Normalization of IZF with Replacement

Wojciech Moczydtowski

Department of Computer Science, Cornell University, Ithaca, NY, 14853, USA,
wojtek@cs.cornell.edu

Abstract. IZF is a well investigated impredicative constructive version
of Zermelo-Fraenkel set theory. Using set terms, we axiomatize IZF with
Replacement, which we call IZF g, along with its intensional counterpart
IZF ;. We define a typed lambda calculus AZ corresponding to proofs
in IZF,, according to the Curry-Howard isomorphism principle. Using
realizability for IZF , we show weak normalization of AZ by employing
a reduction-preserving erasure map from lambda terms to realizers. We
use normalization to prove disjunction, numerical existence, set existence
and term existence properties. An inner extensional model is used to show
the properties for full, extensional IZF .

1 Introduction

Four salient properties of constructive set theories are:

— Numerical Existence Property (NEP): From a proof of a statement “there
exists a natural number x such that ...” a witness n € N can be extracted.

— Disjunction Property (DP): If a disjunction is provable, then one of the
disjuncts is provable.

— Set Existence Property (SEP): If 3z. ¢(x) is provable, then there is a formula
¥(x) such that 3'z. ¢(x) A (x) is provable, where both ¢ and v are term-free.

— Term Existence Property (TEP): If 3x. ¢(x) is provable, then ¢(t) is provable
for some term ¢.

How to prove these properties for a given theory? There are a variety of meth-
ods applicable to constructive theories. Cut-elimination, proof normalization,
realizability, Kripke models. ... Normalization proofs, based on Curry-Howard
isomorphism, have the advantage of providing an explicit method of witness and
program extraction from the proofs. They also provide information about the
behaviour of the proof system.

We are interested in intuitionistic set theory IZF. It is essentially what re-
mains of ZF set theory after excluded middle is carefully taken away. An impor-
tant decision to make on the way is whether to use Replacement or Collection
axiom schema. We will call the version with Collection IZF ¢ and the version with
Replacement IZF . In the literature, IZF usually denotes IZF¢. Both theories
extended with excluded middle are equivalent to ZF. They are not equivalent
([1])- While the proof-theoretic power of IZF¢ is equivalent to ZF, the exact

power of IZFg is unknown. Arguably IZF¢ is less constructive, as Collection,
similarly to Choice, asserts the existence of a set without defining it.

Both versions have been investigated thoroughly. Results up to 1985 are
presented in [2] and in [3], later research was concentrated on weaker subsystems,
in particular on predicative constructive set theory CZF. [4] describes the set-
theoretic apparatus available in CZF and provides further references.

We axiomatize IZF i, along with its intensional version IZF , using set terms.
We define typed lambda calculus AZ corresponding to proofs in IZF ;. We also
define realizability for IZF, in the spirit of [5]. We show weak normalization
of AZ by employing a reduction-preserving erasure map from lambda terms to
realizers. Strong normalization of A\Z does not hold; moreover, we show that in
non-well-founded IZF even weak normalization fails.

With normalization in hand, the properties NEP, DP, SEP and TEP follow
easily. To show these properties for full, extensional IZF r, we define an inner
model T of IZF i, consisting of what we call transitively L-stable sets. We show
that a formula is true in IZF g iff its relativization to T is true in IZF ;. Therefore
IZF R is interpretable in IZF . This allows us to use properties proven for IZF .
More detailed proofs of our results can be found in [6].

The importance of these properties in the context of computer science stems
from the fact that they make it possible to extract programs from constructive
proofs. For example, suppose IZF - ¥n € NIm € N. ¢(n, m). From this proof
a program can be extracted — take a natural number n, construct a proof IZF p
F 7 € N. Combine the proofs to get IZFz - Im € N. ¢(n, m) and apply NEP
to get a number m such that IZFp - ¢(7,m). We present in details program
extraction from IZFp proofs in [7].

There are many provers with the program extraction capability. However,
they are usually based on a variant of type theory, which is a foundational basis
very different from set theory. This makes the process of formalizing program
specification more difficult, as an unfamiliar new language and logic have to
be learned from scratch. [8] strongly argues against using type theory for the
specification purposes, instead promoting standard set theory.

1ZF r provides therefore the best of both worlds. It is a set theory, with
familiar language and axioms. At the same time, programs can be extracted
from proofs. Our A\Z calculus and the normalization theorem make the task of
constructing the prover based on IZF i not very difficult.

This paper is organized as follows. In section 2 we define IZF along with
its intensional version IZF ;. In section 3 we define a lambda calculus AZ corre-
sponding to IZF}; proofs. Realizability for IZF; is defined in section 4 and used
to prove normalization of A\Z in section 5. We prove the properties in section
6, and show how to derive them for IZFy in section 7. Comparison with other
results can be found in section 8.

2 IZFgr

Intuitionistic set theory IZFp is a first-order theory. We postpone the detailed
definition of the logic to Section 3.2, stating at this moment only that equality
is not a primitive in the logic. IZF R is equivalent to ZF, if extended with ex-
cluded middle. It’s a definitional extension of term-free versions presented in [9],
[2] and [1] among others. The signature consists of one binary relational symbol
€ and function symbols used in the axioms below. We will generally use letters
a,b,c,d, e, f to denote logic variables and ¢, u, s to denote logic terms. The re-
lational symbol ¢ = u is an abbreviation for Vz. z € t « 2z € v and ¢ < ¥
abbreviates (¢ — ¥) A (¥ — ¢). Function symbols 0 and S(¢) are abbreviations
for {x € w | L} and (U{¢t, {t,t}}. Bounded quantifiers and the quantifier 3la
(there exists exactly one a) are also abbreviations defined in the standard way.
The axioms are as follows:

— (PAIR) Va,b¥ec. c € {a,b} > c=aVe=0D

— (INF) Ve.c€w = c=0VIbew. c=5(b)

(SEP) VfVaVe. ¢ € So(aT) (a,f) <= ccanocf)

(UNION) VaVc. ceJa—Tbeca.cebd

(POWER) Vavc. c € P(a) < Vb.bec—bea

(REPL, , 7)) VfVaVec € Ry, , 7)(a,) < (Vo € aly.d(z,y,) A ((Fz €

a. o(r,c.) _ } _
— (IND,y,) . (va(¥b € 0605, 7)) — 6(a, 7)) — ¥a.(a. T
— Wyaz) V- Vab a=b = 6(a,F) = 6(b,)

Axioms SEP,4, REPL;, IND, and Ly are axiom schemas, and so are the
corresponding function symbols — there is one for each formula ¢. Formally, we
define formulas and terms by mutual induction:

pu=tet|t=t].. ti=al {6t} | Syuq (D | Rywy gyt |-

IZF, will denote IZFr without the Leibniz axiom schema Ly. IZF is an
intensional version of IZFr — even though extensional equality is used in the
axioms, it does not behave as the “real” equality.

Axioms (PAIR), (INF), (SEP,), (UNION), (POWER) and (REPL,) all
assert the existence of certain classes and have the same form: Va.Ve. ¢ €
ta(@) < ¢a(a,c), where t4 is a function symbol and ¢4 a corresponding for-
mula for the axiom A. For example, for (POWER), tpowrr is P and ¢power
is Vb. b € ¢ — b € a. We reserve the notation t4 and ¢4 to denote the term and
the corresponding formula for the axiom A.

3 The \Z calculus

We present a lambda calculus A\Z for IZF, based on the Curry-Howard isomor-
phism principle. The purely logical part is essentially AP1 from [10].

The lambda terms in AZ will be denoted by letters M, N, O, P. Letters x,y, z
will be used for lambda variables. There are two kinds of lambda abstractions,
one used for proofs of implications, the other for proofs of universal quantifi-
cation. Since variables in the latter abstractions correspond very closely to the
logic variables, we also use letters a, b, ¢ for them. Letters ¢, s, u are reserved for
IZF i terms. The types in the system are IZF formulas.

M=z |MN|Xa. M| x:¢. M |inl(M) |inr(M) | fst(M) | snd(M) | [¢, M] | M t
(M, N) | case(M,x.N,2.0) | magic(M) | let [a,2: ¢] = M in N | ind ., 5 (M, 1)
pairProp(t, w1, uz, M) | pairRep(t, u1,ug, M) | unionProp(t, u, M)
unionRep(t, u, M) | SePy(, 7)Prop(t,u,ﬂ, M) | SeP 4, 7)Rep(t,u,ﬂ7 M)
powerProp(t, u, M) | powerRep(¢,u, M) | infProp(¢, M) | infRep(¢, M)
reply, bj)Prop(t, u,u, M) | reply . p 7)Rep(t, u,u, M)

The ind term corresponds to the (IND) axiom, and Prop and Rep terms cor-
respond to the respective axioms. To avoid listing all of them every time, we
adopt a convention of using axRep and axProp terms to tacitly mean all Rep
and Prop terms, for ax being one of pair, union, sep, power, inf and repl. With
this convention in mind, we can summarize the definition of the Prop and Rep

terms as:
axProp(t,u, M) | axRep(t,u, M),

where the number of terms in the sequence & depends on the particular axiom.
The free variables of a lambda term are defined as usual, taking into account
that variables in A, case and let terms bind respective terms. The relation of
a-equivalence is defined taking this information into account. We consider a-
equivalent terms equal. We denote all free variables of a term M by FV (M)
and the free logical variables of a term by FV,(M). Free (logical) variables of a
context I" are denoted by FV(I") (FVL(I')) and defined in a natural way.

3.1 Reduction rules

The deterministic reduction relation — arises from the following reduction rules
and evaluation contexts:

Az :¢. M)N — M|z := N] (Aa. M)t — MJa :=t] fst((M,N)) — M
case(inl(M), z.N,z.0) — N[z := M) case(inr(M), z.N, z.0) — Olz := M]
snd({(M,N)) — N let [a, 2 : ¢] = [t,M] in N — NJa :=t][x := M]
axProp(t, @, axRep(t,u, M)) - M
indy(, 5 (M, %) = Ae. M ¢ (Ab.Aw 2 b € c. indy, 5(M, 1) b)

[o] ::= fst([o]) | snd([o]) | case([c],x.M,x.N) | axProp(t, @, [0])
let [a,y : ¢] = [o] in N | [o] M | magic([c])

In the reduction rules for ind terms, the variable x is new. In other words, the
reduction relation arises by lazily evaluating the rules above.

Definition 1. We write M | if the reduction sequence starting from M ter-
minates. We write M | v if we want to state that v is the term at which this
reduction sequence terminates. We write M —* M’ if M reduces to M’ in some
number of steps.

We distinguish certain AZ terms as values. The values are generated by the
following abstract grammar, where M is an arbitrary term. Clearly, there are no
reductions possible from values.

Vi=da. M| Xx:¢. M | inr(M) | inl(M) | [¢, M] | (M, N) | axRep(t,u, M)

3.2 Types

The type system for A\Z is constructed according to the principle of the Curry-
Howard isomorphism for IZF . Types are IZF g formulas. Contexts I" are finite
sets of pairs (z1,¢;). The range of a context I is the corresponding first-order
logic context that contains only formulas and is denoted by rg(I"). The proof
rules follow:

I'tM:¢p—¢ I'EN:¢ Nrx:pFM:o
Nz:¢okFax:¢ I'FM N9 I'FXx:o.M:¢p—Y
I'-M:¢ I'EN:Yp I'EM:pNYy T'FM:oAY T'FM: L
I'(M,N): oAy T'Fist(M):¢ I'bFsnd(M):¢ I'F magic(M): ¢
I'-M:¢ I'EM:y I'EM:¢
Trm(M):¢ve Trim():ove Troaa Mivag tFFVed)
I'-M:oVvVy Lx:oFN:9 x:ypEFO:9 I'M :Va. ¢
I' - case(M,x.N,z.0) : 9 I'EMt: ¢la:=t

I'-M:3a.¢ LNx:¢FN:v
I'kFlet [a,z:¢]:=M in N :

I't M : ¢la =t
I'[t,M]:3a. ¢

a‘¢FVL(Fa¢)

The rules above correspond to the first-order logic. Formally, we define the first-
order logic we use by erasing lambda-terms from the typing judgments above
and replacing every context by its range. The rest of the rules corresponds to
IZF; axioms:

I'tM:¢a(t,u) I'-M:teta(n)
I+ axRep(t,u, M) : t € ta(u) I' - axProp(t,u, M) : pa(t,7)

TFM:Ve (Wb.bec— ob,T) — d(c,D)
I'Findgz) (M, 1) : Va. ¢(a,t)

Lemma 1 (Curry-Howard isomorphism). IfI'F O : ¢ then IZF,+rg(I") -
¢. If IZF o+ & ¢, then there exists a term M such that {(z4,9) | ¢ € I'} -
M : .

Proof. Straightforward. Use
AaAic.(Ax : ¢ € ta(a). axProp(c,a, x), A\x : pa(c,a). axRep(c, T, x))

and AfAz : (Va.(Vb. b € a — ¢(b, f)) — ¢(a, [)). indypz (2, f) to witness 1ZF
axioms.

Lemma 2 (Canonical forms). Suppose M is a value and = M : 9. Then:

— If9=¢V, then (M =inl(N) and b N : ¢) or (M =inr(N) and - N :).
— IfY=3a. ¢ then M =[t,N] and - N : ¢la :=t].
— Ifv=teta(u) then M = axRep(t,u, N) and - N : p4(t,u).

Lemma 3 (Progress). If = M : ¢, then either M is a value or there is a N
such that M — N.

Proof. By induction on - M : ¢.
Lemma 4 (Subject reduction). If ' M : ¢ and M — N, then ' = N : ¢.

Proof. By induction on the definition of M — N, using appropriate substitution
lemmas on the way.

Corollary 1. If W M : ¢ and M | v, thent v : ¢ and v is a value.

4 Realizability for IZF

In this section we work in ZF.

We use terms of type-free version of lambda calculus for realizers. We call
this calculus AZ. The terms of \Z are generated by the following grammar and
are denoted by A. The set of AZ values is denoted by A\Z,.

M=z |MN | e. M |inl(M) | inr(M) | magic(M) | fst(M) | snd(M) [(M, N)
case(M,z.N,z.0) | axRep(M) | axProp(M) | ind(M) | app(M, N)

The term app(M, N) denotes call-by-value application with the evaluation con-
text app(M, [o]) and the reduction rule app(M,v) — M v. Essentially, \Z results
from AZ by erasing of all first-order information. This can be made precise by
the definition of the erasure map M from terms of A\Z to AZ:

T==z MN=MN Aa.M =M AT M =X x. M inl(M) = inl(M)
M, N

EM =3 (M,N)=(,N) (M) =inr(M) Ist(M) = fst(M)

snd(M) = snd (M) magic(M) = magic(M) let[a,y] = M in N = app(\y. N, M)

axRep(t,u, M) = axRep(M) axProp(t,u, M) = axProp(M)

indg (M, t,u) = ind(M)
We call a \Z reduction atomic if it is of the form (Aa. M) t — M|a := t].
The reduction rules and values in AZ are induced in an obvious way from \Z,
so that if M — M’ is a nonatomic reduction in A\Z, then M — M’, if M — M’

is an atomic reduction in AZ, then M = M’ and if M is a value in AZ not of the
form Aa. N, then M is a value in AZ. In particular ind(M) — M (Az. ind(M)).

Lemma 5. If M normalizes, so does M.

Proof. Any infinite chain of reductions starting from M must contain an infinite
number of nonatomic reductions, which map to reductions in M in a natural
way.

We now move to the definition of the language for the realizability relation.

Definition 2. A set A is a A\-name iff A is a set of pairs (v,B) such that
v € \Z, and B is a A-name.

In other words, A-names are sets hereditarily labelled by AZ values.
Definition 3. The class of A\-names is denoted by V.

Formally, V* is generated by the transfinite inductive definition on ordinals:

vi=P0Z,xvy) v= | W
B<a a€ORD

The A-rank of a A-name A is the smallest « such that A € V).
Definition 4. For any A € V*, At denotes {(M,B) | M | vA (v, B) € A}.

Definition 5. A (class-sized) first-order language L arises by enriching the
IZF signature with constants for all \-names.

From now on until the end of this section, symbols M, N, O, P range exclu-
sively over AZ-terms, letters a, b, c vary over logical variables in the language,
letters A, B, C vary over A-names and letter p varies over finite partial functions
from logic variables in L to V*. We call such functions environments.

Definition 6. For any formula ¢ of L, any term t of L and p defined on all
free variables of ¢ and t, we define by metalevel mutual induction a realizability
relation M |-, ¢ in an environment p and a meaning of a term [t], in an
environment p:

1. [al, = p(a)
2. [Al, =4
3. [w], =w', where W' is defined by the means of inductive definition: w' is the
smallest set such that:

— (infRep(N), A) € ' if N | inl(O), OIF A =0 and A € V.

— If (M, B) € W't, then (infRep(N), A) € o' if N | inr(O), O | (M, P),

PIFA=S(B) and A€ V2.

It is easy to see that any element of W' is in V) for some finite o and so
that W' € V2 4.
[ta(@)], = {(axRep(N), B) € A\Z, x V,Y)‘ | N, ¢a(B,[u],)}
MF,1=1
MiF,tes=M]|vA (v, [t],) € [s],

o wus

7. M”‘p(b/\L/)EMl<M1,MQ>/\M1 ”_p ¢AM2 ”_p¢
8 Mk, ¢V ip= (M |inl(My) A Mk, ¢)V (M | inr(My) A M Ik,)
9. Mk, ¢ — = (M| Ax. My) AYN. (N Ik, ¢) — (My[z := N]IF, ¢)
10. MIF,Va. g =VA € V. M Ik, dla:= A
11. Mk, 3a. g =3A €V . M Ik, dla = A

Note that M I+, A € B iff (M,A) € B*.

The definition of the ordinal ~ in item 4 depends on t4(%). This ordinal is
close to the rank of the set denoted by ¢4 (%) and is chosen so that Lemma 8 can
be proven. Let @ = rank([u],). Case ta(u) of:

— {uy,u} — v = maz(aq, az)

— Plu) —y=a+1.

-Ju—rv=a

= Sy p(w) —v=o.

— Ry, 7 (u,). Tedious. Use Collection in the metatheory to get the appro-
priate ordinal. Details can be found in [6].

Lemma 6. The definition of realizability is well-founded.

Proof. Use the measure function m which takes a clause in the definition and
returns a triple of integers, with lexicographical order in N3.

- m(M I, ¢) = (“number of constants w in ¢”, “number of function symbols
in ¢”, “structural complexity of ¢”)

— m([t],) = (“number of constants w in ¢”, “number of function symbols in ¢”,
0)

Since the definition is well-founded, (metalevel) inductive proofs on the def-
inition of realizability are justified.

Lemma 7. If A € V), then there is 3 < a such that for all B, if M I, B €A,
then B € VBA. Also, if M I-, B = A, then B € V.

The following lemma states the crucial property of the realizability relation.
Lemma 8. (M, A) € [ta(w)], iff M = axRep(N) and N Ik, ¢p4(A4,[a],).

Proof. For all terms apart from w, the left-to-right direction is immediate. For
the right-to-left direction, suppose N I, ¢4(A,[u],) and M = axRep(N). To
show that (M, A) € [ta(w)],, we need to show that A € Vj‘. The proof proceeds

by case analysis on t4(u). Let @ = rank([u],). Case ta (@) of:

— {u1,us}. Suppose that N I, A = [ui], V A = [us],. Then either N |
1nl(N1) A N1 ”_p A= [[ul]]p or N l iIlI‘(Nl) A N1 H_p A= [[UQ]]p. By Lemma
7, in the former case A € V), in the latter A € V},s0 A € Vém(ahaz).

— P(u). Suppose that N I, Ve. ¢ € A — c € [u],. Then VC. NI, C € A —
C € [u],, so ¥C. N | Az. Ny and YO. (O I C € A) = Ny[z := O] I, C €
[u],. Take any (v, B) € A. Then v I-, B € A. So Ni[z :=v] -, B € [u],.
Thus any such Bisin V), s0 A€ V.

— Uu. Suppose N I, Jc. c € [u], A A € c. Tt is easy to see that A € V).
— Sy(a7)(u, 1) Suppose N Ik, A€ [u], A.... It follows that A € V3.
— Ry, 7 (u,). Tedious. For details, see [6].

For w, for the left-to-right direction proceed by induction on the definition of w’.
The right-to-left direction is easy, using Lemma 7.

The following sequence of lemmas lays ground for the normalization theorem.
They are proven either by induction on the definition of terms and formulas or
by induction on the definition of realizability.

Lemma 9. [t[a := s]], = [t]pja:=[s],] and M I, ¢la := s] iff M IFja.—[4],] ¢-
Lemma 10. [ta := s]], = [tla := [s],]], and M I+, ¢[a = s] iff M |-, ¢[a ==
[s],]-

Lemma 11. If (M |-, ¢) then M |.

Lemma 12. If M —* M’ then M’ |, ¢ iff M I+, ¢.

Lemma 13. If M I, ¢ — ¢ and N |-, ¢, then M N I-, 4.

5 Normalization

In this section, environments p map lambda variables to AZ terms and logic
variables to sets in V. Any such environment can be used as a realizability
environment by ignoring the mapping of lambda variables.

Definition 7. For a sequent I' F ¢, p = I' b ¢ means that p : FV(I',¢) —
(VAUA), for alla € FVL(I,¢), p(a) € V> and for all (x;, ¢;) € I, p(z;) I+, ¢;.

Note that if p = I' F ¢, then for any term ¢ in I', ¢, [t], is defined and so is
the realizability relation M I, ¢.

Definition 8. For a sequent I' - ¢, if p = I' F ¢ and M € A, then M|p| is
Mlzy = p(x1), ..., Tn = p(ay)].

Theorem 1. If I' = M : 9 then for all p = I' -9, M|p] IF, 9.

Proof. For any \Z term M, M’ in the proof denotes M|p] and TH abbreviates
inductive hypothesis. We proceed by metalevel induction on I' - M : 9. We
show the interesting cases. Case I' = M : 9 of:

- TFM:¢at,u)
It axRep(t,u, M) : t € ta(u)
ByIH, M’ Ik, ¢a(t,@). By Lemma 10 this is equivalent to M’ I, ¢4 ([t],, [u],)-
By Lemma 8 (axRep(M’), [t],) € [ta(@)],, so axRep(M’) Ik, t € ta(a), so
also axRep(t, @, M)[p] IF, t € ta(T).

10

I+ M:tety(@)
I' - axProp(t,w, M) : ¢pa(t,)
By IH, M’ I, t € ts(w). This means that M’ | v and (v, [t],) € [ta(@)].
By Lemma 8, v = axRep(N) and N Ik, ¢4 ([t],, [u],)- By Lemma 10, N I-,

¢4 (t,w). Moreover, axProp(t,w, M) = axProp(M’) —* axProp(axRep(N)) —
N. Lemma 12 gives us the claim.

I'=M:¢
I'+Xa. M :Va. ¢

By IH, for all p = ' = M : ¢, M[p] IF ¢. We need to show that for all
plE Tt Xa. M :Va. ¢, \a. M = M|p] I+, Va. ¢(a). Take any such p. We
need to show that VA. M|p] IF, ¢a := A]. Take any A. By Lemma 9, it
suffices to show that M|p] I ,.—4) ¢. However, pla := A] = I'F M : ¢, so
we get the claim by TH.

' M:Va ¢
I'tMt: ¢la:=t

By IH, M’ |-, Ya. ¢, so VA.M' Ik, ¢[a := A]. in particular M’ IF, ¢[a :=

[t],], so by Lemma 10 M’ = (M t)[p] IF, ¢[a :=t].

' M :Ve. (Vb. b€ c— ¢(b,t)) — d(c,t)
I'Findgyz) (M, t) : Ya. ¢(a,t)

We need to show that ind(M’) Ik, Va. ¢(a,), that is, that for all A, ind(M") I,
®(A,t). We proceed by induction on A-rank of A. Since ind(M') — M’ (Az. ind(M")),
by Lemma 12 it suffices to show that M’ (Az. ind(M’)) I, ¢(A,t). By

IH, we have M’ |-, Ve, (Vb. b € ¢ — ¢(b,t)) — ¢(c,t), so for all C,
Mk, (Vb. b e C — ¢(b,t)) — ¢(C,t). If we take C = A, then by Lemma

13 it suffices to show that Az. ind(M’) I, Vb. b € A — ¢(b,t). Take any

B. Tt suffices to show that Az. ind(M’) I, B € A — ¢(B,t). Take any

NIk, B € A. By Lemma 7, the A-rank of B is smaller than the A-rank of A

and so by inner inductive hypothesis ind(M’) I, ¢(B,t). Since z is new in

the reduction rule, ind(M’) = ind(M’)[z := N] and we get the claim.

Corollary 2 (Normalization). If - M : ¢, then M |.

Proof. By Theorem 1, for any p = (F M : ¢), we have M|p] I, ¢. Take any such
p, for example mapping all free logic variables of M and ¢ to (. By Lemma 11,
M]p] |, and since M = M|p], M |. Lemma 5 gives us the claim.

As the reduction system is deterministic, the distinction between strong and
weak normalization does not exist. If the reduction system is extended to al-
low reductions anywhere inside of the term, the Corollary 2 shows only weak
normalization. Strong normalization then, surprisingly, does not hold. One rea-
son, trivial, are ind terms. However, even without them, the system would not

11

strongly normalize, as the following counterexample, invented by Crabbé and
adapted to our framework shows:

Theorem 2 (Crabbé’s counterexample). There is o formula ¢ and term M
such that = M : ¢ and M does not strongly normalize.

Proof. Let t = {x € 0| z € v — L}. Consider the terms:
N = My : ¢ € t.snd(sepProp(¢,0,y)) y M =Xz :t€0.N (sepRep(t,0, (x, N)))

Then it is easy to seethat - N:t €t — L, M :t € 0 — L and that M does
not strongly normalize.

Moreover, a slight (from a semantic point of view) modification to IZF,
namely making it non-well-founded, results in a system which is not even weakly
normalizing. A very small fragment is sufficient for this effect to arise. Let T" be
an intuitionistic set theory consisting of 2 axioms:

—(C)Va.aec—a=c
-~ D)Va.aed—ac€cha€a—aca.

The constant ¢ denotes a non-well-founded set. The existence of d can be
derived from separation axiom: d = {a € ¢ | a € a — a € a}. The lambda
calculus corresponding to 7' is defined just as for IZF ;.

Theorem 3. There is a formula ¢ and term M such that = M : ¢ and M
does not weakly normalize.

Proof. 1t is relatively easy to find a term N such that - N : d € c. Take
¢=ded— ded. The term M below proves the claim.

O =Xz : d € d. snd(dRep(d, ¢, x)) x M = O (dProp(d, ¢, (N, 0))).

We believe all these results could be formalized in IZF - (Collection seems
to be necessary for the definition of the realizability set corresponding to the
Replacement term in Section 4). Powell has shown in [11] that the notion of
rank can be defined meaningfully in intuitionistic set theories, so it should be
possible to carry out the developments in Section 4 with the notion of A-rank
which makes sense in IZF . We haven’t carried out the detailed check, though.

6 Applications

The normalization theorem provides immediately several results.

Corollary 3 (Disjunction Property). If IZF - ¢ V 9, then IZF & ¢ or
IZFpF .

12

Proof. Suppose IZF ;= ¢VV1. By Curry-Howard isomorphism, there is a AZ term
M such that = M : ¢ V. By Corollary 1, M | v and v : ¢ V 1. By Canonical
Forms, either v = inl(INV) and - N : ¢ or v = inr(N) and - N : 9. By applying
the other direction of Curry-Howard isomorphism we get the claim.

Corollary 4 (Term Existence Property). If IZF - Jx. ¢(x), then there is
a term t such that IZF - ¢(t).

Proof. By Curry-Howard isomorphism, there is a AZ-term M such that - M :
Jz. ¢. By normalizing M and applying Canonical Forms, we get [t, N] such that
F N : ¢(t). and thus by Curry-Howard isomorphism IZF ;& ¢(t).

Corollary 5 (Set Existence Property). If IZF F 3x. ¢(x) and ¢(x) is term-
free, then there is o term-free formula 1(x) such that IZFpF 3z, ¢(x) A y(z).

Proof. Take t from Term Existence Property. It is not difficult to see that there
is a term-free formula v (x), defining ¢, so that IZF ;- (3'z. ¢ (x)) A ¢(t). Then
IZF - 'z, ¢(x) A () can be easily derived.

To show NEP, we first define an extraction function F' which takes a proof
F M :t € w and returns a natural number n. F' works as follows:

It normalizes M to natRep(N). By Canonical Forms, - N : t = 0V 3y €
w. t = S(y). F then normalizes N to either inl(O) or inr(O). In the former
case, I returns 0. In the latter, H O : Jy.y € w At = S(y). Normalizing O it
gets [t1, P], where - P : ¢ € w At = S(t1). Normalizing P it gets @ such that
FQ:t1 €w. Then F returns F(FQ : ¢ €w) + 1.

To show that F' terminates for all its arguments, consider the sequence of
terms ¢,%y,%2, ... obtained throughout the life of F'. We have IZF ;- t = S(t1),
IZF ;- t1 = S(t2) and so on. Thus, the length of the sequence is at most the
rank of the set denoted by ¢, so F' must terminate after at most rank([t]) steps.

Corollary 6 (Numerical existence property). If IZF ;- 3z € w. ¢(z), then
there is a natural number n and term t such that IZF - ¢(t) Nt =T

Proof. As before, use Curry-Howard isomorphism to get a value [t, M] such that
Ft,M]:3z. 2 € wA@(x). Thus M -t € wAo(t), so M | (My, M) and
F M :t€w. Taken = F(F M; : t € w). It’s easy to see that patching together
in an appropriate way proofs obtained throughout the execution of F, a proof
of t = m for some natural number n can be produced.

This version of NEP differs from the one usually found in the literature,
where in the end ¢(7) is derived. However, IZF}; does not have the Leibniz
axiom for the final step. We conjecture that it is the only version which holds in
non-extensional set theories.

13

7 Extensional I1ZF g

We will show that we can extend our results to full IZF z. We work in IZF .
Lemma 14. Equality is an equivalence relation.
Definition 9. A set C is L-stable, if A € C and A = B implies B € C.

Definition 10. A set C is transitively L-stable (TLS(C) holds) if it is L-stable
and every element of C' is transitively L-stable.

This definition is formalized in a standard way, using transitive closure, avail-
able in IZF , as shown e.g. in [4]. We denote the class of transitively L-stable
sets by 7. The statement V' = T means that VA. TLS(A). Class T in IZF
plays a similar role to the class of well-founded sets in ZF without Foundation.
By €-induction we can prove:

Lemma 15. IZFr-V =T.

The restriction of a formula ¢ to T', denoted by ¢7, is defined as usual, taking
into account the following translation of terms:

al' =a {t,u}? = {7 W7} w'=w (U T = UtT (Pt)T = Pt")NT

(S¢(a’?) (u7ﬂ))T = S¢T(a,7) (UT’U_T) (R¢(a,b,7) (t,ﬂ))T = RbeT/\qu(a,b,f) (tTaU_T)
The notation T' = ¢ means that o7 holds. It is not very difficult to show:
Theorem 4. T =I17Fg.

Lemma 16. IZFgrt ¢ iff IZF+ ¢7.
Corollary 7. IZFg satisfies DP and NEP.

Proof. For DP, suppose IZF gt ¢ V . By Lemma 16, IZF,+ ¢7 v . By DP
for IZF, either IZF 4+ ¢ or IZF ;- ¢7. Using Lemma 16 again we get either
1ZF gk ¢ or IZF gt 4.

For NEP, suppose IZFr- Jz. © € w A ¢(x). By Lemma 16, IZF ;F Jz. = €
TAz €wr. ¢T(z), 50 IZF g+ 3z € wT. z € T A¢T (). Since w? = w, using NEP
for IZF;, we get a natural number n such that IZF 4+ Jz. ¢7(z) Az = m. By
Lemma 16 and 7 = 7, we get IZF g+ 3. ¢(z) A = n. By the Leibniz axiom,
IZF - 6(T).

We cannot establish TEP and SEP as easily, since it is not the case that
tT =t for all terms ¢. However, a simple modification to the axiomatization
of IZF i yields these results too. It suffices to guarantee that whenever a set is
defined, it must be in 7. To do this, we modify three axioms and add one new,
axiomatizing transitive closure. Let PT'C(a, c) be a formula that says: a C ¢ and
c is transitive. The axioms are:

14

(SEP’qb(a,?)) VfVave. c € S b0 (a,f) = ceandl(cf)
(POWER’) VaVe.c € P(a) < c€ TAVb.bEc—bEa _
(REPL’ (., 7)) VfVaVec € Ry, 5)(a, f) < (Vo € adly € T.0% (z,y, f)) A

(Fz € a. " (z,¢, [))
(TC) Va,c. ce TC(a) < (c€ aVId e TC(a). c € d) AVd. PTC(a,d) — c € d.

In the modified axioms, the definition of 7" is written using T'C' and rela-
tivization of formulas to T this time leaves terms intact, we set ¢t = ¢ for all
terms ¢.

It is not difficult to see that this axiomatization is equivalent to the old one
and is still a definitional extension of term-free versions of [9], [2] and [1].We can
therefore adopt it as the official axiomatization of IZFg. All the developments
in sections 4-8 can be done for the new axiomatization in the similar way. In the
end we get:

Corollary 8. IZFy satisfies DP, NEP, TEP and SEP.

A different technique to tackle the problem of the Leibniz axiom, used by
Friedman in [12], is to define new membership (€*) and equality (~) relations in
an intensional universe from scratch, so that (V, €*, ~) interprets his intuition-
istic set theory along with the Leibniz axiom. Our T, on the other hand, utilizes
existing €, = relations. We plan to present an alternative normalization proof,
where the method to tackle the Leibniz axiom is closer to Friedman’s ideas, in
the forthcoming [13].

8 Related work

In [9], DP, NEP, SEP are proven for IZFr without terms. TEP is proven for
comprehension terms, the full list of which is not recursive. It is easy to see
that IZFp is a definitional extension of Myhill’s version. Qur results therefore
improve on [9], by providing an explicit recursive list of terms corresponding to
1ZF r axioms to witness TEP.

In [14] strong normalization of a constructive set theory without induction
and replacement axioms is shown using Girard’s method. As both normalization
and theory are defined in a nonstandard way, it is not clear if the results could
entail any of DP, NEP, SEP and TEP for the theory.

[15] defines realizability using lambda calculus for classical set theory conser-
vative over ZF. The types for the calculus are defined. However, it seems that the
types correspond more to the truth in the realizability model than to provable
statements in the theory. Moreover, the calculus doesn’t even weakly normalize.

In [16], a set theory without the induction and replacement axioms is inter-
preted in the strongly normalizing lambda calculus with types based on Fw.2.
This has been extended with conservativeness result in [17].

In [18], DP and NEP along with other properties are derived for CZF using
a combination of realizability and truth. The technique likely extends to IZF ¢,
but it does not seem to be strong enough to prove SEP and TEP for IZF .

15

8.1 Acknowledgements

I would like to thank my advisor, Bob Constable, for giving me the idea for this
research and support, Richard Shore for helpful discussions, Daria Walukiewicz-
Chrzaszcz for the higher-order rewriting counterexample, thanks to which I could
prove Theorem 3 and anonymous referees for helpful comments.

References

1. Friedman, H., S¢edrov, A.: The lack of definable witnesses and provably recursive
functions in intuitionistic set theories. Advances in Mathematics 57 (1985) 1-13
2. Beeson, M.: Foundations of Constructive Mathematics. Springer-Verlag (1985)
3. Seedrov, A.: Intuitionistic set theory. In: Harvey Friedman’s Research on the
Foundations of Mathematics, Elsevier (1985) 257-284
4. Aczel, P., Rathjen, M.: Notes on constructive set theory. Technical Report 40,
Institut Mittag-Leffler (The Royal Swedish Academy of Sciences) (2000/2001)
5. McCarty, D.: Realizability and Recursive Mathematics. D.Phil. Thesis, University
of Oxford (1984)
6. Moczydlowski, W.: Normalization of IZF with Replacement. Technical Report
2006-2024, Computer Science Department, Cornell University (2006)
7. Constable, R., Moczydlowski, W.: Extracting Programs from Constructive HOL
Proofs via IZF Set-Theoretic Semantics. (2006) Submitted to IJCAR 2006.
8. Lamport, L., Paulson, L.C.: Should your specification language be typed? ACM-
TOPLAS: ACM Transactions on Programming Languages and Systems 21 (1999)
9. Myhill, J.: Some properties of intuitionistic Zermelo-Fraenkel set theory. In: Cam-
bridge Summer School in Mathematical Logic. Volume 29., Springer (1973) 206—231
10. Sgrensen, M., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism. DIKU
rapport 98/14, DIKU (1998)
11. Powell, W.: Extending Gddel’s negative interpretation to ZF. Journal of Symbolic
Logic 40 (1975) 221-229
12. Friedman, H.: The consistency of classical set theory relative to a set theory with
intuitionistic logic. Journal of Symbolic Logic 38 (1973) 315-319
13. Moczydlowski, W.: Normalization of IZF with Replacement and Inaccessible Sets.
Submitted for publication (2006)
14. Bailin, S.C.: A normalization theorem for set theory. J. Symb. Log. 53(3) (1988)
673-695
15. Louis Krivine, J.: Typed lambda-calculus in classical Zermelo-Fraeznkel set theory.
Archive for Mathematical Logic 40(3) (2001) 189-205
16. Miquel, A.: A strongly normalising curry-howard correspondence for izf set the-
ory. In Baaz, M., Makowsky, J.A., eds.: CSL. Volume 2803 of Lecture Notes in
Computer Science., Springer (2003) 441-454
17. Dowek, G., Miquel, A.: Cut elimination for Zermelo’s set theory. (2006)
Manuscript, available from the web pages of the authors.
18. Rathjen, M.: The disjunction and related properties for constructive Zermelo-
Fraenkel set theory. Journal of Symbolic Logic 70 (2005) 1233-1254

