By Lemma 4.1.8 again, \rk(C) < [+ 2w. Since [ + 2w is

still smaller than I';, we get the claim. |
Lemma 4.1.11 If M -, A€ U;,, then M IF, A€ V.

Proof If M I+, A € U, ,, then M | inRep(N), N | [0,0], O | (O1,0,) and there
is C such that O, | v, (v,C) € Ui, Oz IF, C = A. Then also (v,C) € U, so
O, CerVi,soalso MIF, AcV,. [ |

Lemma 4.1.12 If N I+, ¢;(C,U, ), where v; is one of the five clauses defining
¢'(C,U; ) in the Definition 4.1.1, then N I+, ¢;(C, V;).

Proof There are five cases to consider:

e NI, C =V,_;. This case is trivial.

e N, 3a. a € U;,Ac € a. Then there is A such that N | [0, 0], O | (Oy,0,),
O, I, AeU,, Oy IF, C € A. By Lemma 4.1.11, O, I, A € V}, so also

Nlr,da.a € ViAc e a.

N Ik, Ja. a € Ui, A ¢ = Ja. Then there is A such that N | [0,0],
O | (01,0s), Oy Ik, A € U, Oy I, C = |JA. Thus by Lemma 4.1.11

O, IF, A € V; and we get the claim in the same way as in the previous case.

N+, 3a. a € U, ANC = P(a). Similar to the previous case.

N, 3a.a € U, ANC € a — U;,. Then there is A such that N | [0, O],
O | (01,09), O1 Ik, A € Ui, Oz IF, “C is a function from A into U, ..
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By Lemma 4.1.11, O, I, A € V;. Expanding the second part, we have
Oy | (P, %), Py Ik, Ve € A3ly € U;,. (z,y) € C and P Ik, Vz € C3zr €

Ady € Ui . z = (x,y). We will tackle P, and P, separately.

— For P;, we have for all X, P, | Aa. Py1, Piija:=0] | Az. Q and for all
R Ik, X € A there is Y such that Q[z := R] | [0,Qo], Qo | (Q1,Q2),
QI Y €U, and Qs IF, (X,Y) € C AVz. (X,2) € C — z =Y. By
Lemma 4.1.11 we also have @, I, Y € V;, so also P I, Vo € adly. y €
Vi (z,y) € C.

— For P, we have for all Z, P, | Xa. Piy, Piifa == 0] | Az. @ and
for all R IF, Z € C there are X,Y such that Q[z := R] | [t1,Qol,

Qo | (Q1,Q2) and @ IF, X € A. Moreover, Q2 | [0, So], So | (S, S2)
and S; I, Y € U;,. By Lemma 4.1.11 we also have S; I, Y € V;, so
also Py IF,Vz € C — 3ox € Ay € V. z = (z,y).

Therefore also O, I, “C'is a function from A into V;” and in the end N I,

Jda.a e V;,NC €a—V,. [ |
Corollary 4.1.13 If M |-, ¢'(C, U, ), then M IF, ¢'(C,V;).
Now we can prove the new case in the main Lemma:
—
Lemma 4.1.14 (M,C) € [ta(d)], iff M = axRep(N) and N |-, ¢p4(C, [u],).

Proof We first show the left-to-right direction. Suppose (M, A) € U;, then M =
inac;Rep(N). We must have N I, ¢ (A, U; ) AVd. ¢4(d) — A € d for some ordinal
v. Then N | (N1, Na), Ny Ik, ¢%(A,U;), No IF, Vd. ¢5(d) — A € d. Corollary
4.1.13 gives us Ny I, ¢i(A,V;), so N I, ¢t (A, V;) AVd. ¢i(d) — A € d, which is

what we want.
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For the right-to-left direction, suppose N I+, ¢%(C,V;) AVd. ¢b(d) — C € d.
We need to show that (inac;Rep(N), C) € U;. By the definition of U; it suffices to
show that C' € Vi,,. We have N | (Ny, No) and Ny Ik, “C' is equal to V;_; or there
is A € V; such that C' is a powerset/union/member of A, or C' is a function from
A into V;.”. The proof splits into corresponding five cases. The first four are easy
to prove using Lemma 3.2.32 and the definition of the ordinal « in the clause 4 in
the definition of realizability. The last one follows by Lemma 4.1.10. |

The normalization theorem is proved in exactly the same way as for IZFp.
The same applies to the properties DP, NEP, EP and TEP. Our developments in
Section 3.3 thus provide a mechanism to extract programs from IZF g, proofs. We
have therefore defined an impredicative constructive set theory with inaccessible
sets, with program extraction capability, which at the same time can be used to
provide semantics for important type theories such as the Calculus of Inductive
Constructions. These developments demonstrate the power and adaptability of our
approach; note how little was needed from the conceptual point of view to extend
our framework for IZF; to IZFg,,. A natural question, which we leave open, is

whether it can be extended with even stronger axioms, such as the existence of a

Mahlo set.

4.2 Dependent set theory

In the introduction, we stated that type theories form a basis for computation and
that they are used extensively in computer science. In the previous section, we
remarked on the problem of understanding type theories. What is so difficult to
understand about them is that the underlying logics are very different from all the
logics we presented so far in this thesis.

One particular difference, present in all type theories used in practice, is the
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treatment of quantifiers, justified in the end by the BHK interpretation. Recall
that in IFOL and AH, the typing rules regulating quantifiers are:

THM:¢
T F \a. M : Va.

I'-M:Va. ¢
CEMt: ¢la:=t

50 ¢ FVe(T)

D'EM: ¢la:=t] 'EM:3a.¢ T,xz:9FN:v
CE[t,M]:3a. ¢ I'Flet [a,z:¢]:==Min N : v

The corresponding clauses in the BHK interpretation are:

e The construction of Ja. ¢ consists of an object ¢ and a construction of ¢[a :=

f].

e The construction of Va. ¢ is a method which transforms any object ¢ to a

construction of ¢[a = t].

While the typing rules above do realize the interpretation, a different reading of
the interpretation is possible. If a construction of da. ¢ consists of an object ¢ and
a construction of ¢[a := t|, maybe it should be possible to put our hands on this
object and the corresponding construction. Thus, we can construct alternative
rules for the existential quantifier:

C'EM: ¢la:=t] 'EM:da. ¢
T, M :3a. ¢ TFal%M): ¢la:= n2°(M)]

Note the difference. There are new object terms in the logic: 7r‘f'¢(M ), providing
witnesses to existential statements. Thus in particular such a theory automatically
possesses TEP, as 7r‘1"¢(M) witnesses any formula Ja. ¢ such that = M : Ja. ¢.
However, some questions must be addressed. For example, what exactly is a
formula in such a system? Note that now proof terms can appear in formulas.
Thus formulas can depend on proofs; this is the reason why type theories which
include this interpretation of the existential quantifier are called dependent type

theories.
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As a dependent theory can be seen as an extension of first-order logic with
proof terms (the standard rules for the existential quantifier are derivable in type
theories), natural questions arise: can we extend a set theory to include dependent
features? And would such an extension be of any use?

In this section, we provide answers to these questions. More specifically, we
extend IZFr and A\Z to incorporate several features typical of type theories —
dependent implications, conjunctions and what we call restricted >-types. We call
the resulting “dependent” set theory IZF  and the underlying lambda calculus A\D.

There are several attractive properties of IZF . First of all, AD still normalizes.
We use a strong version of the Axiom of Choice to provide the interpretation of
new set terms. The normalization result makes it possible to extract programs
from IZF p proofs, as explained in Section 3.3.

Second, we show that the combination of dependent features in the logic and
Replacement axiom significantly increases the power of a set theory, by proving
that IZF p can prove the axioms of IZF with Collection (IZF¢). As known since the
results of Friedman and S¢edrov |Fv85|, Replacement and Collection are not equiv-
alent in the constructive setting. While the proof-theoretic power of IZF+ equals
that of ZFC [Fri73|, IZF i is weaker: it has less provably recursive functions [Fv85].
It is conjectured in [Fv85] that its consistency can be proved in ZF. Moreover, Col-
lection is a very useful tool in the development of mathematics in constructive set
theories; most notably in the treatment of inductive definitions [ARO1, Rat05b].
Thus, IZF p is a remarkably strong set theory, having the proof-theoretic power of
ZFC and all the benefits of Collection at its disposal.

The importance of consistency results in this area cannot be overestimated, as
theories tend to dwell close to inconsistency. This is one reason for the restriction

of Y-types we adopt, which amounts to disallowing the standard reduction rule
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m([t, M]) — t. Although IZF, with unrestricted X-types enjoys useful proof-
theoretic properties, such as Subject Reduction, we show that it is also inconsistent.

We proceed to present IZF . However, as common with dependent theories,
a separate presentation of formulas, terms and lambda terms is impossible. IZF
is one large lambda calculus with types, whose judgments include provable state-

ments, valid terms and formulas.

4.2.1 1ZFp

The theory IZFp is a dependent version of IZF k. It arises by extending the con-
structive first-order logic of IZF r with dependent features. As any detailed account
of a theory based on dependent logic involves a large amount of syntax, we postpone
the formal treatment to the next section and first describe the theory informally.

Intuitively, the axioms of IZF | are: Empty Set, Pairing, Infinity, Power Set,
€-Induction and dependent Separation and Replacement. The underlying logic
is an extension of IFOL by dependent implications, conjunctions and restricted
Y-types. Formally, IZF does not have any axioms in the traditional sense; it is
a logic powerful enough to derive all the formulas listed in Figure 4.1. However,
these formulas are helpful in defining and understanding 1ZF .

As in IZFg, the axioms (IN) and (EQ) along with the intensional membership
symbol €; form a backbone of the Leibniz (Vf, a,b. a = b — ¢(a, f) — &(b, f)) and
Extensionality (Va,b. (Vc. ¢ € a < ¢ € b) — a = b) axioms, which are derivable
in our axiomatization. Similarly, IZF can prove all the axioms with €; replaced
by €. A closer look at the corresponding proofs in Section 3.2 reveals that these
statements are true only for first-order formulas. See the discussion in Section
4.2.2.

The underlying logic includes dependent implications and conjunctions, de-
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(IN) Va,b.a €b— 3Je.c€;bha=c

o (EQ)Va,b.a=b—Vd (deja—deb)AN(derb—dea)
(EMPTY) Ve. c€; 0« L

(PAIR) Va,bVe. c €7 {a,b} < c=aVec=Db
(INF)Ve.cejwe—c=0VIbew. c=S5(b)

(SEP,, 7 4) Vf, ave. c €; Saf. ¢(a,f) — (p:c€a)N ¢la:=
(UNION) VaVe. c€;Ja«—Jbea. ceb

(POWER) VaVe. ¢ €7 P(a) <« Vb.bec—bea

(REPL, ;7 ») Vf, ave. ¢ €; R, ,b_'.¢(a7f_> — (Vx. (p : € a) —

Aly. qﬁ[a,% =z,y )N (Fz. (p:x € av)a/\ ¢la,b:= x,c])

— — —

e (INDy, ) Vf. (Va. (Vb. (b €1 a) — (b, f)) — o(a, f)) — Va. ¢(a, f)

Figure 4.1: The axioms of 1ZFp

noted by (p : ¢) — ¢ and (p : ¢) A 1. These can be found in the Separation
and Replacement axioms. Their parameterizing formulas can depend on proofs,
denoted by p. Intuitively, in IZF proofs are a valid subject of discourse. This is
the main feature which distinguishes the axioms of IZF , from traditional axioma-
tizations. In particular, note that the axioms of IZFy are precisely what remains

if the schemas are restricted to purely first-order formulas.

4.2.2 The terms of \D

The terms of AD are divided into three syntactic categories, encompassing proof
terms, set terms and formulas, respectively. We will generally use letters M, N, O, P
for proof terms, s,t,u for set terms, ¢, 1,1 for formulas and T, S for arbitrary
terms. Thus, whenever one of these symbols is encountered in the text, the reader
should assume that it has been generated by the corresponding part of the gram-
mar. There are two kinds of variables. The first one, denoted by letters p, q, z, v, 2,

as usual corresponds to the propositional implications. The second one, denoted
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usually by letters a,b, ¢, intuitively corresponds to the first-order quantification.
We call them proof and set variables, respectively. The following abstract grammar

defines the terms of AD. The first part generates the proof terms:
M:=xz|MN|Xa M| Xx:¢p. M |inl(M) | inr(M) |

fst(M) | snd(M) | [t, M] | M t| (M, N) |
case(M,x : ¢. N,z : 9. O) | magic(M) | 75%(M)
o ota.p) (M. 1)
inProp(t, u, M) | inRep(t, u, M)
eqProp(t,u, M) | eqRep(t,u, M)
pairProp(t, uy, ug, M) | pairRep(t, uq, us, M)
unionProp(¢, u, M) | unionRep(t, u, M)
sepp7a7ﬁ¢Pr0p(t, u, 1, M) | Sepp’a7f¢Rep(t, w, i, M)
powerProp(t, u, M) | powerRep(t, u, M)
infProp(t, M) | infRep(t, M)

repl, ., 7o Prop(t, u, 4, M) | repl . = Rep(t, u,u, M)

As before, we adopt the convention of using axRep and axProp terms to tacitly
mean all Rep and Prop terms, for ax being one of in, eq, pair, union, sep, power,
inf and repl.

The second part of the grammar generates the set terms:

tou= al| 7 (M) [0 {trta} |w]| P | t]

Sp7a,f‘,¢(t7 f} | Rp,a7b7‘f,¢(t7 f}
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The term S, , 74(t, t) intuitively corresponds to the set {(p: a € t) | ¢}. The

term R (t, ?) intuitively corresponds to the set {y | (V(p : = € t)3ly. ¢la, b, f :=

pab,fé
z,y,1)A(3p:x €t dla,b, f= z,,1)}. The term 7%?(M) can be thought of as
a dependent version of the Hilbert’s epsilon operator ea. ¢. These intuitions are

justified by the typing system in Section 4.2.2.

The third part generates the formulas of 1ZF p:

¢ = Ll(z:9)=d[(x:9)AY|¢VY|Va. ¢|Ta. ¢

The formulas (x : ¢) — ¥ and (z : ¢) A are dependent versions of implication
and conjunction. The variable = binds in ¢, which can mention z (inside of 7r‘1“25
terms). Traditional formulas ¢ — ¢ and ¢ A 1) are defined as abbreviations for

(x:¢) — ¢ and (x : ¢) A9, where x is fresh.

Definition 4.2.1 A lambda term is a term generated by the first part of the gram-
mar. A set term is a term generated by the second part of the grammar. A formula

s a term generated by the third part of the grammar.

The free variables of a term M are denoted by FV(M). The definition of
FV(M), as well as the definition of the (capture-avoiding) substitution, follows
the grammar in a natural way, taking into account the formulas appearing in
subscripts and superscripts of terms. We show two representative cases of the

definition:

FV(n{?(M)) = (FV(¢)\{a})UFV(M)
FV(sep, , 7 Rep(u, @, M)) = (FV(¢)\{p,a f})U

FV(u) U FV (@) U FV(M)

The reduction relation, denoted by —, is deterministic and defined on lambda

134



terms. It arises from the following reduction rules and evaluation contexts:
(M :¢p. M) N — M[z := N| (Aa. M)t — Ma =1
fst((M,N)) — M snd((M,N)) - N 75°([t, M]) — M
case(inl(M),x : ¢. N,z : 1. O) — N[z := M]
case(inr(M),x : ¢. N,z : 1. O) — Olx := M|
axProp(t, i, axRep(t, u, M)) — M

ind,  ,(M,t) — Ae. M ¢ (AbAz :be;c ind, f (M, 1) b)

The evaluation contexts still describe call-by-need (lazy) evaluation order:

[o] == fst([o]) | snd([o]) | case([c],x : ¢. N,z : 1. O) |

3 ?([e]) | axProp(t, @, [e]) | [o] M | magic([o])

The standard reduction rule 7%([t, M]) — ¢ is not present. The reasons for
this omission will become clear in Section 4.2.2.
The set of AD-values will be denoted by AD,. In the definition, ¢, u, ¢, M, N

are arbitrary terms.
Vi=Xa M| Ax:¢. M |inr(M) | inl(M) | [t,M] | (M,N) | axRep(t,u, M)

We now introduce a type system for AD. Contexts, denoted by I', are finite
sequences of pairs (z,7"), where z is a variable and 7T is either a formula or a string
Set. The domain of a context I' = z; : T1,...,2, : T,, denoted by dom(I'), is
the sequence zy, ..., z,, treated as set when convenient. There are three kinds of
typing judgments:

e ' 1 : Set, read as “t is a set term in the context I".

e ' ¢ : Form, read as “¢ is a formula in the context 1.

o ' M: ¢, read as: “M is a proof of the formula ¢ in the context I'.
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We therefore incorporate the definition of terms and formulas in the typing system.
This is necessary in order to ensure that the arguments of 7r‘1"¢(M ) terms are valid

proofs of da. ¢. We start with rules for terms:

I'a: Sett a: Set a ¢ dom(I')

I' 4 : Set
F}_tA(ﬁ) : Set

'kt Set F,a,f:Set,p:aetl—¢:Form

THS, 5 ,(t1): Set
I'b¢t: Set F,a,b,f:Set,p:aetl—gb:Form
TER, 7 ot 1) Set
Furthermore, we define the formulas:
' ¢: Form
Foidra: g fdomdD
I'Ht:Set I'Fw: Set -
[F L Form TFtou:Form  ° € in= €}
I'¢:Form TI'F:Form I'F ¢ : Form F,$:¢F@D:Formo€{_)/\}
'k ¢V : Form 't (z:¢)o: Form ’

I',a : Set - ¢ : Form
I'F Qa. ¢ : Form @€ {v.3}

And finally, we define the proofs. First, the rules governing the dependent logic. We
need to incorporate Weakening into the formal system, as it is no longer provable.

I'ES:T T'F¢:Form

r=s:rT
3 a ¢ dom(I’) T,z:6FS:T

I'a:Set=S:T

x ¢ dom(I")

x:obFM: I'a:Set-M: ¢
Xz M:(x:¢) = 'k Xa. M :Va. ¢
'EM:(z:¢)—9Y T'EN:¢p T'HFM:Va. ¢ T Ft:Set
I'EM N : [z := N] LEMt: ¢la:=t
'EM:¢ T'EN:yplx:= M|
CE(M,N):(z:¢) Y

PEM:(z:0)ANY C'EM:(x:¢)ANY

I'Ffst(M) : ¢ I'Fsnd(M) : ¢z = fst(M)]
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FHt:Set T'EM: ¢l =1
L'k [t,M]:3a. ¢

'EM:da. ¢ 'EM:da. ¢
DEa(M):Set  TFay®(M): ¢la:=x"(M)]
T'HM:¢ Tk M:

CEinl(M):oVey CFinr(M): oV
'EM:¢oVvy T,x:¢oFN:9 Tiz:ypH-0O:9
'tk case(M,z: ¢. Nyx 1. O) : 0

'=M:1
I' F magic(M) : ¢

Second, we present the rules corresponding to set theory.

LM :Ve (Vh.bec— dla, f:=b1]) — ¢la, f:=c,i] TFt:Set
I+ ind, 7 (M, %) : Va. ¢[f =]

F"M:QﬁA(t,ﬁ) 't 4 : Set F"M:teth(ﬁ)
I' - axRep(t, @, M) : t €rta(u) Tt axProp(t,u, M) : ¢a(t,u)
I'EM:3dc.ce;unt=c I'EM:teu

I'FinRep(t,u, M) :t €u I FinProp(t,u,M):3c.c€;unt=c
PEM:Vd (dejt—deu)N(deju—det)
I'FeqRep(t,u, M) :t =u

'EM:t=uwu
I' - eqProp(t,u, M) :Vd. (de;t —deu)AN(d€;u—dEet)

We write I' = T : S, when this judgment can be derived using the typing rules.
The theory IZFp arises from the typing system, by considering the formulas ¢ such
that = M : ¢ for some term M, to be provable in IZF p.

Most of the rules are standard. The typing system incorporates the definition

of formulas and terms of set theory. The term Wf‘d’

can be thought of as a version of
the Hilbert’s epsilon operator, as it provides a witness to any provable existential
quantifier. For example, if - M : 3a. a = P(w), then 7{?(M) is “the” A such
that A = P(w): F 7%%(M) : 78°(M) = P(w). In fact, a dependent version of the

Hilbert’s axiom is provable, as it is easy to see that - Az : Ja. ¢. 73°%(x) : (x :

Ja. ¢) — ¢la =7 ().
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Non-extensionality of 7% operator.

The ﬂf‘d) operator is non-extensional — from the facts that M : da. ¢, N : da. ¢
and O : Va. ¢ < ¢ we cannot derive 70?(M) = 7%¥(N). For this reason, there
are instances of the Leibniz axiom not provable in IZFp, such as (x) a = b —
(M) € e — 75?P (M) € e. However, IZF p does show Va,b. a = b — ¢(a) —
¢(b) for all formulas not mentioning 7" terms. Moreover, the formula (*) does
not correspond to reasoning in mathematical practice. We hope to investigate this
topic further in the future.

Although IZFp might seem formidable at the first sight, we remark that its
complexity does not surpass that of other formal systems intended for general use
[The04, Muz93, Kre02].

Sadly, IZF , does not possess the nice proof-theoretic properties we are so used
to. In particular, Subject Reduction and Progress do not hold. The reasons are
mostly explained below — an extension of IZF making it possible to prove the
standard properties makes the theory inconsistent. From the practical point of
view, this should not be considered a shortcoming. See the discussion in Section

4.2.6.

Unrestricted Sigma-types

Recall that =_, denotes the smallest equivalence relation extending —. There are
two natural rules missing from AD: the reduction rule #%¢([t, M]) — ¢ and the
typing rule:

I'EM:q

TFirg?=¢
Let IZF% denote IZFp extended with these rules. Unlike IZFp, IZF% enjoys nice

proof-theoretic properties, such as Subject Reduction. However, as the following

theorem shows, it also suffers the property of being inconsistent.
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Theorem 4.2.2 IZF% is inconsistent.

Proof Recall first that in set theories, 0 = (),1 = {(}. For the informal proof,
consider the set B = {x € 1 | Ja. a = a}. We can show that for any p proving
x € B, there is exactly one y which witnesses the formula da. a = a, namely the

a. a=a

set A used for proving p. Formally, we set y = 7{ (snd(sepaa. a=aProp(z, 1,p))).
By the Replacement axiom, all these y’s can be collected in one set C. Now take
any set D and use it to show that Ja. a = a and furthermore that 0 € B. Applying
(*) to the y corresponding to this proof, we easily find that D € C. Therefore C
contains all sets and thus is subject to Russell’s paradox.!

For the formal proof, we only present the relevant terms and provable judg-
ments. Let eqRefl denote the term corresponding to the proof of Va. a = a, let

0inl denote the term corresponding to the proof of 0 € 1 and let russ denote the

proof term corresponding to the proof of Va. (Vb. b € a) — L. The terms are

!Russell’s paradox is not necessary to derive contradiction, as €-induction together with C € C
is also contradictory.
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probably best read in a bottom-up fashion.

a:Set- P

Q
FQ
Fruss C @

S50 a=a(1)

7 97 (snd(sepaa. a=aProp(z, 1,p)))

(eqRefl t,Az. A\q: z =t. q)

Ao Ap:x € B. [t, M]
Ve.(p:x€B)—3ly. y=t

Ry, y=1(B)

sepaa. a=aRep(0, 1, (0inl, [a, eqRefl a]))

0eB

Aa. reply v y=tRep(a, B, (N, [0, (P, eqRefl a)])
Va. a € C

L |

4.2.3 Realizability

As we mentioned earlier, we need to use a strong version of the Axiom of Choice
to define the realizability relation.
ory extended with the binary relational symbol < and the axiom stating that <
well-orders the universe. In this section we work in ZFO. Although ZFO might
seem excessive as a metatheory for the purpose of proving normalization of a con-
structive system, we remark that with a bit more effort and slightly more obscure
presentation, we could carry out the proof in ZF (relativizing all statements to L,
a naturally well-ordered universe). Moreover, we conjecture that the proof could

be formalized in IZF . Thus, if the conjecture is true, IZFp is capable of self-
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validating itself. The reason for our belief in the conjecture is that the following
definition, crucial for the interpretation of 7r‘1"¢(M ) terms, essentially defines the

78?(M) term in the first-order set-theoretic setting:

Definition 4.2.3 If ¢(a) is a ZFO formula, then “the first a such that ¢” is defined

to be:

o The empty set, if there is no A such that ¢(A).

o The smallest set A in the ordering < such that ¢(A) holds, otherwise.

As usually, we employ the erasure map from AD to AD. The reductions are still
first-order ignorant, so we replace the first-order terms by (). The map is defined

inductively on all terms in an obvious way. We show several representative cases:

T=x a=10 N=MN (la. M)= X a. M

M) =0  (ta(@) =0 Az:¢. M= e. M

75(M) = 73?(M) axRep(t, i, M) = axRep(M)
Definition 4.2.4 A realizer is any closed term of \D.
The standard Lemma continues to hold:

Lemma 4.2.5 If M normalizes, then so does M.

We proceed to define the realizability relation M |-, ¢, read as “M realizes ¢”,
where M is a realizer and ¢ comes from the extended language L defined below.

The class of A-names is defined as usual:

Definition 4.2.6 A set A is a A\-name iff A is a set of pairs (v, B) such that

v € AD,. and B is a \-name.
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Definition 4.2.7 The class of A\-names is denoted by V.

As usual, we now extend the language of 1ZF to encompass the A-names.
We also restrict the formulas by allowing only realizers R as arguments of 7{"*([o])
terms. We call the resulting class-sized language L. Thus, the grammar is extended
and modified by:

to=A| 7R | ...

From now on until the end of this section, symbols M, N, O, P range exclusively
over realizers, letters a, b, c vary over set variables in the language, letters A, B, C
vary over A-names, letters ¢, 1) over formulas in L. Environments are finite partial

functions from set variables to V*.

Definition 4.2.8 For any formula ¢ of L, any set term t of L and p defined on
all free variables of ¢ and t, we define by metalevel induction a realizability relation
M Ik, ¢ in an environment p and a meaning of a term [t], in an environment p.

We show the new cases in the definition compared with IZFg:

o [77?(M)], is the first A such that M | [, N] and N Ik, ¢[a := AJ.

o [ta(@)], = {(axRep(0, 0, N), B) € R x V> | N Ik, ¢a(B, [idl,)}. The ordinal

v s defined below.
o Mk, (x:¢)Np=M | (M, M) A (M I, ) A (My Ik, plx := M)

e Mk, (x:¢9) =y =(M| . M) ANYN. (N I, ¢) — (Mi[z := N] I,

The definition of the ordinal 7 in item 4 stays exactly the same for all terms,
apart from the Replacement term, where the definition is slightly changed: Let

a = Ark([u],) and let & = (ay, ..., ay). Case t4(@) of:
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® R .7 s(u ). Tomake the account clearer, we set:

¢(M, A, B, F) = ¢[p,a,b, f == M, A, B, F|

Let G = {(N1, (N1, B)) € AD. x [u]} | 3d € V*. ¢(Ny, Ny, B, d)}, where
(N1, Noy, B,d) = (Ny | Aa. Ni) A (Niala == 0] | M. O) A (Olz := Not] |
[0,0.]) A O -, ¢(Nay, B,d, [u],)) A Ve. ¢(Not, B, e, [u],) — e = d). Then
for all g € G there is D and (Ny, (Nay, B)) such that g = (IVy, (N1, B)) and
(N1, Noy, B, D). Use Collection to collect these D’s in one set H, so that for
all g € G there is D € H such that the property holds. Apply Replacement
to H to get the set of A-ranks of sets in H. Then 8 = (J H is an ordinal and
for any D € H, Ark(D) < 3. Therefore for all g € G there is D € V' and
(N1, (Nap, B)) such that g = (Ny, (Noy, B)) and ¢(Ny, Nay, B, D) holds. Set

v=p0+1

It is easy to see that this definition of realizability is also well-founded. The

standard lemmas continue to hold:

Lemma 4.2.9 [t[a := s]], = [t[a == [s],]], = [t]pja:=[s],] and M I, dla = s] iff
M Ik, dla = [s],] iff M IFpa=gs,) ¢-

Proof We show the new case, that is ¢ = 7 (M). In this situation, [t[a :=
sll, = [ (Mla := s))],. Since M is a realizer, M[a := s] = M. This is
thus the first A such that M | [0, N] and N |-, ¢[a := s][b := A]. Furthermore
[tla == [s],]l, = [[Wlf'qb[a::[[sﬂ”](M)]]p, which is the first A such that M | [0, N] and
N I+, ¢la := [s],][b := A]. By the induction hypothesis for ¢, this is equivalent
to N I, ¢la == s][b := A]. Finally, [t],=ps,] = [77°(M)]pjats,), Which is
the first A such that M | [}, N] and N IF,,.—[5,] ¢[b := A]. By the induction
hypothesis for ¢, this is equivalent to N I, ¢[b := A][a := s], which is equivalent
to N Ik, ¢la == s][b:= Al ]
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The standard lemmas continue to hold:
Lemma 4.2.10 If (M |-, ¢) then M |.
Lemma 4.2.11 If M —* M’ then M' I+, ¢ iff M I+, ¢.

Realizability is also invariant with respect to reductions of lambda terms inside of

set terms and formulas:

Lemma 4.2.12 If M —* N, then [tjx := M]], = [t[z := N]], and O I, ¢[z :=
M] iff O IF, ¢z = N].

Proof Straightforward induction on the definition of realizability. |

The keystone in the normalization proof is proved similarly as before:
—
Lemma 4.2.13 (M,C) € [ta(0)], iff M = axRep(N) and N |-, ¢p4(C, [u],).

Proof We only show the right-to-left part for the two terms where the proof differs
from the proof of Lemma 3.2.38. Suppose N I, ¢4(A, [[u_]];) and M = axRep(NV).

e =
To show that (M, A) € [ta(1)],, we need to show that A € V. Let @ = Ark([u],).

Case t4(u) of:

- —
® S, .7 ¢lu,@). Suppose N I, p: A€ [u], A¢la, f:= A, [u],). Then N |

p

(N1, No) and Ny I, A € [u],. Lemma 3.2.32 shows the claim.

* R i d)(u, @0). As before, to make the account clearer, we set:

(M, A, B, F) = ¢[p,a,b, f = M, A, B, F|

Suppose N |-, (Vp : z € [u],3ly. ¢(p, z, v, [[u—]];))/\ﬂp cx € [u],. o(p, x, A, [[u_]]p))

-

Then N | (Ny,Ny) and Ny IF, Jz. (p : 2 € [u],) A é(p,x, A, [u],). Thus
Ny | [0, Ny] and there is B such that Noy | (Nay, Noo) and Ny IF, B € [u],

—

and Noo I, ¢(Nay, B, A, [u],). We also have Ny I, Vz. (p : z € [u],) —
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Aly. ¢(p, x, v, [[u—]];), so Ny | Aa. Ny; and for all C, Nyjfa := 0] | Az. O and
for all P I, C € [u],, Oz := P] I, 3ly. (P, C,y,[u],). So taking C' = B,
and P = Ny, there is D such that Ny | Aa. Nyj, Nyjfa := 0] | \z. O,
Ol := Nau] | [0,01] and Oy IF, ¢(Nav, B, D, [u],) A Ve. ¢(Nar, B, e, [u],) —
e = D. Therefore (Ny, (N9, B)) € G from the definition of v, so there
is D € V,Y’\ such that Ny | Aa. Nij, Ny | Az.O, Oz := Ny] | [0,04] and
O1 Ik, 6(Noy, B, D, [ul,) AVe. 6(Nay, B, e, [ul,) — e = D. S0 Oy | (Oy1,Ors)
and Oy IF, Ve. ¢(Nay, Boe,[u],) — e = D. Therefore, Opy | Aa. Q,
Qla = 0] | Mx. @1 and Qi[z := Nyp| F, A = D. By Lemma 3.2.32,

Ae VVA. [

4.2.4 Normalization

We are now ready to prove that AD normalizes, thus enabling program extraction
from IZFp proofs. The environments in this section are finite partial functions
which map set variables to VV* and proof variables to realizers. As usual, any such
environment can be used as a realizability environment by ignoring the mapping

of proof variables.

Definition 4.2.14 For any term T with free proof variables x1,...,z, and p de-

fined on x1,...,x,, T[p|] denotes T[xy := p(x;), ..., T, = p(z,)].

Definition 4.2.15 For a sequent I' = M : ¢, p = T means that p is defined on
dom(T"), for all (a;,Set) € dom(I"), p(a;) € V* and for all (z;,¢;) € T, p(z;) I,
ilp].

Theorem 4.2.16 (Normalization) IfI'+ O : ¥ then for allp =T, O[p] I, J]p].

Proof We proceed by metalevel induction on I' = O : . As usual, we write O’ to

denote O[p], where p is clear from the context. Note first that O’ is a realizer. We
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only show the new cases in the proof. Case I' - O : 9 of:

I'-M:da. ¢
Dby (M) : gla = a7 (M)]

Take any p = I'. Note that (¢la = 7(M)]) = ¢'la = 7> (M')]. By
the induction hypothesis, M’ I, Ja. ¢/, so M’ | [0, N] and there is some
A such that N I, ¢'[a :== A]. Furthermore, [[7T(11'¢I(M/)]]p is the first A such
that M’ | [0, Q] and Q I+, ¢'[a := A], so also N I+, ¢/[a := [x+¥ (M’)],]. By
Lemma 4.2.9, N Ik, ¢[a := «7*(M’)]. Since n3* (M’) —* N, by Lemma
4.2.11 789 (M) -, ¢'la = 78? (M")], which shows the claim.

'EM:¢ T'EN:Ypx:

:M]
' (M,N):(x:¢) N

Take any p = I'. By the induction hypothesis, M’ I, ¢' and N’ I, ¢/[z :=

M'], which is precisely what needs to be shown.

'EM:(x:9)ANY
T F fst(M) :

The proof is the same as in case of \Z.

CEM:(z:0)ANY
I'Fsnd(M) : Y[z = fst(M)]

Take any p = I'. By the induction hypothesis, M’ | (M, M) and M, I,
Y'|x = M;]. As snd(M') —* Ms, by Lemma 4.2.11 it suffices to show that
My &, (Ylz := fst(M)])’, which is equivalent to M, I, ¢'[z = fst(M')].
Since fst(M') —* M; and (Y[z = fst(M)]) = [z := fst(M')], Lemma

4.2.12 shows the claim.
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F'EM:(x:¢9)—¢ TEN:¢
' M N :¢[x:= N]

Take any p = I'. By the induction hypothesis, for some ¢, M’ | \x. My,
NIk, ¢' and for all P I, ¢/, My[x := P] Ik, ¢'[x := P]. Thus in particular
Mz := N'| Ik, ¥'[x := N'. As (M N) = M' N' —=* (Az. M;) N' —
M|z := N'| and (¢[z := N])’ = ¢/[z :== N'], Lemma 4.2.11 shows the claim.

Fex:pFM: 9
FEXe:¢. M:(x:9) =0

Take any p = I'. We need to show that for any N I+, ¢/, M'[x := N]J I,
Y'[x := NJ]. Take any such N. Since p[x := N] | T',x : ¢, by the induction
hypothesis M[p[z := N]] Ik, ¥[p[zr := N]]. It is easy to see that this is
equivalent to M'[z := NJ IF, ¢'[x := NJ. |

Corollary 4.2.17 (Normalization) If+- M : ¢, then M’ | and thus also M |.

Corollary 4.2.18 IZF} is consistent.

As we mentioned, A\D does not have the Subject Reduction property. Thus,

IZF p does not necessarily have any of the usual properties: DP, NEP and TEP.

This is the price we pay for avoiding inconsistency of unrestricted >-types. The

benefits are presented in the following section.

4.2.5 The properties of \D

In this section, we relate IZF and its classical counterpart to well-known first-

order set theories.

Theorem 4.2.19 IZF} proves IZFc.
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Proof The precise formulation of the claim is: if [IZFoF ¢, then for some term M,
IZFp = M : ¢. We formulate IZF- as IZF extended with the Collection axiom
schema:

V. Va. (Vo € aFy. ¢) — 3b. Vo € aTy € b. ¢

To show that IZFp interprets 1ZF r, we first need to prove that it interprets the
rules of IFOL. Most of them are present in the type system of AD as special
cases when dependencies are not used. The only missing rule is elimination of the

existential quantifier.

'+ da. I'+Va. ¢ —
S = g V)

It is easy to show that in IZFp the following rule is admissible, that is if assump-

tions are derivable, then so is the conclusion:

I'EM:da. ¢ Fl-N:Va.qS—wﬁa v
TN 0D meon) o CFEW

Second, we need to provide the interpretation of IZFy terms in IZFp and show
that they satisfy the respective axioms. This is straightforward, as it suffices to
add extraneous binders for Separation and Replacement terms. For example, we
interpret {x € a | ¢} as {p: x € a | ¢}, where p is fresh.

The only nontrivial thing left is the interpretation of the Collection axiom.
Intuitively, it follows from Replacement, as using dependent implication and 7r‘1“25
terms, we can transform a proof p of Vo € ady. ¢ into Vg : x € adly. o Ny =
7r‘f'¢(p x q). Formally, we exhibit the proof terms. To increase readability, we

display V. (p:x €a) - pasVp:zx €a. ¢, Jx. (p:x €a)NpasIp:x €a. ¢
and R = ¢(t,f§ as {y | (Vp:z ety ¢[f ={)A@Fp:zea gb[f:: i}
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y-¢

M, = (m3%(p x q),eqRefl ﬂm(p x q))

M o
My = Xz Xr:dly:=2z]Az= ﬂ?f'¢(p x q). snd(r)

FMy s Ve glyi=2nz=mt?pag) 2=l )
M; = A:aea [m°pq), (M, M)

FMs : Vq:xeadly. ¢

=
Ml

[z, (g, (74 (p = ), eqRefl 7¥°(p = q)))]

FMy : dg:zx€a v

M; = repl i Rep(nl?(p x q),a, f, (Ms, My))
FMs ﬁm(p rq) et
Mg = M. A\g:z€a. [7%%(px q), (Ms, 4% (p x q))]

FMg : Vexeca dyet. ¢

v = ¢ry=n{(pxq)

t = {y| Vg:xe€ady. Y)ANIq:x € a. Y}

N = M. Ap:Va€aTy. ¢. [t, M)
FN o Vf. (Ve €ady. ¢) — Ib. Ve cady b, ¢ |

Therefore, by the results of [Fv85|, the proof-theoretic strength of IZF equals
that of ZFC.

We now consider a classical version of IZF 5. Let ZFp be 1ZF p extended with
the excluded middle axiom EM. We show that ZF ;, is consistent. For this purpose,
take a formulation of ZFO with set terms, such as IZFgz + EM + “the universe is
well-ordered by <”. Define an erasure map on formulas and set terms of A\D, which
returns formulas and set terms of ZFO. The representative cases of the definition

follow, where ta.¢ denotes “the first a such that ¢
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¢ 0=0 {tit}={tt} D=uw
(p:¢) = v=0—19 S r,t.0)={act] (i)}
Rp,a,b,f(j)(t?a = {y | vx S t_;“y a(x7y7£> N E'.CL’ S { 5(557%{)}

With the map at hand, we can easily prove by induction on the proof the

consistency result:

Theorem 4.2.20 If ZFpkt : Set, then t is a term of ZFO. If ZFpt- M : ¢, then
ZFO + ¢. Thus ZFp is consistent.

Theorem 4.2.21 ZFp interprets ZF.

Proof By Theorem 4.2.19, IZF p interprets IZF . Since ZF=IZF+ + EM, the claim
follows. |

4.2.6 Program extraction

The program extraction method we described in Section 3.3 is based on DP, NEP
and TEP. Given that IZF p does not possess Subject Reduction property, we cannot
use our standard tools to prove these properties for IZF . However, it is easy to

derive them for the realizability model, in the sense we are about to define.

Definition 4.2.22 The formula ¢ is true in the realizability model if there is a
realizer M such that M Iy ¢.

We write VV* |= ¢, when ¢ is true in the realizability model.

Lemma 4.2.23 V* has the DP, NEP and TEP properties.
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Proof The claim amounts to replacing provability in the standard formulations by
realizability.

To see that DP holds, assume V* = ¢ V 1. Then there is a realizer M such
that M Iy ¢ V1, so either M | inl(NV) and N Ikg ¢ or M | inr(N) and N Iy 1.
In the former case V* |= ¢, in the latter V* |= 9.

NEP is proved in exactly the same manner — mirroring the proof for the
previous lambda calculi we described. For TEP, assume V* |= Ja. ¢. Then
there is a realizer M such that M Iy 3a. ¢, so 75%(M) Iy ¢la == 7 (M), so
VA E gla = 7 (M)]. n

Thus, using techniques from Section 3.3, we can extract programs from IZFp
proofs via the realizability model. If IZFp- M : ¢ then also M -, ¢, for ap-
propriate p and we can now apply Lemma 4.2.23 to obtain necessary properties.
The downside of this approach, compared to our previous developments, is that
the extracted programs are correct with respect to the realizability model, in-
stead of the original theory. Thus, if we extract a natural number n from a proof
IZFp- M : Ja € w. ¢, then we can only assert that V* = ¢la := n,]. This
distinction would likely be of no significant concern in applications, as thanks to
Theorem 4.2.16 we know that the truth in the realizability world is consistent with
statements provable in IZF . Moreover, it is easy to make the problem disappear,
by aziomatizing Subject Reduction in IZF p, that is adding the rule:

I'-N:¢

This is actually the approach adopted in Nuprl.
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4.2.7 Conclusion

We presented a combination of two worlds we investigate — sets and types. By
adding features typical for dependent type theories to the first-order logic under-
lying 1ZF i, we gained new capabilities and proof-theoretic strength. The price we
pay is the loss of Subject Reduction property, attractive from the theoretical point
of view. Given Theorem 4.2.2, it is unclear if there is a simple method to restore

the property back.

4.3 Historical context

Inaccessible sets, called cardinals in a classical setting, are the first “large” objects,
whose existence cannot be proved in ZF /IZF. [Kan03| provides a detailed account
of “Higher Infinite” in the world of sets. In the constructive context, powerful
large set axioms (including the existence of class-many inaccessibles) were added
to IZF¢ by Friedman and S¢edrov [Fv84]. The notion of an inaccessible set they
use differs from ours, as their inaccessibles must also model the Collection axiom.
We do not know if these two notions coincide. Both DP and NEP were shown for
the resulting theories, but we do not think that SEP and TEP could be proved
with their technique.

Inaccessible sets were also investigated in the context of weaker, predicative
CZF. Crosilla and Rathjen [CR02| showed that the power of inaccessible set axioms
might be closely linked to the €-induction axiom. They proved that inaccessible
sets added to CZF with €-induction taken away do not add any proof-theoretical
power. Setzer and Rathjen also investigated Mahlo axioms in the context of con-
structive set and type theories [Rat03, Set00].

There is a significant amount of research on connections between type and set
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theories. Aczel |Acz78, Acz82, Acz86, Acz99| described mutual interpretations of
variants of CZF and Martin-Lof type theory. Werner [Wer97| did the same thing
for Zermelo set theory and Calculus of Constructions. Miquel [Miq03, Miq04] in-
vestigated embeddings of impredicative set theories without €-induction axiom
schema in type theories. Howe [How96| investigated an extension of the set theo-
retic universe with type-theoretical constructs in order to validate the type theory
of Nuprl.

Modifications of logic underlying set theory were investigated before. Agerholm
and Gordon [AG95, Gor96| studied classical higher-order set theory HOL-ST. They
did not find a clear advantage of HOL-ST over first-order ZF. A map theory [Gru92|
provides a unified framework for sets and computation. An ongoing research on
algebraic set theory [MPO02| investigates set theories based on category theory.

There are also set theories based on linear logics [Shi94, Ter04].
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CHAPTER 5
PROGRAM-EXTRACTING SEMANTICS

We will now present an application of the frameworks we set up in the previous
chapter. Namely, we show that standard set-theoretic semantics for simple type
theories using our IZF i can be used as a basis for program extracting capability.

Church’s Higher-Order logic [Chu40| has been remarkably successful at cap-
turing the intuitive reasoning of mathematicians. It was distilled from Principia
Mathematica, and is sometimes called the Simple Theory of Types based on that
legacy. It incorporates the lambda calculus as its notation for functions, including
propositional functions, thus interfacing well with computer science.

One of the reasons Higher-Order logic is successful is that its axiomatic basis is
very small, and it has a clean set-theoretic semantics at a low level of the cummula-
tive hierarchy of sets (up to w+w) and can thus be formalized in a small fragment
of ZFC set theory . This means it interfaces well with standard mathematics and
provides a strong basis for trust. Moreover, the set theory semantics is the basis
for many extensions of the core logic; for example, it is straightforward to add
arrays, recursive data types, and records to the logic.

Church’s theory is the logical basis of two of the most successful interactive
provers used in hardware and software verification, HOL and PVS. This is due in
part to the two characteristics mentioned above in addition to its elegant automa-
tion based on Milner’s tactic mechanism and its elegant formulation in the ML
metalanguage.

Until recently, one of the few drawbacks of HOL was that its logical base
did not allow a way to express a constructive subset of the logic. This issue was
considered by Harrison for HOL-light [Har96|, and recently Berghofer implemented

a constructive version of HOL in the Isabelle implementation [Ber04, BN02| in
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large part to enable the extraction of programs from constructive proofs. This
raises the question of finding a semantics for HOL that justifies this intuitively
sound extraction.

The standard justification for program extraction is based on logics that em-
bedded extraction deeply into their semantics; this is the case for the Calculus of
Inductive Constructions (CIC) [CPM90, BC04], Minlog [BBS*98|, Computational
Type Theory (CTT) [ABC*06, CAB*86] or the closely related Intuitionistic Type
Theory (ITT) [ML82, NPS90|. The mechanism of extraction is built deeply into
the logic and the provers based on it, e.g. Agda [ACN90| is based on ITT, Coq
[The04| on CIC, MetaPRL [HNC*03] and Nuprl [ACE*00] on CTT.

In this section we show that there is a way to provide a clean set-theoretic
semantics for HOL and at the same stroke use it to semantically justify program
extraction. The idea is to first factor HOL into its constructive core, say Construc-
tive HOL, plus the axioms of excluded middle and choice. The semantics for this
language can be given in ZFC set theory, and in this semantics, IZF i provides the
semantics for Constructive HOL. We furthermore use our developments in Section
3.3 to provide a program extraction from CHOL proofs via the semantics.

Our set-theoretic semantics for HOL has the following properties:

e It is as simple as the standard semantics, presented in Gordon and Melham’s

[GM93].
e It works in constructive set theory.
e It provides a semantic basis for program extraction.
e It can be applied to the constructive version of HOL recently implemented

in Isabelle-HOL as a means of using constructive HOL proofs as programs.

This chapter is organized as follows. In section 5.1 we present a constructive

version of HOL. In section 5.2 we define set-theoretic semantics. We show how to
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use the semantics for program extraction in section 5.3.

5.1 Higher-order logic

In this section, we present higher-order logic in detail. There are two syntactic
categories: terms and types. The types are generated by the following abstract
grammar:
T :=mnat | bool | prop | 7 — 7| (7,7)

The distinction between bool and prop corresponds to the distinction between the
two-element type and the type of propositions in type theory, or between the two-
element object and the subobject classifier in category theory or, as we shall see,
between 2 and the set of all subsets of 1 in constructive set theory.

The terms of HOL are generated by the following abstract grammar:

L= Tr ‘ Cr ‘ (t’T—>U uT)O’ ‘ ()\xT tO’)T—>O’ ‘ (tT7SO'>(T7O')

Thus each term ¢, in HOL is annotated with a type «, which we call the type
of t. We will often skip annotating terms with types; this practice should not lead
to confusion, as the implicit type system is very simple. Terms of type prop are
called formulas.

The free variables of a term t are denoted by F'V(t) and defined as usual. We

consider a-equivalent terms equal.
Definition 5.1.1 A formula is a term of type prop.

Our version of HOL has a set of built-in constants. To increase readability, we
write ¢ : 7 instead of ¢, to provide the information about the type of c. If the type
of a constant involves «, it is a constant schema: there is one constant for each

type 7 substituted for . There are thus constants =p,0, =pnat and so on.

L : prop T : prop = (@, a) — prop
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= (prop, prop) — prop A : (prop, prop) — prop V @ (prop, prop) — prop
Vo : (@ — prop) — prop 3, : (& — prop) — prop £q 1 (@ — prop) — «
0 : nat S :nat — nat false : bool true : bool

We present the proof rules for HOL in a sequent-based natural deduction style.
A sequent is a pair (I',t), where I' is a list of formulas and ¢ is a formula. Free
variables of a context are the free variables of all its formulas. A sequent (I',t)
is written as I' - t. We write binary constants (equality, implication, etc.) using
infix notation. We use standard abbreviations for quantifiers: Va : 7. ¢ abbreviates

V. (Aar. @), similarly with Ja : 7. ¢. The proof rules for HOL are:

HFt=s
el Trisi Trow. t=ow.s w #FVI)
't T'kEs I'EtAs I'EtAs
I'tAs 'kt I'ks T
[t s I'ttvs I'tkFu I''sku
I'Etvs I'Htvs I'Fuw
Iitks Fts—+t Tks 'ks=u TI'Ftu
'Ht—s '+t I'F t[s]
FI_ —Pro (7 (0% A—PpPro a—Pro (e}
Ja—prop t I'F3a(famprop) T, faprop @ l_uxanew
I'F 30 (fa—prop) I'Fu

Finally, we list HOL axioms.

1. (FALSE) L = Vb : prop. b.

2. (FALSENOTTRUE) false = true — L.

3. (BETA) (A\z,. t,)s, = to[z, == s;].

1. (BTA) (Aer- froy 77) = fru

5. (FORALL) YV, = APy prop- (P = Axyo. T).
6. (P3) Vn :nat. (0= S(n)) — L.

7. (P4) Vn,m : nat. S(n) = S(m) — n =m.
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8. (P5) VP : nat — prop. P(0)A(Vn : nat. P(n) — P(S(n))) — Vn : nat. P(n).
9. (BOOL) Vz : bool. (x = false) V (x = true).
10. (EM) Vz : prop. (x = 1)V (x=T).

11. (CHOICE) VP : o — prop. Yz : . P & — P(€(a—prop)—a(P))-

Our choice of rules and axioms is redundant. Propositional connectives, for
example, could be defined in terms of quantifiers and bool. However, we believe
that this makes the account of the semantics clearer and shows how easy it is to
define a sound semantics for such system.

The theory CHOL (Constructive HOL) arises by taking away from HOL axioms
(CHOICE) and (EM).

We write -5 ¢ and ¢ ¢ to denote that HOL and CHOL, respectively, proves
¢. We will generally use letters P, () to denote proof trees. A notation P ¢ ¢

means that P is a proof tree in CHOL of ¢.

5.2 Semantics

In this section, we will define set-theoretic semantics for HOL and CHOL. We start
by fixing several definitions and proving several easy lemmas in constructive set

theory.

5.2.1 Set theory

The set-theoretic semantics needs a small part of the cumulative hierarchy — R, ..,
is sufficient to carry out all the constructions. The Axiom of Choice is necessary

in order to define the meaning of the ¢ constant. For this purpose, C' will denote
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a! blatantly non-constructive function such that for any X,Y € R, if X is
non-empty, then C(X,Y) € X, and if X is empty then C'(X,Y) =Y.

Recall that in the world of set theory, 0 = (), 1 = {0} and 2 = {0, 1}. Classically
P(1), the set of all subsets of 1, is equal to 2. This is not the case constructively;
there is no uniform way of transforming an arbitrary subset A of 1 into an element

of 2.
Lemma 5.2.1 If P(1) = 2, then for any ¢, ¢ or —¢.

Proof Suppose P(1) = 2 and take a formula ¢. Consider A = { € 1| ¢} and
B={_ €1]-¢}. Since AUB € P(1), AUB € 2, so either AUB = 0 or
AU B = 1. In the former case, 0 ¢ A and 0 ¢ B. Now, if ¢, then 0 € A and if —¢,
then 0 € B, therefore we have both ¢ and —¢, which is impossible. This means?.
that AU B = 1. Therefore 0 € AU B, so either 0 € A in which case ¢, or 0 € B
in which case —¢. So either ¢ or —¢. |

The following helpful lemma, however, does hold in a constructive world:
Lemma 5.2.2 If A€ P(1), then A=1iff 0 € A.

Proof Left-to-right direction is immediate. For the right-to-left direction, we have
A C 1 and need to show that 1 C A. Suppose B € 1, then B =0, but 0 € A, so
B e A. [

Let us also define precisely the function application operation in set theory. We

borrow the definition from Aczel [Acz99].

App(f,x) ={z|3y. z €y A (z,y) € f}

The advantage of using this definition over an intuitive one (“the unique y such

that (x,y) € f7) is that it is defined for all sets f and x. Partiality of App would

INote that if we want to pinpoint C, we need to assume more than AC, as the existence of a
definable choice function for R, is not provable in ZFC.
2We are using here a bit uninintuitive intuitionistic tautology : (((¢ V ¥) A =¢) — )
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entail serious problems in constructive settings — see |Moc07| for description of
some of the problems.

This definition is equivalent to the standard one when f is a function:

Lemma 5.2.3 If f is a function from A to B and x € A, then App(f,x) is the

unique y such that (z,y) € f.

Proof Let y be the unique element of B such that (x,y) € f. If 2 € App(f, x) then
there is y’ such that z € y' and (z,y') € f. Since vy = y, z € y. For the other
direction, if z € y, then obviously z € App(f, x). |

From now on, the notation f(z) means App(f,z). We will use the lambda

notation in set theory to define functions: Az € A. B(z) means {(z, B(z)) | z € A}.

5.2.2 The definition of the semantics

We first define a meaning [7] of a type 7 by structural induction on 7.
e [nat] = N.
e [bool] = 2.

e [prop] = P(1).

[(r,0)] = [7] x [o], where A x B denotes the cartesian product of sets A
and B.

o [ — 1] =[] — [r2], where A — B denotes the set of all functions from

A to B.

The meaning of a constant ¢, is denoted by [c,] and is defined as follows.

o [=.] = Ma1,x2) € ([a] x [a]). {x €1 ]2 =2}

o [—] = A(b1,b2) € [prop] x [prop]. {z € 1 |z € by — x € by}.
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e [V] = A(by, b2) € [prop] x [prop]. by U bs.

e [A] = A(by, b2) € [prop] x [prop]. by N bs.

[false] = [L] = 0.
o [true] = [T] = 1.

[Vol = Af €[] — [prop]. Neepg f(@)-
[3e] = Af € [a] = [prop]. Usepap f(@)-
[ea] = AP € [a] — [prop]. C(P~1(1), [a]).

e [0] =0.

e [S]=MmeN.n+1.

The standard semantics, presented for example by Gordon and Melham [GM93],
uses a truth table approach — an implication ¢ — 1 is false iff ¢ is true and 1 is
false etc. It is easy to see that with excluded middle, our semantics is equivalent
to the standard one.?

To present the rest of the semantics, we need to introduce environments. An
environment is a partial function from HOL variables to sets such that p(z,) € [7].
We will use the symbol p exclusively for environments. The meaning [t], of a term

t is parameterized by an environment p and defined by structural induction on ¢:

o [er]p = ler]-

o [z.], = p(z:).

o [su], = App([s],, [u],)-

o [Mzr. u] ={(a, [ulpa,:=a) | @ € []}-

[(s, u)]]p = ([[S]]P’ [[u]]p)-

3For the interested reader, our definition of the meaning of logical constants is essentially a
combination of the fact that any complete lattice with pseudo-complements is a model for higher-
order logic and that P(1) is a complete lattice with pseudo-complement defined in the clause for
=. See [RS63] for more information about these notions.
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5.2.3 Properties

There are several standard properties of the semantics we have defined. The fol-

lowing two lemmas are proved by induction on ¢:

Lemma 5.2.4 (Substitution lemma) For any terms t,s and environments p,

[#)oa=ta1,) = [t == 5],
Proof By induction on t. Case t of:

e ¢ — the claim is obvious.

e . Then [7],1.—1s,) = [s], = [l := s]],.-

uw v. Then [u v]pp—ps = App([ulpiz=fs1,), [V]pe:=s],])- By the induction

hypothesis, this is equal to App([u[z := s]],, [v]z := s]],) = [u[z = s] v[z =

(u,v). Similar to the previous case.

e \y,. u. Without loss of generality we may assume that y # z. Then
[t]pjz=s) = {(@, [ulpo:=[s],)iy:=a) | @ € [7]}. By the induction hypothesis,
this is equal to {(a, [ulz = s]],p=q) | @ € [7]} = [(A\yr. ulz = s])], =
[t[z = s]],. [ |

Lemma 5.2.5 For any p, [t.], € [o].

Proof We proceed by induction on t. Case t of:

e 1. The claim follows by properties of environments.

e .. We proceed by case analysis of c. We show the interesting cases.

— V. The type of ¢ is (« — prop) — prop. We need to show that if f is
a function from [a] to P(1), then (¢, f(a) is in P(1). But for any

a € [a], f(a) € P(1), and P(1) is closed under intersections.
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— J,- Similar, follows by the fact that P(1) is closed under unions.

— £4. The type of ¢ is (o — prop) — prop. Take any function P from [«
to P(1). Then P~*(1) C [a], so the claim follows by the definition of
C. [

In particular, this implies that for any formula ¢, [t] C 1. So if we want to

prove that [t] = 1, then by Lemma 5.2.2 it suffices to show that 0 € [¢].

5.2.4 Soundness

The soundness theorem establishes validity of the proof rules and axioms with

respect to the semantics.
Definition 5.2.6 p =Tk t means that p is defined for z. € FV(I') U FV(t).

By the definition of environments, if p = T' ¢, then for all x, € FV(T)UFV (),

p(a7) € [7].

Definition 5.2.7 We write [I'], = 1 if [t1], = 1,....[t.], = 1, where I' =

tto, oty

Theorem 5.2.8 (Soundness) IfI' F ¢, then for all p =T & ¢, if [I'], = 1, then
[t] = 1.

Proof Straightforward induction on I' - ¢. We show some interesting cases. Case

I'F¢of:

rretel

The claim is trivial.

163



I'Et=s
'EXe,.t=MAzx,. s

Take any p |=I" - Az;. t = Az,. s. We need to show that {(a, [t],z,.=q) | @ €
[7]} = {(a, [s]pz,:=a)) | @ € [7]}. That is, that for any a € [7], [t],z, .= =
[slpfzr:=a)- Let p' = plz; := a]. Since p' =T F t = s, by the induction

hypothesis we get the claim.

't T'ks
I'FtAs

Suppose [I'], = 1. By the induction hypothesis, 0 € [t], and 0 € [s],, so

0 € i1, [sl,.

T'FtAs I'HFtAs
'kt I'ks

Reverse the previous case to get the claims.

Lt FFs 'tvs ItFu TIsku
'Ftvs 'Htvs 'Fu

The first two cases are easy. For the last one, suppose [['], = 1. By the
induction hypothesis, we know that 0 € [t], U [s],, so either 0 € [t], or
0 € [s],. In both cases, by the rest of the induction hypothesis, 0 € [u],, so

we get the claim.

Itk s
I'Ft=s

Suppose [I'], = 1. We need to show that 0 € {x € 1 | z € [t], — = € [s],}-
Since 0 € 1, assume 0 € [t],. Then [I',¢], = 1, so by the induction hypothesis
[s], =1and 0 € [s],.
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I'Ft—s T'FHt
I'ks

Suppose [I'], = 1. By the induction hypothesis, 0 e {z € 1 | z € [t], — x €

[s],} and 0 € [t],, so easily 0 € [s],.

F'ks=u TFtlx:=u]
Ik t[z = s

The proof is straightforward, using the Substitution Lemma. Assume [I'], =
1. By the induction hypothesis, [s], = [u], and [t[z := u]], = 1. So using
the Substitution Lemma we get [t[x = u]], = [t]pz=u,)] = [t]pm=[s1,) =
[tz = ],

I
'+ Ela(fa—mrop)

Assume [I'], = 1. We have to show that 0 € |J [f1,(a), that is that

a€la]

there is a € [a] such that 0 € f(a). By Lemma 5.2.5, [t,], € [a], so taking

a = [ta], we get the claim by the induction hypothesis.

'+ Ela(foa—mrop) F? f Ty Fu
I'Fu

To NEW

Suppose [I'], = 1. By the induction hypothesis, there is a € [a] such that
0 € [fl,(a). Let p' = p[z, :=a]. Then p =T, f x4 F u, so by the induction

hypothesis we get 0 € [u],, which is what we want.

T'F Vo = APaprop. P = Ao T)

We need to show that [V,], = [APa—prop. P = Azo. T]. First, [Vo], = Af €
[a] — P(1). MNuepy f(a). Let us denote this function in set theory by F.

The domain of F'is [a] — P(1).
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Second, let G = [(APa—prop- P = Azqo. T)],. Then we have G = {(a, Ja =
Meg. Tlppi=a) | P € [a] — P(1)}. Note that G is also a function with
the domain [a] — P(1). Thus, to show that F' = G, it suffices to show
that for any P € [o] — P(1), F(P) = G(P). Take any such P. We have
F(P) =Nyepoy Pla) and G(P) ={z € 1 [ P = Az € [a]. 1}. Now b € F(P)
iff for all a € [a], b € P(a) iff for all a € [a], P(a) =1iff P = Xa € [o]. 1,
iffbe{z€l|P =X e€]a] 1}. |

Having verified the soundness of the HOL proof rules, we proceed to verify the

soundness of the axioms.
Theorem 5.2.9 For any aziom t of HOL and any environment p, 0 € [t],.

Proof We proceed axiom by axiom and sketch the respective proofs.

o (FALSE) [L], =0 =N,cpuya = [Vb: prop. b],. The second equality follows
by 0 € P(1).
e (BETA) Follows by the Substitution Lemma. We have [(Az,. t,)s.], =

App(Phar- tolp, [s71p) = App({(a, [l p=a) | @ € [7]}, [s710) = W ppei=ts1,1 =
(by the Substitution Lemma) = [t[z := s]],.

e (ETA) Follows by the fact that functions in set theory are represented by

their graphs. We have:

[(Ar. frep el = {(a, [f 2] pp=a) | @ € [7]} =
{(a, App([f1pfw=a), @) | @ € [7]} = (since = & FV(f))
{(a,[f1p(a)) [ a €[]} = [,

since by Lemma 5.2.5, [f], € [r] — [c] and functions in set theory are

represented by their graphs.
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e (FORALL) We have:

Val, = {(Q. [ Qa) | Q € [o] — P(1)}

a€la]

Also:

[(AQa—prop- @ = Aza. T)], = {(@{z € 1|Q =Xz € [a]. 1}) [ Q € [a] — P(1)}

Take any @ € [a] — P(1). It suffices to show that (), Q(a) = {z €
1] Q= Xy € [a]. 1}. But 2 € (), @(a) iff for all a € [a], 2 € Q(a) and
x = 0. This happens if and only if z = 0 and for all a € [a], Q(a) = 1 which
is equivalent to x € {z € 1 | @ = Ay € [a]. 1}. The sets in question are

therefore equal.

e The axioms P3, P4, P5 follow by the fact that natural numbers satisfy the

respective Peano axioms.

e (BOOL) We need to show that [Vhool. (AZpoo. = false V z = true)], = 1.
Unwinding the definition, this is equivalent to (),.,({z € 1 |2 =0} U{z €
1|2 =1}) = 1. and furthermore to: for all z € 2, z € {z € 1 | 2z =
0fu{z€l]|x=1}. If z € 2, then either z = 0 or z = 1. In the former
case, 0 € {z € 1| x=0},in the latter 0 € {z € 1 | z = 1}.

e (EM) We need to show that [Vjrop. (AZprop. © = LV = T)], = 1. Reasoning
as in the case of (BOOL), we find that this is equivalent to: for all z € P(1),
xe{ze€l|xz=0}U{z€1]|x=1}. Suppose z € P(1). At this point, it is
impossible to proceed further constructively, all we know is that x is a subset
of 1, which does not provide enough information to decide whether x = 0 or
x = 1. However, classically, using the rule of excluded middle, P(1) = 2 and

we proceed as in the previous case.

e (CHOICE) We need to show that:

[[Va_)prop()\Pa_)prop. Va()\xa. Px = P(E(a_mrop)_ﬂ(P))]] =1
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We have the following chain of equivalences:

[[Va_,prop()\Pa_)prop. Va()\l’a. Px = P(E(a_)prop)_)a(P))]] =1«

(1 Ma(Aza. Pz = P(E(amprop)—a(P)] =1+

Pela]—2

N [Pz = Pletamprop—alP))] =1 <

Pela]—2z€]a]

N [Pz = Pltapmop—alP)] =1

Pela]—2z€]q]

m m {acl|aeP(x)—acPCP{1}),[a])} =1

Pefa]—2 ze[a]
To show this, it suffices to show that for all P € [a] — 2, for all z € [a],
if 0 € P(x) then 0 € P(C(P~'({1}),[a])). Take any P and z. Suppose
0 € P(z). Then P(z) =1, s0 x € P~*({1}). Therefore C(P~'({1}),[a])) €
P71({1}), so P(C(P~'({1}),[a]) = 1, which shows the claim. |

Corollary 5.2.10 HOL s consistent: it is not the case that by L.

Proof Otherwise we would have [L] = [T], that is 0 = 1. |

5.3 Extraction

We will show that the semantics we have defined can serve as a basis for program
extraction for proofs. All that is necessary for program extraction from construc-
tive HOL proofs is provided by the semantics and the soundness proof. Therefore,
if one wants to provide an extraction mechanism for the constructive part of the
logic, it may be sufficient to carefully define set-theoretic semantics, prove the
soundness theorem and the extraction mechanism for IZF r would take care of the
rest. We speculate on practical uses of this approach in section 5.4.

As in case of [ZF i , we will show how to do extraction from a subclass of CHOL

proofs. The choice of the subclass is largely arbitrary, our choice illustrates the
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method and can be easily extended.
We say that a CHOL formula is eztractable if it is generated by the following

abstract grammar, where 7 varies over pure TT° types and & € {A,V, —}.
pu=Nr:T.¢|Jx:T. O oD | L|t=t,

We will define extraction for CHOL proofs of extractable formulas. By Theo-
rem 5.2.9, if CHOL F ¢, then IZFz- 0 € [¢]. We need to slightly transform this
IZF r proof in order to come up with a valid input to the extraction function F
from Section 3.3. To this means, for any extractable ¢ (with possibly free vari-
ables) we define a formula ¢’ such that IZFgF 0 € [¢] < ¢'. The formula ¢’ is
essentially ¢ with the type membership information replaced by the set member-
ship information. We define ¢’ by induction on ¢. The correctness follows trivially

in each case. In all the cases we work in IZF . Case ¢ of:

o L. Then ¢/ =0 ¢ [1].

o t=s5. Then ¢/ =0 € [t = s].

o )1Va 0€ [p1Vo]iff 0 € [¢p1] or 0 € [¢2]. By the induction hypothesis we
get @] and ¢} such that 0 € [¢;] < ¢} and 0 € [po] < ¢),. Take ¢/ = ¢}V ¢.

e 1 A ¢o. Then 0 € [¢] iff 0 € [¢1] and 0 € [¢o]. Take ¢} and ¢, from the
induction hypothesis and set ¢’ = @] A ¢}.

® o1 = ¢2. Then 0 € [1 — o] iff 0 € {z € 1 [z €[] — = € [¢2]}
iff 0 € [¢p2] — 0 € [¢2]. By the induction hypothesis get ¢] such that
0 € [¢1] < ¢} and ¢, such that 0 € [¢po] < ¢). Set ¢’ = ¢} — ¢h.

e Va : 7. ¢;. Then 0 € [¢] iff for all A € [7], 0 € App([ra : 7. ¢1], A) iff for

all A € [7], 0 € App({(z, [P1]pja=a)) | ® € [7]}, A) iff for all A € [7] 0 €
[¢1] pja:=4) iff, by the Substitution Lemma, for all A € [7], 0 € [¢1]a := A]]
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iff for all A € [7], 0 € [¢1]. Take ¢} from the induction hypothesis and set
¢ =VYa e [r]. 0 € ¢).
e Jda : 7. ¢1. Then 0 € [¢] iff A € [7] iff 0 € [¢1[a := A]]. Just as in the

previous case, get ¢} from the induction hypothesis and set ¢' = Ja € [7]. ¢}.

Now we can finally define the extraction process. Suppose CHOL F ¢, where
¢ is extractable. Using the soundness theorem, construct an 1ZFg proof P that
0 € [¢]. Use the definition above to get ¢’ such that IZFg - 0 € [¢] < ¢ and
using P obtain a proof R of ¢'. Finally, apply the extraction function F to R to

get the computational extract.

5.4 Conclusion

We have presented a computational semantics for HOL via the standard interpre-
tation in intuitionistic set theory. The semantics is clean, simple and agrees with
the standard one.

The advantage of this approach is that the extraction mechanism is completely
external to Constructive HOL. Using only the semantics, we can take any construc-
tive HOL proof and extract from it computational information. No enrichment of
the logic in the normalizing proof terms is necessary.

The separation of the extraction mechanism from the logic makes the logic
very easily extendable. For example, inductive datatypes and subtyping have
clean set-theoretic semantics, so can easily be added to HOL while preserving
consistency, as witnessed in PVS. As the semantics would work constructively, the
extraction mechanisms from section 5.3 could be easily adapted to incorporate
them. Similarly, one could define a set-theoretic semantics for the constructive
version of HOL implemented in Isabelle ([Ber04, BN02]) in the same spirit, with

the same advantages.
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The modularity of our approach and the fact that it is much easier to give
set-theoretic semantics for the logic than to prove normalization, could make the
development of new trustworthy provers with extraction capabilities much easier

and faster.
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CHAPTER 6
CONCLUSION

We took the reader on a tour between the static world of sets, which forms
the foundation of mathematics, and the dynamic world of types, a possible foun-
dation for computer science. We showed that these worlds are much closer than
it seems. Computation can be discovered in the world of sets, and type-theoretic
features can be added to set theory with significant advantages. We showed the
first applications of our results, by showing that standard semantics for type the-
ories given in computational set theory can provide program-extraction capability
from constructive proofs for free.

We would like to close this thesis with three open questions. We believe that
answers to these questions will further our understanding of foundations of math-
ematics and computer science.

e [s there a strong consistent dependent set theory with unrestricted Y -types?

In a sense, Aczel’s interpretation of CZF in Martin-Lof’s type theory [Acz78,
Acz82, Acz86| is such a theory. However, it is very weak. Moreover, its
dependent nature is only revealed in the type-theoretic model, not in the
axiomatization. We hope for a consistency result for a theory constructed
along the lines of our IZF . One instance of this question is whether IZFp
with standard, non-dependent Replacement and unrestricted X-types is con-

sistent.
o [s there a well-behaved lambda calculus with types which can interpret IZFo?

Although A\D does provide an interpretation, the fact that it does not possess
the Subject Reduction property makes it an unsatisfying theory from a the-
oretical point of view. The strongest normalizing lambda calculi in existence

with the Subject Reduction property, such as CIC and ECC, can only in-
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terpret constructive Zermelo theory [Wer97, Acz99| and their proof-theoretic

strength is smaller than ZF.

e [s there a good characterization of the border area between normalization,

lack of thereof and inconsistency?

On the side of sets, contradictions are nowadays not that easy to find, apart
from Russell’s paradox. The land of types is much younger and not as well
understood. However, although the original type theory of Martin-Lof turned
out to be inconsistent, modern type theories are widely believed to be consis-
tent. Our theories live in the border area — almost contradictory (AD and
IZFp) and almost not normalizing (with the addition of non-well-founded
sets). But what exactly tips a type or set theory into losing normalization

or consistency?

We are looking forward to seeing answers to these problems.

THE END
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