Extracting the Resolution Algorithm from a
Completeness Proof for the Propositional
Calculus

Robert Constable and Wojciech Moczydtowski

{rc, wojtek}@cs.cornell.edu
Department of Computer Science, Cornell University, Ithaca, NY 14853, USA

Abstract. We prove constructively that for any propositional formula ¢
in Conjunctive Normal Form, we can either find a satisfying assignment
of true and false to its variables, or a refutation of ¢ showing that it is
unsatisfiable. This refutation is a resolution proof of —¢. From the for-
malization of our proof in Coq, we extract Robinson’s famous resolution
algorithm as a Haskell program correct by construction. The account is
an example of the genre of highly readable formalized mathematics.

1 Introduction

Recently Jean Gallier [1] gave a simple constructive proof that the resolution
method for the propositional calculus is complete — noting that other proofs in
the literature [2-5] are by contradiction, hence weaker. Gallier’s method is to
provide an explicit resolution algorithm and a correctness proof for it.

We establish a slightly stronger result in a different way, by giving a simple
constructive proof, formalized in Coq. The Coq system enforces constructiv-
ity and extracts from this proof an efficient resolution program (in Haskell or
OCaml). Our proof is the kind of argument one would see in a logic textbook. Coq
guarantees that it is constructive — which is not as well established in Gallier’s
presentation. The result is also stronger because executable code is extracted.

Our presentation is an instance of the new genre of formalized mathematics
which we have been promoting, in both type theory [6,7] and set theory [8]. A
salient feature of this genre is precise clarity. Moreover, the definitions serve a
dual purpose, defining data types as well as mathematical concepts. Likewise,
the proofs provide justifications as well as algorithms. We strive to make the
account more readable than ordinary mathematical texts. If we succeed, then
there will be no question that formal text is a more useful way to present certain
results in mathematics. The reader can judge these claims directly.

2 The Resolution Method

The resolution method applies to formulas in Constructive Normal Form (CNF),
such (PV Q) A (=P) A (—Q V P). These are built from variables (atoms) such



as P,Q,R,... or negations of them. These positive or negative variables are
called literals. Disjunctions of them are called clauses, so a CNF formula is a
conjunction of clauses built out of literals.

Resolution is an attempt to refute a CNF formula ¢. To refute is to show
that the formula cannot be true no matter what truth values, true or false,
are assigned to the variables. What is so noteworthy is that a formula can be
refuted by systematically applying one rule to its clauses over and over. The rules
is called resolution; it resolves two clauses into a new one. Refutation starts with
two clauses of ¢ and produces a new one by resolution and then is applied to
either original clauses from ¢ or newly created ones.

Our result is that given a CNF formula ¢, we can either refute it by producing
a refutation r or show that it is satisfiable by producing an assignment of truth
values, true, false, to the variables. We also show that if r refutes ¢, then ¢ is
not satisfiable. Thus —¢ is valid, and indeed, the refutation r can be seen as a
proof of —¢.

2.1 Prerequisites

Booleans, denoted by bool, consist of two elements: false and true. Natural num-
bers are denoted by nat. The standard operations on booleans are called andb,
orb and negb. The notation list A stands for lists with elements coming from A.
We denote the empty list by [| and a list consisting of elements aq, as, ..., ax by
[a1,...,ar]. The concatenation of lists /1 and Is is denoted by [;@l5.

We will use the typewriter font for concepts in Coq. Our choice of names
mostly coincides with its standard library. Lists are an important exception: in
Coq, the list [a1,as,. .., a] is denoted by al::a2::...::ak::nil and [;Ql; by
11 ++ 12. Thus in particular [a]@[ is rendered in Coq as a::1 and the empty
list [] by nil,

2.2 Literals, clauses, formulas and valuations

We are interested in formulas in Conjunctive Normal Form (CNF). To build their
representation in Coq, we represent propositional variables P, (), ... as natural
numbers. To fix our attention, in the examples P, Q, R are represented by 1,2
and 3, respectively. A literal is either an atom or its negation. We represent the
former case by labelling the atom with a tag pos and the latter by labelling it with
atag neg. A clause is a list of literals and a (CNF) formula is a list of clauses. For
example, the formula ¢ = (PVR)A-PAQA(PV—-QV—R) is represented by the
list [[pos 1, pos 3], [neg 1], [pos 2], [pos 1, neg 2,neg 3]]. The function notlit for a
given literal returns its negation: notlit(pos n) = neg n, notlit(neg n) = pos n.

The formalization of these definitions in Coq follows. Anything between
(* *) characters is a comment.

(* 1it is a disjoint union nat + nat.
Its components are natural numbers labelled by pos and neg *)
Inductive 1lit : Set :=



pos : nat -> 1lit
| neg : nat -> 1lit.

Definition notLit (1 : 1lit) : 1lit :=
match 1 with
pos n => neg n
| neg n => pos n

end.
Definition clause := list 1lit.
Definition form := list clause.
Definition P : nat := 1.
Definition Q : nat := 2.
Definition R : nat := 3

Definition phi : form := (pos P:: (pos R) :: nil)
(neg P :: nil)
(pos Q:: nil)
(pos P :: (neg Q) ::(neg R) :: nil)
nil.

A waluation assigns booleans to atoms in a formula. We represent valua-
tions as lists of natural numbers. The intended meaning, captured in the for-
mal definitions below, is that the valuation v assigns true to the atom rep-
resented by a number n, if n is an element of v. For example, the valuation
{P — false,Q — true, R — true} is represented as [2, 3].

Definition val := list nat.

The value of a literal pos n under a valuation v is equal to true if n is an
element of v. The value of a negated literal, neg n, is equal to false if n is not
an element of v.

(* vallLit : 1lit -> val -> bool *)
Definition vallLit (1 : 1it) (v : val) :=
match 1 with
pos n => elemL nat egNat n v
| neg n => negb (elemlL nat eqNat n v)
end.

The value of a clause ¢ under the valuation v is an element of bool. It is defined
by recursion on c. If ¢ is empty, the value is false. Otherwise, if ¢ is a list with
the first element x and the rest of its elements denoted by zs, it is a disjunction
of the value of the literal z and the value of zs. The value of a formula f is
defined similarly.

(* valClause : clause -> val -> bool



valClause nil v = false
valClause (x::xs8) v = orb (valLit x v) (valClause xs V)
*)
Fixpoint valClause (c : clause) (v : val) { struct c¢ } : bool :=
match c¢ with
nil => false
| x :: xs => orb (valLit x v) (valClause xs V)
end.

Fixpoint valForm (f : form) (v : val) { struct £ } : bool :=
match f with
nil => true
| x :: xs => andb (valClause x v) (valForm xs V)
end.

Note that the “empty” formula is always true, while the “empty” clause is always
false. We will sometimes say that the valuation v falsifies a formula f to mean
that val Form(f)(v) = false.

A formula f is satisfiable if there is a valuation which sets it to true. Or,
in other words, if the set of valuations v such that valForm(f)(v) = true is
not empty. In Coq’s type theory, truth of a proposition is equivalent to the
non-emptiness of a corresponding type, so the following definition captures sat-
isfiability correctly.

Definition satisfiable (f : form) := { v : val | valForm f v = true }.

A reader unfamiliar with type theory can think about { v : val | valForm
f v = true } as a (witness-providing) existential quantifier:

{ v : val | valForm f v = true } =~ Jv :val. valForm(f)(v) = true

2.3 Resolutions

The definition of the resolution tree we use is taken from [1]. Structurally, it is a
binary tree. Its leaves are labelled with clauses. Its nodes are labelled with pairs
consisting of a literal and a clause.

Inductive resol : Set :=
leaf : clause -> resol
| node : 1it -> clause -> resol -> resol -> resol.



For example, the tree T defined as':

(R, [])
////// \\\\\
(P, [R]) (@, [-R])
N S E
(P,~QV —R)
_— ™~
PVR Pl [Q] PV-QV-R [—P]

is represented as:

(* The prefix ex stands for ’’example’’ *)
Definition exTree : resol :=
node (pos R) (nmil)
(node (pos P) (pos R::nil)
(leaf (pos P::(pos R)::nil))
(leaf (neg P::nil))
)
(node (pos Q) (neg R::nil)
(leaf (pos Q::nil))
(node (pos P) (neg Q::(neg R)::nil)
(leaf (pos P::(neg Q)::(neg R)::nil))
(leaf (neg P::nil))

).

Note that each node in a tree is labelled with a clause. Let us denote this
clause by clauseR:

Definition clauseR (r:resol) : clause := match r with
leaf c => ¢
| node 1 c rl r2 => c
end.

The premises of a tree are the clauses at its nodes.

Fixpoint premises (r : resol) {struct r}: list clause := match r with
leaf ¢ => c::nil
| node 1 ¢ r1 r2 => (premises rl) ++ (premises r2)
end.

So the premises of T are [PV R, [-P],[Q], PV -QV =R, [-P]]:

Lemma ex1 :

! To increase readability, we render clauses with more than one element in a traditional
way instead of their list representation.



premises exTree =
(pos P::(pos R)::nil)::

(neg P::nil)::

(pos Q::nil)::

(pos P::(neg Q)::(neg R)::nil)::
(neg P::nil)::

nil.

The correctness restriction makes the trees more meaningful. Intuitively, each
node should correspond to a resolution step. A clause ¢ at the node results from
the clauses c1, co at its children by removing [ form ¢, the negation of [ from co
and retaining the rest of ¢1,ca. So ¢ = (¢1 — {I}) U (e2 — {~l}).

In the formal definition, eqCS denotes equality of clauses treated as finite sets
and elemC 1 c checks whether the literal [ is an element of the clause c.

Fixpoint correctR (r : resol) : bool := match r with
leaf ¢ => true
| node 1 ¢ r1 r2 =>

andb (andb (correctR r1) (correctR r2))
(andb

(andb (elemC 1 (clauseR r1))

(elemC (notLit 1) (clauseR r2)))
(eqCS c (removeC 1 (clauseR rl) ++
(removeC (notLit 1) (clauseR r2)))))
end.

Resolutions therefore are these trees that satisfy the correctness condition.
Definition res : Set := { r : resol | correctR r = true }.

We can easily show that correctR(exTree) = true and define an element
exRes of res corresponding to the tree exT'ree.

(* p denotes the proof that correctR exTree = true *)
Definition exRes : res := exist _ exTree p.

Having defined the resolution trees, we need to relate them to formulas. A
tree 7 corresponds to a formula f if the premises of  are a subset of the clauses
of f. A tree r refutes a formula f if it corresponds to f and its root is labelled
with the empty clause. We call a formula refutable, if there is a resolution tree
which refutes it.

(* subL clause eqC f1 f2 checks whether f1 is a subset of f2 *)
(* projl_sig, given a resolution, returns the underlying tree.
So projl_sig exRes = exTree. *)

Definition corresponds (r : res) (f : form) :=
subL. clause eqC (premises (projl_sig r)) f.



Definition refutes (r: res) (f : form) :=
andb (corresponds r f)
(eqC (clauseR (projl_sig r)) nil).

The proof that the resolution tree exRes refutes ¢ is straightforward.

Lemma ex2 : refutes exRes phi = true.

2.4 Refuted formulas are unsatisfiable

To show that we have chosen our definitions correctly, we prove the following
theorem:

Theorem 1. For all resolutions r and formulas f, if r refutes f, then f is not
satisfiable.

In other words:

Theorem resres : forall (r : res) (f : form),
refutes r £ = true ->
satisfiable f -> False.

Proof (Sketch). Take a resolution r, suppose that r refutes f and take a valuation
v which sets f to true. We know that the root of r is labelled by the empty clause.
In this situation we can find a clause c in the premises of r such that v sets ¢ to
false. We do this by starting from the root of r and proceeding down, choosing at
the node labelled by  the left child if v(l) = false and the right one otherwise.
We take c to be the clause labelling the leaf we end at. Furthermore, we collect on
the way literals in the following way: if a node is labelled by ! and v(l) = false,
we collect /; otherwise we collect the negation of /. Let d denote the resulting
clause. We can easily prove that c is a subclause of d and that v falsifies d. Thus
also v(c) = false.

Since r refutes f, the clause ¢ is among the clauses of f. It is therefore easy to
see that the value of f under v must be false as well. Therefore val Form(f)(v) =
false, by the assumption about v we also have val Form(f)(v) = true and since
true # false, we get the claim.

We will now show how to make this proof precise. First, we formalize the
process of “proceeding down, starting from the root of r”’, which resulted in the
clause c. For the examples, we use our valuation {P — false,Q — true, R —
true}.

Fixpoint contraClause (r : resol) (v : val) { struct r} : clause :=
match r with
leaf c => ¢
|lnode 1 c r1 r2 =>
if vallit 1 v then contraClause r2 v
else contraClause rl v



end.
Definition exVal : val := Q::R::nil.
Lemma ex3 : contraClause exTree exVal = pos P::(neg Q)::(neg R)::nil.

Lemma 1. If r corresponds to f, then the clause picked using contraClause is
equal to one of the clauses of f.

Lemma ccl : forall (r : res) (f : form) (v : val),
corresponds r £ = true ->
eleml. _ eqC (contraClause (projl_sig r) v) f = true.

Second, we formalize “collecting literals on the way’:

Fixpoint lontraClause (r : resol) (v : val) { struct r} : clause :=
match r with
leaf ¢ => nil
|node 1 ¢ r1 r2 =>
if vallLit 1 v then (notLit 1)::lontraClause r2 v
else 1::(lontraClause r1 v)
end.

Lemma ex4 : lontraClause exTree exVal = neg R::(neg Q)::(pos P)::nil.
Lemma 2. For any resolution r and valuation v, v falsifies lontraClause r v.

Lemma 1lvl : forall (r : res) (v : val),
valClause (lontraClause (projl_sig r) v) v = false.

These definitions enable us to state and prove the main lemma:

Lemma 1lcl : forall (r : res) (f : form) (v : val),
let tree := projl_sig r in
subl. _ eqlit (contraClause tree v)
((clauseR tree) ++ (lontraClause tree v)) = true.

Proof. Straightforward induction on 7.
With Lemma lcl at hand, we show

Lemma 1v2 : forall (r : res) (f : form) (v : val),
refutes r f = true ->
valClause (contraClause (projl_sig r) v) v = false.

Proof. Since r refutes f, the root of r is labelled by the empty clause. Let ¢
denote contraClause(r)(v) and let [ denote lontraClause(r)(v). By Lemma lcl,
¢ C l. By Lemma lv1, valClause(l)(v) = false. The claim easily follows.



Now we can show formally what we just sketched at the beginning of this
section:
The proof of Theorem 1 Take any f, r refuting f and a valuation v. Suppose
the value of f under v is true. Let ¢ denote contraClause(r,v). By Lemma [v2,
the value of ¢ under v is false. By Lemma ccl, c is one of the clauses of f, thus
also the value of f under v is false, which contradicts our assumption. Therefore
f is not satisfiable.

2.5 Graft and percolate

There are two operations on the trees which we will use in the proof of the final
theorem. Both are taken from [1].

The percolate function takes a tree r, a clause ¢ and a literal [/ as its argu-
ments. It appends [ to all clauses in the premises r which are equal (as finite sets)
to c. It further “percolates” [ up the tree: it travels towards the root and appends
[ to all clauses labelling nodes on the way. It stops when it either reaches the
root or the node which utilizes [ in the resolution step. The formal definition
follows; the helper function percolate0 returns additionally a boolean value,
set to false if the percolating process is to continue and to true otherwise.

(x (fun x y 2z => M) is Coq’s notation for functional abstraction:
(fun x y z => M) is a function which given arguments x y z returns M *)
Fixpoint percolate0 (r : resol) (a : clause) (1 : 1lit)
{ struct r} : resol * bool :=
match r with
leaf ¢ => if eqC c a then (leaf (l::c), false) else (r, true)
|node resL c rl r2 =>
(fun p1 p2 cr => (node resL (fst cr) (fst pl) (fst p2), (snd cr)))
(percolate0 r1 a 1)
(percolate0 r2 a 1)
(let pl := percolate0 rl a 1 in
let p2 := percolate0 r2 a 1 in
let bl := snd pl in
let b2 := snd p2 in
let eqll := eqlit resL 1 in
let eqlnl := eqlLit resL (motLit 1) in
match (bl, b2) with
(true, true) => (c, true)
| (true, false) => if eqlnl then (c, true)
else ((1::c), false)
| (false, true) => if eqll then (c, true)
else ((1::c), false)
| (false, false) => ((1l::c), false)
end)

end.



Definition percolate (r : resol) (a : clause) (1 : 1lit) : resol :=
fst (percolate0 r a 1).

Definition exPerc := percolate exTree (neg P::nil) (neg Q).

For example, exPerc is the following tree. The —Q attached to the left [~ P)]
clause percolated to the top, while the process of percolating the one attached to
the right [~ P] clause was stopped at the node labelled with (P, ~Q V -Q V —R).

R, [-Q])
/ T~
(P,=~QV R) (@[~

(Pv_‘Q\/_'QV_'R)
PVR ~QV-P P\/ﬂQ\/ﬂR ~QV -P

The main fact about the percolate operation is that it preserves the correct-
ness condition of resolution trees:

Lemma percolateCorrect : forall (r : resol) (a : clause) (1 : lit),
correctR r = true -> correctR (percolate r a 1) = true.

The graft operation takes two trees r,s and attaches s to any leaf of r
labelled with the clause equal to the root clause of r.

Fixpoint graft (r s : resol) { struct r} : resol :=
match r with
leaf ¢ => if eqC (clauseR s) c then s else r
Inode 1 ¢ rl r2 => node 1 ¢ (graft rl s) (graft r2 s)
end.

Grafting preserves the correctness condition as well.

Lemma graftCorrect : forall (r s : resol),
correctR r = true ->
correctR s = true ->
correctR (graft r s) = true.

2.6 The completeness theorem

We are now ready to present the completeness theorem. It will be proved by
measure induction on formulas. The measure of a formula f = [c1,...,¢] is
defined as the number of disjunction symbols in the formula: measure(f) =
Yi=1.. xpred(length(ck)), where length for a given list returns its length and pred
denotes the total predecessor function on natural numbers: pred(0) = 0, pred(n+
1) =n.



Fixpoint measure (f : form) : nat :=
match f with
nil => 0
| x :: xs => pred (length x) + (measure xs)
end.

We call a formula one-literal if all its clauses have at most one literal. Any
formula of measure 0 is one-literal:

Lemma 10 : forall f : form, measure f = 0 -> onell 1lit f = true.

For any formula f, we provide a definition of a predicate stating that either f is
satisfiable or refutable:

Definition fPred (f : form) : Set :=
sum (satisfiable f) ({ r : res | refutes r f = truel}).

We first tackle the base case of the inductive argument:

Lemma 13 : forall f : form, onell 1lit f = true -> fPred f.

Proof. By induction on f (as a list). If f is empty, then it is trivially satisfiable
with any valuation as a witness. For the inductive step, suppose we have the
claim for f. We need to show it for f extended with any clause a. So suppose
[a]@f is one-literal. Then obviously so is f, so fPred(f) holds. We have two
cases to consider:

— f is satisfiable. Let v be the valuation which sets f to true. We know that a
has at most one literal. If a is empty, then the resolution tree consisting of
a single leaf labelled with the empty clause refutes f (recall that the value
of the empty clause is false). Otherwise, it consists of a single literal {. Let
notl denote the negation of [. We have 3 subcases to consider:
e [notl] is one of the clauses of f. Then the resolution tree with two leaves
labelled by [!] and [notl] and the node labelled with the pair (I, []) refutes
f
e [I] is one of the clauses of f. Then [a]@Qf is satisfiable by v as well, as v
must set the value of [I] to true.
o Neither [notl] nor [I] is a clause of f. Then [a]@f is satisfiable by v
extended to set a to true.
— There is a resolution r refuting f. Then it is easy to see that r refutes [a]@f
as well.

Finally, we prove the main theorem.

Theorem 2. Any formula is either satisfiable or refutable.

Theorem t : forall £ : form, fPred f.



Proof. We proceed by measure induction on f using the function measure.
The case where measure(f) = 0 is handled by Lemmas 10 and 13. Otherwise,
measure(f) > 0. This implies that there is a clause ¢ in f with at least two
literals. Thus we can write ¢ as [l1, l2]@Qz for some literals [1, > and clause xo.
Let A denote the formula resulting by removing all occurences of ¢ from f. Let
f1 denote the formula [I1]@A and let f; denote the formula [l2, 9] QA. It is easy
to see that the measures of both f; and f; are smaller than the measure of f.
By the inductive hypothesis, we therefore have several cases to consider.

— f1 is satisfiable. Then there is a valuation v setting f; to true. Thus v must
set [l1] and A to true, so it also sets [I1,12]@Qxo and A to true, which implies
that the value of f under v is true, so f is satisfiable.

— fo is satisfiable. Reasoning in the same way, we can derive satisfiability of f.

— There are resolution trees r1, 7o refuting fi and f3, respectively. Let r,, denote
percolate(rs)([l2]@Qzo)(l1). Therefore, 7, results from 7 by appending l; to
all leaves labelled by [l2]@Qxo and percolating it up. Since 73 is a refutation
tree, this means that the clause at the root of r, is either the empty clause
or the clause [I1]. In the former case, by Lemma percolateCorrect, it is easy
to see that r, refutes f. In the latter, we have two subcases to consider:

e [l1] is not among the premises of 71. In this case, the premises of r; are
a subset of A, so also a subset of f, so r; already refutes f.

e [l;] is among the premises of 1. Let r, denote graft(ry)(rp). Therefore,
rq results by replacing every leaf in 7, labelled with [I1] by r,. Then r,
refutes f. To show this, we need to show that:

* 14 corresponds to f. This means that the premises of r, are a subset
of the clauses of f. But note that the premises of r; are a subset of
AU [l4]. By grafting r, onto ri, the leaves labelled by [l1] disappear
replaced by r,. As the premises of 7, are a subset of AU [l1,12]@x,
the premises of r, are a subset of A U [l1,l2]@Qz and thus also a
subset of f.

* The root of ry is labelled by the empty clause. This follows trivially
by r; refuting fi; and the definition of the grafting function.

* The tree ry is a correct resolution tree. This follows easily by Lemmas
graftCorrect and percolateCorrect.

Let us see how the proof works for the formula f = (P V Q) A (=P) A (=Q).
Obviously, ¢ is not one-literal. We take c = PV Q. Then Iy = P, ls = Q, zo = [],
A= (=P)AN(Q), fi = PA-PA-Q, fa = QA —-P A—-Q. The application of
the inductive hypothesis to f> and f; results in two refutation tree o and r;:

T2 1

(@ 1)
VRN VRN
@] Q] [P] [~P]



Then the tree r, is:

(@ [P])

PN
PVvQ Q]

Since the clause [P] is obviously not empty, we need to perform the graft oper-
ation which results in a tree g, which can easily seen to refute f.

(P[]
pd
(Q,[P]) [=P]
PN
PVvQ Q]

3 Extraction

Now we can reap the benefits of the constructive proof and formalization in a
theorem prover as Underwood did for the tableaux method [9]. Coq provides
a program extraction capability, which makes it possible to extract a program
from our proof. The program, given a representation of a formula f in a CNF
form, returns either a valuation satisfying f or a resolution tree refuting f. The
extracted program is correct by construction — there is no need for testing for
eventual bugs, as the program is guaranteed to compute the refuting resolution
or the satisfying valuation.

We have chosen to extract a program in a functional programming language
Haskell. Coq also offers choices of other programming languages (Scheme, ML).
We now show examples of interaction with our program loaded in a Haskell inter-
preter. The examples correspond to the lemmas and theorems we have proven.

We can check directly the truth of several lemmas in the interpreter. To
make the output more readable, we have added a function which renders lists
in the style used in this paper. We use standard notation for natural numbers,
rendering S(S5(0)) as simply 2. The Main> string in the examples is the standard
prompt of the Haskell interpreter.

Main> premises exTree

[[Pos 1, Pos 3], [Neg 1], [Pos 2], [Pos 1, Neg 2, Neg 3], [Neg 11]

Main> refutes exRes phi

True

Main> contraClause exTree exVal

[Pos 1, Neg 2, Neg 3]

Main> lontraClause exTree exVal

[Neg 3, Neg 2, Pos 1]

Main> exPerc

Node (Pos 3) [Neg 2] (Node (Pos 1) [Neg 2, Pos 3] (Leaf [Pos 1, Pos 3])
(Leaf [Neg 2, Neg 11)) (Node (Pos 2) [Neg 3] (Leaf [Pos 2]) (Node (Pos 1)
[Neg 2, Neg 2, Neg 3] (Leaf [Pos 1, Neg 2, Neg 3]) (Leaf [Neg 2, Neg 11)))
Main>



Finally, let us see the application of the completeness theorem:

Main> £

[[Pos 1, Pos 2], [Neg 1], [Neg 21]

Main> t f

Inr (Node (Pos 1) [1 (Node (Pos 2) [Pos 1] (Leaf [Pos 1, Pos 2]) (Leaf [Neg 2]))
(Leaf [Neg 11))

Main> let Inr x = t f in refutes x f

True

To give the reader a glimpse of the actual Haskell code, we show the Haskell
definition of the function ¢ corresponding to Theorem 2.

t :: Form -> FPred
t f =
induction_ltofl measure
(\x h ->
sumbool_rec
(\_ -> 13 x)
A >
and_rec (\_ _ ->
case 1ml x of
Nil -> false_rec
Cons 1 x0 ->
(case x0 of
Nil -> false_rec __
Cons 12 x1 ->
let delta = removelL eqC (Cons 1 (Cons 12 x1)) x in
sum_rec
(\a -> Inl (satl 1 (Cons 1 (Cons 12 x1)) x a))
(\b0 -> sum_rec
(\a -> Inl (sat2 (Cons 12 x1) (Cons 1 (Cons 12 x1)) x a))
(\b1 —>
Inr (
let d1 = projil_sig bl in
let di1 = percolate di (Cons 12 x1) 1 in
sumbool_rec
(\_ -> d11)
- >
sumbool_rec
(\_ -> graft b0 di1)
(\_ -> b0)
(btf (elemL eqC (Cons 1 Nil) (premises b0))))
(eq_rec (clauseR di) (pl dl (Coms 12 x1) 1) Nil)))
(h (Cons (Cons 12 x1) delta) __))
(h (Cons (Cons 1 Nil) delta) __))))
(case measure x of
0 -> Left
S n -> Right))



4 Conclusion

While proofreading this paper, we have discovered several times mistakes in our
informal presentation thanks to the included Coq and Haskell code. This is an
example of successful paper verification using a proof assistant.

Richard Eaton and the second author have also done this proof in Nuprl [6]
and are writing a comparison of the systems in their ability to support read-
able formalized mathematics. This forthcoming article will discuss several subtle
points about extraction and how to guide it to produce code as efficient as what
can be written directly. At this point, we only mention that one of the most im-
portant differences between Coq and Nuprl, namely the treatment of equality,
played no role in our developments. As the proofs use only very basic proper-
ties of equality, the extensionality of Nuprl and intensionality of Coq did not
influence our development.

References

1. Gallier, J.H.: The completeness of propositional resolution: A simple and construc-
tive proof. Logical Methods in Computer Science 2(5) (2006) 1-7

2. Chang, C.C., Keisler, H.J.: Model Theory. Volume 73 of Studies in Logic and the
Foundations of Mathematics. North-Holland, Netherlands (1973)

3. Robinson, J.: A machine oriented logic based on the resolution principle. Journal
of the Association of Computing Machinery 12 (1965) 23-41

4. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, New Jersey (1994)

5. Gallier, J.H.: Logic for Computer Science, Foundations of Automatic Theorem
Proving. Harper and Row, NY (1986)

6. Constable, R.L., Allen, S.F.,; Bromley, H.M., Cleaveland, W.R., Cremer, J.F.
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, NJ (1986)

7. Constable, R.L., Howe, D.J.: Implementing metamathematics as an approach to
automatic theorem proving. In Banerji, R.B., ed.: Formal Techniques in Artificial
Intelligence: A Source Book. Elsevier Science Publishers (North-Holland) (1990)
45-76

8. Constable, R., Moczydlowski, W.: Extracting Programs from Constructive HOL
Proofs via IZF Set-Theoretic Semantics. In: Proceedings of 3rd International Joint
Conference on Automated Reasoning (IJCAR 2006). Volume 4130 of Lecture Notes
in Computer Science., Springer (2006) 162-176

9. Underwood, J.L.: The tableau algorithm for intuitionistic propositional calculus as
a constructive completeness proof. In: Proceedings of the Workshop on Theorem
Proving with Analytic Tableaux, Marseille, France. (1993) 245-248 Available as
Technical Report MPI-1-93-213 Max-Planck-Institut fiir Informatik, Saarbriicken,
Germany.



