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Abstract. IZF is a well investigated impredicative constructive version
of Zermelo-Fraenkel set theory. Using set terms, we axiomatize IZF with
Replacement, which we call IZF g, along with its intensional counter-
part IZF . We define a typed lambda calculus corresponding to proofs
in IZF, according to the Curry-Howard isomorphism principle. Using
realizability for IZFj, we show weak normalization of the calculus by
employing a reduction-preserving erasure map from lambda terms to re-
alizers. We use normalization to prove disjunction, numerical existence,
set existence and term existence properties. An inner extensional model
is used to show the properties for full, extensional IZF .

1 Introduction

There are four salient properties of constructive theories:

— Numerical Existence Property (NEP): From a proof of a statement “there
exists a natural number = such that ...” a witness n € N can be extracted.

— Disjunction Property (DP): If a disjunction is provable, then one of the
disjuncts is provable.

— Set Existence Property (SEP): If a Jx. ¢(x) is provable, then there is a
formula 1 (x) such that 3lz. ¢(x) Ay (z) is provable, where both ¢ and ¢ are
term-free.

— Term Existence Property (TEP): If 3x. ¢(x) is provable, then ¢(t) is provable
for some term t.

How to prove these properties for a given theory? Methods abound. Cut-
elimination, proof normalization, realizability, Kripke models. ... Normalization
proofs, based on Curry-Howard isomorphism, have the advantage of providing
an explicit method of witness and program extraction from the proofs. They also
provide information about the behaviour of the proof system.

We are interested in intuitionistic set theory IZF. It is essentially what re-
mains of ZF set theory after excluded middle is carefully taken away. An impor-
tant decision to make on the way is whether to use Replacement or Collection
axiom schema. We will call the version with Collection IZF - and the version with
Replacement IZF . In the literature, IZF usually denotes IZF . Both theories
with excluded middle added are equivalent to ZF.
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Both versions have been investigated. Results up to 1985 are presented in
[Bee85] and in [S85], later research was concentrated on weaker subsystems,
in particular on predicative constructive set theory CZF. [ARO1] describes the
set-theoretic apparatus available in CZF and provides further references.

IZF¢ is equiconsistent with ZF ([Fri73]), has the same set of /T statements
([Fri78]) and satisfies NEP and DP ([Bee79]). It does not satisfy SEP ([FS85]).

Classically, using Foundation, one can show that Collection is equivalent
to Replacement. This is not the case in the constructive world, as shown in
[FS85]. In the author’s view, Collection in the constructive context seems to be
as nonconstructive as the Axiom of Choice in the classical world. It asserts the
existence of a certain set without pointing it out or, more formally, defining it.
We therefore think that IZFp makes more sense from a constructive point of
view.

Myhill in [Myh73] has shown that IZFp satisfies NEP, DP, SEP and a version
of TEP. Its exact proof-theoretic power is unknown; [FS85] conjectures that ZF
proves consistency of IZF .

We define an axiomatization of IZFr with set-terms, along with its inten-
sional version IZF . We define typed lambda calculus AZ corresponding to proofs
in IZF ;. We also define realizability for IZF,, in the spirit of [McC84]. We show
weak normalization of A\Z by employing a reduction-preserving erasure map from
lambda terms to realizers. Strong normalization of AZ does not hold; moreover,
we show that in non-well-founded IZF even weak normalization fails.

With normalization in hand, the properties NEP, DP, SEP and TEP follow
easily. To show these properties for full, extensional IZFr, we define an inner
model T of IZF g, consisting of what we call transitively L-stable sets. We show
that a formula is true in IZF y iff its relativization to 1" is true in IZF ;. Therefore
IZF R is interpretable in IZF . This allows us to use properties proven for IZF .

The importance of these properties in the context of computer science stems
from the fact that they make it possible to extract programs from constructive
proofs. For example, suppose IZF R - Vn € NIm € N. ¢(n, m). From this proof
a program can be extracted — take a natural number n, construct a proof IZF p
F 7 € Nin 7. Combine the proofs to get IZFr + Im € N. ¢(%, m) and apply
NEP to get a number m such that IZF g F ¢(m,m). We will present in details
program extraction from IZF p proofs in the forthcoming [CMO06].

There are many provers with the program extraction capability. However,
they are usually based on a variant of type theory, which is a foundational basis
very different from set theory. This makes the process of formalizing program
specification more difficult, as an unfamiliar new language and logic have to be
learned from scratch. [LP99] strongly argues against using type theory for the
specification purposes, instead promoting standard set theory.

IZF r provides therefore the best of both worlds. It is a set theory, with
familiar language and axioms. At the same time, programs can be extracted
from proofs. Qur AZ calculus and the normalization theorem make the task
of constructing the prover based on IZFpr not very difficult. Non-constructive



reasoning could be supported as well, by simply adding the excluded middle and
the Axiom of Choice.

Moreover, we believe in the importance of IZF i in the process of formalizing
mathematics. The standard foundational ground for mathematics is ZFC. How-
ever, many proofs could be formalized using only the axioms of IZF . A theorem
proved with these restricted means would provide extra computational content.
For example, the proof that the addition function exists could give rise to the
actual program computing the sum of two natural numbers.

This paper is organized as follows. In sections 2 and 3 we define IZF i along
with its intensional version IZF}. In section 4 we define a lambda calculus A\Z
corresponding to IZF}, proofs. Realizability for IZF, is defined in section 5 and
used to prove normalization of A\Z in section 6. We prove the properties in section
7, and show how to derive them for IZFg in section 8. Comparison with other
results can be found in section 9.

2 Intuitionistic first-order logic

We start by presenting the intuitionistic first-order logic (IFOL). We use a nat-
ural deduction style of proof rules. The terms will be denoted by letters ¢, s, u.
The logical variables will be denoted by letters a, b, ¢, d, e, f. The notation @ de-
notes a finite sequence, treated as a set when convenient. The i-th element of a
sequence is denoted by a;. We consider a-equivalent formulas equal. Contexts,
denoted by I', are sets of formulas. The free variables of a formula ¢, denoted by
FV(¢), are defined as usual. Free variables of a context I", denoted by FV (I"),
are the free variables of all formulas in I". The notation ¢(a) means that all free
variables of ¢ are among @. The proof rules are as follows:

I't¢g—y I'kFo¢ IokFq I'EoAYy I'EoAY

T.6F TFo TFo—9 Tro TFo
I'te TI'ko I'Foé 'y TrFéVY Dokd Lrd
TFoAY TFovey TFove TFo
I'to¢ I'+Va. ¢ 'k L
Trva g “EFVI) Tréla=1 Tro

I'béla=t] I'F3aé Lok
ngb¢] a;i¢M¢1#“¢FVUUUW*

Negation in IFOL is an abbreviation: -¢ = ¢ — L. So is the symbol «:
¢ — v =(p— YAy — ¢). For any theory T, the notation I" Fp ¢ means
T + I+ ¢. Note that IFOL does not contain equality. The excluded middle rule
added to IFOL makes it equivalent to classical first-order logic without equality.



3 IZFgr

Intuitionistic set theory IZFp is a first-order theory. It is equivalent to ZF, if
extended with excluded middle. It’s a definitional extension of term-free versions
presented in [Myh73], [Bee85] and [FS85] among others. The signature consists
of one binary relational symbol € and function symbols used in the axioms
below. The relational symbol ¢ = u is an abbreviation for Vz. z € t < 2z € w.
Function symbols 0 and S(t) are abbreviations for {z € w | L} and U{¢, {¢,t}}.
Bounded quantifiers and the quantifier 3'a (there exists exactly one a) are also
abbreviations defined in the standard way.

— (PAIR) Va,bVc. c€ {a,b} @ c=aVec=b

— (INF)Ve.cew—c=0VIew. c=S5()

— (SEP,, 7)) Vfvave. c€ S o0 ) (@ f)eceandlef)

— (UNION) VaVe. cGUaHHbea ceb

— (POWER) Vavc. c € P(a) @ Vb.bec—be€a

— (REPL,(, ;7)) VfVaVe.c € Ryan (@, f) = (Vo € adly.d(z,y, ) A3z €
a. p(z,c, f)) B
(IND,,(, 7,) VF. (Va.(%b € a.6(b, ) — ¢
(L)) VF,Vab.a=b— ¢(a, f) — o(b,

(a,f)) = Va.¢(a, f)

- o(b, f)
Axioms SEP,4, REPL,, IND, and Ly are axiom schemas, and so are the
corresponding function symbols — there is one for each formula ¢. Formally, we

define formulas and terms by mutual induction:
pu=tet|t=t]|... tu=a|{t,t}| qu(aj)(t,f) | R¢(a7b,7)(t,f) ...

IZF, will denote IZF r without the Leibniz axiom schema Lg. IZF is an
intensional version of IZFr — even though extensional equality is used in the
axioms, it does not behave as the “real” equality. The terms Sy (a, f) and Ry (a, f)
could be displayed as {z € a | ¢(z,f)} and {y | = € a. ¢(z,y,f) ANVz €
adly. ¢(x,y, )}

Axioms (PAIR), (INF), (SEP,), (UNION), (POWER) and (REPL,) all
assert the existence of certain classes and have the same form: Va.Ve. ¢ €
ta(@) < ¢a(a,c), where t4 is a function symbol and ¢4 a corresponding for-
mula for the axiom A. For example, for (POWER), tpowrr is P and ¢powEr
is Vb. b € ¢ — b € a. We reserve the notation ¢4 and ¢4 to denote the term and
the corresponding formula for the axiom A.

4 The A\Z calculus

We present a lambda calculus A\Z for IZF, based on the Curry-Howard isomor-
phism principle. The purely logical part is essentially AP1 from [SU98|.



4.1 Terms

The lambda terms in AZ will be denoted by letters M, N, O, P. Letters x, y, z will
be used for lambda variables. There are two kinds of lambda abstractions, one
used for proofs of implications, the other for proofs of universal quantification.
Since variables in the latter abstractions correspond very closely to the variables
in IFOL, we also use letters a, b, ¢ for them. Letters ¢, s, u are reserved for IZF i
terms. The types in the system are IZF i formulas.

M:=x2|MN|Xa. M| Xx:¢. M |inl(M) | inr(M) | fst(M) | snd(M) | [t, M]

Mt | (M,N) | case(M,z.N,z.0) | magic(M) | let [a,z : ¢ = M in N
indy, 5 (M, 1) | ind} 5 (M. 7, )
pairProp(t, Uy, U2, M) | pairRep(t, Uy, U2, M)
unionProp(t, u, M) | unionRep(t, u, M)

sequ(aj)Prop(t, u,u, M) | sep¢(a3)Rep(t, u,u, M)

powerProp(t, u, M) | powerRep(¢, u, M)

)
)
)
infProp(t, M) | infRep(t, M)

reply, , 7, Prop(t, u, @) | reply, , 7 Rep(t, u,u)

The ind terms correspond to the (IND) axiom, and Prop and Rep terms cor-
respond to the respective axioms. To avoid listing all of them every time, we
adopt a convention of using axRep and axProp terms to tacitly mean all Rep
and Prop terms, for ax being one of pair, union, sep, power, inf and repl. With
this convention in mind, we can summarize the definition of the Prop and Rep
terms as:

axProp(t,u, M) | axRep(t,u, M),

where the number of terms in the sequence @ depends on the particular axiom.
The free variables of a lambda term are defined as usual, taking into account
that variables in ), case and let terms bind respective terms. The relation of
a-equivalence is defined taking this information into account. We consider a-
equivalent terms equal. We denote all free variables of a term M by FV (M)
and the free logical variables of a term by FV,(M). Free (logical) variables of a
context I" are denoted by FV(I") (FVL(I')) and defined in a natural way.

4.2 Reduction rules

The deterministic reduction relation — arises from the following reduction rules
and evaluation contexts:

Az :¢. M)N — M|z := N]| (Aa. M)t — Mla :=t]

fst((M,N)) — M snd((M,N)) — N



case(inl(M), z.N,z.0) — N[z := M) case(inr(M), z.N, z.0) — Olz := M]
let [a,z: ¢] = [t,M] in N — NJa:=t][z := M]
axProp(t, u, axRep(t,w, M)) — M

ind,, (M, %) = Ae. M c (AbAz:b€Ec ind;b(ayg)(M, t,b))

a)g)(M, tyu) — M u (Ab.Az b€ u. indl¢(a75) (M,1,b))

[o] ::= fst([o]) | snd([o]) | case([c],x.M,x.N) | axProp(t, u, [0])
let [a,y : ¢] = [o] in N | [o] M | magic([c])

. !
1nd¢(

In the reduction rules for ind terms, the variable x is new. In other words, the
reduction relation arises by lazily evaluating the rules above.

Definition 1. We write M | if the reduction sequence starting from M ter-
minates. We write M | v if we want to state that v is the term at which this
reduction sequence terminates. We write M —* M’ if M reduces to M’ in some
number of steps.

We distinguish certain AZ terms as values. The values are generated by the
following abstract grammar, where M is an arbitrary term. Clearly, there are no
reductions possible from values.

Vi=da. M| Ax:¢. M | inr(M) | inl(M) | [¢, M] | (M, N) | axRep(t,u, M)

4.3 Types

The type system for AZ is constructed according to the principle of the Curry-
Howard isomorphism for IZF,. Types are IZFgr formulas, and terms are AZ
terms. Contexts I" are finite sets of pairs (x1, ;). The range of a context I is
the corresponding IFOL context that contains only formulas and is denoted by
rg(I"). The proof rules follow:

I'-M:¢p—¢v I'FN:¢ x:pFM: 9
Nz:¢okFax:¢ I'FM N9 I'FXx:o.M:¢p—Y
I'FM:¢p TEFN:¢p TEM:¢Ay TFM:pAD
I'-(M,N):¢ N I'fst(M): o I'tsnd(M) : ¢
re=M:¢ I'M:4 I'-M:¢
Trm(M):¢ve Trim():ove Troaa Mivag tFVed)
FFM:¢vey La:¢FN:9 La:pk0:9 '+ M:Va. ¢
I' - case(M,x.N,z.0) : 9 I'-Mt: ¢la:=t]
' M: ¢la:=1] I'CM: L

't [t,M]:3a. ¢ I' - magic(M) : ¢
FFM:3a.¢ Ta:¢FN:y
I'tlet [a,x: @) :=M in N :

a‘¢FVL(F7L/))



I'-M: ¢pa(t,u) I'EM:teta(u)
I+ axRep(t,u, M) : t € ta(u) I' - axProp(t,u, M) : pa(t,7)

' M :Ve. (Vb.bec— ¢(b,t)) — dlc,t)
I indgy g o (M, T,u) : ¢(u, 1)

' M :Ve. (Vb.bec— ¢(b,t)) — d(c,t)
I'Findgz) (M, 1) : Ya. ¢(a,t)

Lemma 1 (Curry-Howard isomorphism, part 1). If I' = O : ¢ then
rg(I") Frzr; O Ifr Frzp; ©: then there exists a term M such that I't= M : ¢,

where I' = {(x4,¢) | ¢ € T'}.
Proof. Straightforward. Use
XaAc.(\x : ¢ € ta(a). axProp(c, @, z), Ax : pa(c,a). axRep(c,a, z))

and
Az : (Ya.(Vb. b e a— ¢(b, f)) — ¢(a, f)). ind(z, f)

to witness IZF ,axioms.

Lemma 2 (Canonical forms). Suppose M is a value and = M : 9. Then:

If9 = ¢V, then (M =inl(N) andt+- N : ¢) or (M =inr(N) and+ N : 9).
If9 =7 Ao, then M = (N,O).

—Ifv=7—o0,then M =MXx:7. N.

— If 9 =Va. 7, then M = Aa. N.

— If ¥ =3a. ¢ then M =[t,N] and - N : pla :=t].

— Ifv=teta(u) then M = axRep(t,w, N) and - N : p4(t, 7).

Proof. Immediate from the typing rules and from the possible forms of values.

Lemma 3 (Progress). If = M : ¢, then either M is a value or there is a N
such that M — N.

Proof. Straightforward induction on - M : ¢.
Lemma 4 (Subject reduction). If ' M : ¢ and M — N, then ' = N : ¢.

Proof. By induction on the definition of M — N, using appropriate substitution
lemmas on the way.

Corollary 1. If W M : ¢ and M | v, thent v : ¢ and v is a value.



5 Realizability for IZF,

In this section we work in ZF.

We use terms of type-free version of lambda calculus for realizers. We call
this calculus AZ. The terms of A\Z are generated by the following grammar and
are denoted by A. The set of A\Z values is denoted by A\Z,.

M:=2|MN | x. M |inl(M) | inr(M) | magic(M) | fst(M) | snd(M) [{(M, N)
case(M,z.N,z.0) | axRep(M) | axProp(M) | ind(M) | ind’ (M)

In other words, AZ results from \Z by erasing of all first-order information. This
can be made precise by the definition of the erasure map M from terms of \Z
to \Z:

N=MN xa.M =M e T.M =M. M

M
[t,M] =M (M,N) = (M,N) inl(M) = inl(M) inr(M) = inr(M)
fst (M) snd(M) = snd(M) magic(M) = magic(M)
letla,y] = M in N = (\y. N) M Mt=M
axRep(t,u, M) = axRep(M) axProp(t,u, M) = axProp(M)
ind'¢(M7 t,u) = ind’ (M) indy (M, ,u) = ind(M)

We call a AZ reduction atomic if it is of the form (Aa. M)t — M|[a := t]. The
reduction rules and values in \Z are induced in an obvious way from AZ, so that if
M — M'is anonatomic reduction in A\Z, then M — M’, if M — M is an atomic
reduction in A\Z, then M = M’ and if M is a value in AZ, then M is a value in
AZ. In particular, ind’ (M) — M (Az.ind'(M)) and ind(M) — M (Ax. ind’ (M)).

Lemma 5. If M normalizes, so does M.

Proof. Any infinite chain of reductions starting from M must contain an infinite
number of nonatomic reductions, which map to reductions in M in a natural
way.

5.1 Realizability relation

Definition 2. A set A is a A\-name iff A is a set of pairs (v,B) such that
v € \Z, and B is a A-name.

In other words, A-names are sets hereditarily labelled by AZ values.
Definition 3. The class of \-names is denoted by V.
Formally, V* is generated by the following transfinite inductive definition on

ordinals: B
vi=P0OZ,xvg) v= [J W
B<a a€ORD

The A-rank of a A-name A is the smallest « such that 4 € V).



Definition 4. For any A € V*, At denotes {(M,B) | M | v A (v, B) € A}.

Definition 5. A (class-sized) first-order language L arises by enriching the
IZFrsignature with constants for all A-names.

From now on until the end of this section, symbols M, N, O, P range exclu-
sively over AZ-terms, letters a,b, ¢ vary over logical variables in the language,
letters A, B, C vary over A-names and letter p varies over finite partial functions
from logic variables in L to V*. We call such functions environments.

Definition 6. For any formula ¢ of L, any term t of L and p defined on all
free variables of ¢ and t, we define by metalevel mutual induction a realizability
relation M I+, ¢ in an environment p and a meaning of a term [t], in an
environment p:

1. [a], = p(a)
2. [Al,=4
3. [w], =w', where W' is defined by the means of inductive definition: w' is the
smallest set such that:
— (infRep(N), A) € W' if N | inl(O), Ol A=0 and A € V).
— If (M, B) € W'*, then (infRep(N), A) € o' if N | inr(O), O | (M, P),
Pl-A=S(B) and A€ V.
It is easy to see that any element of W' is in V) for some finite o and so
that W' € V4.

4. [ta(@], = {(axRep(N), B) € A\Z, x V> | N Ik, ¢ (B, [u],)}

5. Mk, L=1

6. M-, tes=M|vAW]tl,) € [s],

7. M”‘p ¢A1/)EMl<M1,MQ>/\M1 ”_p ¢AM2 ”_p¢

8. Mk, ¢V = (M | inl(My) A M I, ¢) v (M | inr(My) A M, -, )

9. MIF, ¢ — = (M| \x. My) A¥YN. (N Ik, ¢) — (M[z == N] IF, 1))
10. Mk, Va. ¢ =VA €V . M Ik, gla:= Al
11. Mk, 3a. ¢ =3A € V). M Ik, gla:= Al

Note that M I+, A € B iff (M,A) € B*.

The definition of the ordinal ~ in item 4 depends on t(@). This ordinal is
close to the rank of the set denoted by ¢4 (@) and is chosen so that Lemma 8 can
be proven. Let @ = rank([u],). Case ta(%) of:

— {uy,u} — v = maz(aq, az)

- Plu) —y=a+1

-Ju—rvy=oa.

- S¢(a)7)(u,ﬂ) — v =a;.

= Ryn?) (u,w). This case is more complicated. The names are chosen to
match the corresponding clause in the proof of Lemma 8. Let (B, d, F) =

¢(B,d,F) AVe. ¢(B,e,[u],) — e = d). Let G = {(N1,(Na1,B)) € A5 x
[ulf | 3d € VA (N1 | Az. O) A (O[z := Nai] Ik, (B, d, [u],))}. Then for

all g € G there is D and (N, (Na1, B)) such that g = (N1, (N21, B)) and
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Ny | Az. O and O[z := Nyj] IF, (B, D, [u],). Use Collection to collect all
these C’s in one set H. Apply Replacement to H to get the set of A\-ranks
of sets in H. Then § = J H is an ordinal and for any C € H, rank(C) < (.
Therefore for all g € G there is D € V3 and (Ny,(Na1, B)) such that

g = (N1,(No1,B)) and Ny | Az. O and Oz := Noj] IF, ¢(B, D, [u],)
Set v =[G+ 1.

Lemma 6. The definition of realizability is well-founded.

Proof. We define a measure function m which takes a clause in the definition
and returns a triple of integers:

— m(M Ik, ¢) = (“number of constants w in ¢”, “number of function symbols
in ¢”, “structural complexity of ¢”)

— m([t],) = (“number of constants w in ”, “number of function symbols in ¢”,
0)

With lexicographical order in N3, it is trivial to check that the measure of the
definiendum is always greater than the measure of the definiens — number of
terms does not increase in the clauses for realizability and formula complexity
goes down, in the clause for w, w disappears, and in the rest of clauses for terms,
the topmost ¢4 disappears.

Since the definition is well-founded, (metalevel) inductive proofs on the def-
inition of realizability are justified.

Lemma 7. If A € V), then there is 3 < a such that for all B, if M I, B €A,
then B € V. Also, if M Ik, B = A, then B € V).

Proof. Take A € V. Then there is # < a such that A € P(A\Z, x V). Take
any B.If M I+ B € A, then M | v and (v, B) € A, s0o B € V.

For the second part, suppose M I, A = B. This means that M I, Vc. c €
Ao ceB,soVC. MIFC e A Ce B, soVC. M| (M, M), My I C €
A— CeBand My IFC € B— C € A. Thus, for all C, My | Az. M3 and
for all N I C' € B, Ms[z := N]IF C € A. Take any element (v,C) € B. Then
vl C € B, so Ms[z :=v] |- C € A. Thus by the first part, C € V3. Therefore

BCAZ, x V3,50 Be P(\Z, x V) =Vg,,,s0 Be V..
The following lemma states the crucial property of the realizability relation.
Lemma 8. (M, A) € [ta(w)], iff M = axRep(N) and N I, ¢4 (A, [u],)-

Proof. We first do the proof for all terms apart from w, then we prove the claim
for w.

The left-to-right direction is immediate. For the right-to-left direction, sup-
pose N Ik, ¢a(A,[u],) and M = axRep(N). To show that (M, A) € [ta(w)],,
we need to show that A € Vv/\' The proof proceeds by case analysis on ¢4 ().

Let @ = rank([u],). Case ta(@) of:
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— {u1,u2}. Suppose that N |-, A = [u1], V A = [uz],- Then either N |
inl(N1) ANy Ik, A= [ui], or N | inr(N:) A Ny IF, A = [ug],. By Lemma
7, in the former case A € V), in the latter A € V), s0 A€ Vﬂ{‘mz(alm).

— P(u). Suppose that N I, Ve. ¢ € A — ¢ € [u],. Then VC. N I+, C € A —
C € [u],, so ¥C. N | Az. Ny and YO. (O I C' € A) = Ny[z := O] I, C €
[u],. Take any (v, B) € A. Then v I-, B € A. So Ni[z :=v] |-, B € [u],.
Thus any such Bisin V}, s0 A€ V), ;.

— Uu. Suppose N I, Jc. c € [u], A A € c. Tt is easy to see that A € V).
— Sy(a7)(u,1)- Suppose N -, A€ [u], A.... It follows that A € V3.

— Ry, 7 (u, ). Suppose

NIk, (Vz € [u],3ly. ¢(z,y, [ul,)) A3z € [u],. b(x, A, [u],)

Then N | (N1, N2) and Ny I+, 3z € [u],. ¢(x, A, [u],). Thus there is B such

that NQ ”_p B e [[u]]p A (;S(B,AA7 IIU]]p) So NQ l <N21,N22>, N21 ”_p B c [[u]]p
and Noy I, (B, A, [u],). We also have Ny I, Yz € [u] ,Iy. ¢(x,y, [u],)-
So for all C, N7 | Az. O and for all P IF, C € [u],, Oz := P] IF,
Jly. qS(Qy,W). So taking C = B and P = Noj, there is D such that
Ny | Az. O and O[z := Naj| Ik, ¢(B, D, [u],) AVe. ¢(B,e,[u],) — e = D.
Therefore (N1, (N21, B)) € G from the definition of v, so there is D € V2}

such that Ny | Az.O and Ofz := Na] Ik, ¢(B, D, [u],) AVe. ¢(B, e, [u],,) —

e = D. So Oz := Na1] | (O1,02) and O; I+, Ye. ¢(B, e, [u],) — e = D.
Therefore, Oy | Az. Q and Q[z := Nay] Ik, A= D. By Lemma 7, A € V..

Now we can tackle w. For the left-to-right direction, obviously M = infRep(N).
For the claim about N we proceed by induction on the definition of w':

— The base case. Then N | inl(O) and O IF, A=0,s0 NIF, A=0V3dy €
w'. A= S(y).

— Inductive step. Then N | inr(O), O | (M',P), (M',B) € &'*, PlF, A =
S(B). Therefore there is C' (namely B) such that M’ |-, C € " and P I-,
A=58(C). Thus (M',P)IF, Jy. y c W' NA=S(y),so NI, A=0V3Iy €
W' A= S(y).

For the right-to-left direction, suppose N IF, A =0V 3dy. y € w' A A= S(y).
Then either N | inl(O) or N | inr(O). In the former case, O IF, A = 0 and
by Lemma 7 A € V). In the latter, O I, 3y. y € W' A A = S(y). So there
is B such that O IF, B € w'AA = S(B). So O | (M',P), (M',B) € w'"
and P I, A = S(B). This is exactly the inductive step of the definition of
W', so it remains to show that A € V}. Since (M’, B) € w'", there is a finite
ordinal « such that B € V). Now, suppose (M,C) € [{B,{B,B}}],. Then
M = pairRep(N) and N I, C = BV C = [{B, B}],. Thus either N | inl(Ny)
and Ny IF C = B, or N | inr(N;) and Ny IF C = [{B, B}}],. In the former
case, by Lemma 7 C € V). In the latter, suppose (O, D) € [{B, B}}],. Then it
similarly follows that D € V,\, so [{B, B}}], € V.1, s0 by Lemma 7, C € V, ;.
Therefore [{B, {B, B}}], € V2, and by Lemma 7, A € V',
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Lemma 9. [t[a := s]], = [t]yja:=[s],] and M I, ¢la := s] iff M IFja.—[4],] ¢-
Proof. Induction on definition of terms and formulas.

Eﬁn}lma 10. [t[a := s]], = [tla == [s],]], and M -, ¢la = s] iff M Ik, dla :=

Proof. Induction on definition of terms and formulas.
Lemma 11. If (M |-, ¢) then M |.

Proof. Straightforward induction on ¢.

Lemma 12. If M —* M’ then M' |k, ¢ iff M -, .

Proof. Induction on ¢. If ¢ doesn’t start with V,d, then the relation M I, ¢
depends only on normalization of M and the behaviour of its value, and these
properties do not change with reduction. The quantifier cases are straightfor-
ward.

Lemma 13. If M IF, ¢ — ¢ and N I+, ¢, then M N |-, 1.

Proof. It M I+, ¢ — 1, then M | (Az. O) and for all P I+, ¢, Oz := P] IF, 4.
Since M N —* (Az. O)N — Ol[z := N], Lemma 12 gives us the claim.

6 Normalization

In this section, environments p map lambda variables to A\Z terms and logic
variables to sets in V*. Any such environment can be used as a realizability
environment by ignoring the mapping of lambda variables.

Definition 7. For a sequent I' - ¢, p = I' b ¢ means that p : FV(I',¢) —
(VAUA), foralla € FVL(L,¢), p(a) € V* and for all (x;, ¢;) € I, p(z;) Ik, ;.

Note that if p = I" - ¢, then for any term t in I, ¢, [t], is defined and so is
the realizability relation M I-, ¢.

Definition 8. For a sequent I' - ¢, if p = I' F ¢ and M € A, then M|p| is
Mlzy := p(z1), ..., Tn = p(Tn)].
Theorem 1. If '+ M : 9 then for all p = T' =9, M|p] I, 9.

Proof. For any A\Z term M, M’ in the proof denotes M[p]. We proceed by
metalevel induction on I' F M : 9. We show some interesting cases. Case I"
M : ¥ of:

Lx:pkFx:¢
Then M’ = p(zx), the claim follows.



13

I'-M:¢p—v I'FN:¢
I'EM N9

By inductive hypothesis, M’ I, ¢ — ¢ and N’ |-, ¢. Lemma 13 gives the
claim.

Lx:oFM:v
'EXe:¢. M:¢p—
We need to show that for any N IF, ¢, M'[x := N] I, 9. Take any such N.
Let p' = p[z := N]. Then p' |= I,z : ¢, so by inductive hypothesis M[p'] I,/
Y. However, M[p'] = M|[p|[x := N] = M'[z := N], so M'[x := N]| IF, .
But p’ agrees with p on logic variables, so M’[xz := N] Ik, .

ML
I' - magic(M) : ¢
By inductive hypothesis, M’ IF, L, which is not the case, so anything holds,
in particular magic(M’) I+, ¢.

I'tM:7 I'N:o
I'-(M,N):TAo

All we need to show that M’ I, 7 and N’ I, o, which we get from the
inductive hypothesis.

I'tM:7
I'rinlM):7Vo

As trivial as the previous one, similarly for inr.

I'EM:7 Ao

I'1fst(M): 7
By inductive hypothesis, M’ I, 7 Ao, so M’ | (M, M) and M; I+, T.
Therefore fst(M) —* fst({M;, Ms)) — M;. Lemma 12 gives the claim. The
case for snd works the same.

I'EM: ¢a(t,u)
I't axRep(t,u, M) : t € ta(u)
By inductive hypothesis, M’ I, ¢4(t, ). By Lemma 10 this is equivalent
to M’ I, ¢a([t]y,[u],)- By Lemma 8 (axRep(M’),[t],) € [ta(@)],, so
axRep(M') Ik, t € ta(Tw), so also axRep(t, @, M)[p] I, t € ta(T).

I'EM:teta(n)
I' - axProp(t,u, M) : ¢pa(t,u)
By inductive hypothesis, M’ I, t € ta(u). This means that M’ | v and
(v,[t],) € [ta(@)].- By Lemma 8, v = axRep(N) and N I, ¢4 ([t],, [u],)-
By Lemma 10, N I, ¢ 4(t,@). Moreover, axProp(t, @, M) = axProp(M’) —*
axProp(axRep(N)) — N. Lemma 12 gives us the claim.
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I'=M:¢
I'Xa. M :Va. ¢

By inductive hypothesis, for all p = I" = M : ¢, M|p] I ¢. We need to show
that for all p = I' = Aa. M : Va. ¢, A\a. M = M|p] I, Va. ¢(a). Take any
such p. We need to show that VA. M|[p] I, ¢[a := A]. Take any A. By Lemma
9, it suffices to show that M p] IF j(4.—4) ¢. However, pla := Al = T'+ M : ¢,
so we get the claim by inductive hypothesis.

' M :Va. ¢
I'Mt:¢la:=t]
By inductive hypothesis, M’ I, Va. ¢, so VA.M' |-, ¢[a := A]. in particular

M' I+, ¢la := [t],], so by Lemma 10 M’ = (M t)[p] IF, ¢[a :=t].

TFM:Ve (Y. bec— o(b,T) — d(c,D)
I indgy g, o (M, T,u) = ¢(u,1)

By inductive hypothesis, we have M’ I, Ve. (Vb. b € ¢ — ¢(b,1)) — ¢(c, ).
We need to show that ind (M’) I, ¢(u,?). By Lemma 10, it suffices to
show that ind'(M’) I, ¢([u],,). We will show more general statement:
for all A, ind'(M’) IF, ¢(A,). We prove it by induction on A-rank of A.
Since ind'(M') — M’ (Az. ind’(M")), by Lemma 12 it suffices to show that
M’ (Az. ind"(M")) I, ¢(A, ). By inductive hypothesis, M’ IF, (Vb. b€ A —
#(b, 7)) — ¢(A,%). By Lemma 13, it suffices to show that (\z. ind’(M)) IF,
(Vb. b € A — ¢(b,T)). That is, that for all B, (Az. ind’(M")) IF, B € A —
#(B,1)). That is, that for all O I, B € A, ind'(M')[z := O] I+ ¢(B,1)).
Take any such O. We know that z ¢ FV(M'). Thus we need to show that
ind (M’) IF ¢(B,?). Since O I, B € A, the A-rank of B is smaller than the
A-rank of A and the inner inductive hypothesis gives us the claim.

' M :Ve. (V. b€ c— ¢(b,T)) — o(c,T)
I'Findgyz) (M, t) : Ya. ¢(a,t)
By inductive hypothesis, we have M’ I, Ve. (Vb. b € ¢ — ¢(b,1)) — ¢(c, ).
We need to show that ind(M’) Ik, Va. ¢(a,t). That is, that for all A,
ind(M’) I+, ¢(A,f). Since ind(M') — M’ (Az. ind'(M’)), by Lemma 12
it suffices to show that M’ (Az. ind'(M’)) I, ¢(A,T). But this has been
shown in the previous case, with the same assumptions about M’.

Corollary 2 (Normalization). If - M : ¢, then M |.

Proof. By Theorem 1, for any p = (F M : ¢), we have M|p] I, ¢. Take any such
p, for example mapping all free logic variables of M and ¢ to (. By Lemma 11,
M]p] |, and since M = M|p], M |. Lemma 5 gives us the claim.

As the reduction system is deterministic, the distinction between strong and
weak normalization does not exist. If the reduction system is extended to al-
low reductions anywhere inside of the term, the Corollary 2 shows only weak
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normalization. Strong normalization, then, surprisingly, does not hold. One rea-
son, trivial, are ind terms. However, even without them, the system would not
strongly normalize, as the following counterexample, invented by Crabbé and
adapted to our framework shows:

Theorem 2 (Crabbé’s counterexample). There is o formula ¢ and term M
such that = M : ¢ and M does not strongly normalize.

Proof. Let t = {x € 0| z € v — L}. Consider the terms:
N = )y : t € t.snd(sepProp(t,0,y)) y M =Xz :t€0.N (sepRep(t, 0, (x,N)))

Then it is easy toseethat - N:t €t — L, - M :t €0 — L and that M does
not strongly normalize.

Moreover, a slight (from a semantic point of view) modification to IZF,
namely making it non-well-founded, results in a system which is not even weakly
normalizing. A very small fragment is sufficient for this effect to arise. Let T" be
an intuitionistic set theory consisting of 2 axioms:

- (C)Va.aec—a=c
- D)Va.aed—acchaca—aca.

The constant ¢ denotes a non-well-founded set. The existence of d can be
derived from separation axiom: d = {a € ¢ | a € a — a € a}. The lambda
calculus corresponding to 7' is defined just as for IZF 5.

Theorem 3. There is a formula ¢ and term M such that -0 M : ¢ and M
does not weakly normalize.

Proof. Tt is relatively easy to find a term NN such that - N : d € c¢. Take
¢ =d e d— dedand consider the terms:

O =Xz :ded. snd(dRep(d,c,x)) x M = O (dProp(d, ¢, (N, 0))).
Then M does not have a normal form and Fp M : ¢.

In both cases, it is easy to find a term N : 7 which does strongly normalize.
An interesting question is whether there is a theorem of IZF}; without a strongly
normalizing proof.

7 Applications

The normalization theorem provides immediately several results.

Corollary 3 (Disjunction Property). If IZF - ¢ V 9, then IZF & ¢ or
IZFpF .
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Proof. Suppose IZF - ¢VV1. By Curry-Howard isomorphism, there is a AZ term
M such that = M : ¢ V. By Corollary 1, M | v and v : ¢ V 1. By Canonical
Forms, either v = inl(INV) and - N : ¢ or v = inr(N) and - N : 9. By applying
the other direction of Curry-Howard isomorphism we get the claim.

Corollary 4 (Term Existence Property). If IZF - Jx. ¢(x), then there is
a term t such that IZF & ¢(t).

Proof. By Curry-Howard isomorphism, there is a AZ-term M such that - M :
Jz. ¢. By normalizing M and applying Canonical Forms, we get [t, N] such that
F N : ¢(t). and thus by Curry-Howard isomorphism IZF ;F ¢(t).

Corollary 5 (Set Existence Property). If IZF F 3x. ¢(x), then there is a
formula (x) such that IZF & 3la. ¢(x) Aip(x).

Proof. Take t from Term Existence Property and i(z) = « = ¢. We need to
show that IZF o Jz. ¢(z) A y(x) AVy. é(y) A(y) — y = x. Taking x = t, we
get ¢(x) and ¢ (x). Take any y. If ¥(y), then y = ¢, so also y = .

As any theory can be enriched to have term existence property and thus
set existence property, as the proof of completeness theorem for IFOL shows, a
different version of SEP is also of interest:

Corollary 6 (Set Existence Property). If IZF ;- 3. ¢(x) and ¢(x) is term-
free, then there is a term-free formula (x) such that IZFpF 3la. ¢(x) A ip(x).

Proof. Take t from Term Existence Property. It is not difficult to see that there
is a term-free formula ¢ (z), defining ¢ (show first by €-induction that w is the
smallest inductive set), so that IZF ;- (3!z. ¥(x))Atp(t). Then IZF - 3z, p(x)A
¥ (x) can be easily derived.

7.1 Numerical Existence Property

To show numerical existence property, we first define an extraction function F’
which takes a proof - M : ¢ € w and returns a natural number n. F' works as
follows:

It normalizes M to natRep(N). By Canonical Forms, - N : ¢t = 0V Jy €
w. t = S(y). F then normalizes N to either inl(O) or inr(O). In the former
case, I returns 0. In the latter, F O : Jy.y € w At = S(y). Normalizing O it
gets [t1, P], where F P : t1 € w At = S(t1). Normalizing P it gets Q such that
FQ:t; €w. Then F returns F(FQ : ¢ € w) + 1.

To show that F' terminates for all its arguments, consider the sequence of
terms ¢,%y,%2, ... obtained throughout the life of F'. We have IZF ;- t = S(t1),
IZF ;- t; = S(t2) and so on. Thus, the length of the sequence is at most the
rank of the set denoted by ¢, so F must terminate after at most rank([t]) steps.

Corollary 7 (Numerical existence property). If IZF - 3z € w. ¢(x), then
there is a natural number n and term t such that IZF - ¢(t) ANt =T
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Proof. As before, use Curry-Howard isomorphism to get a value [t, M] such that
Ft,M]:3z. 2 € wA@(x). Thus M -t € wA¢(t), so M | (My, M) and
M :t€w. Taken = F(- M; : t € w). It’s easy to see that patching together
in an appropriate way proofs obtained throughout the execution of F, a proof
of t =7 for some natural number n can be produced.

This version of (NEP) differs from the one usually found in the literature,
where in the end ¢(7) is derived. However, IZF}; does not have the Leibniz
axiom for the final step. We conjecture that it is the only version which holds in
non-extensional set theories.

8 The Leibniz axiom

We will show that we can extend our results to full IZF . We work in IZF .
Lemma 14. Equality is an equivalence relation.
Definition 9. A set C is L-stable, if A € C and A = B implies B € C.

Definition 10. A set C is transitively L-stable if it is L-stable and every ele-
ment of C is transitively L-stable.

This definition is formalized in a standard way, using transitive closure, avail-
able in IZF};, as shown i.e. in [ARO1]. We write TLS(A) to express that A is
transitively L-stable and denote the class of transitively L-stable sets by 7. The
statement V' = T' means that VA. TLS(A). Class T in IZF}, plays a similar role
to the class of well-founded sets in ZF without Foundation.

Lemma 15. IZFr -V =T.
Proof. By €-induction.

The restriction of a formula ¢ to T', denoted by ¢”, is defined as usual, taking
into account the following translation of terms:

al =a {t,u}? = {t7,uT} wI'=w (U T = UtT (P)T = PtT)NT

(Sa) @ BT =Sy, ul)  (Ryp 7)) = Rycppgranp(tT ul)
The notation T |= ¢ means that ¢ holds.

Lemma 16. T is transitive.
Lemma 17. If A=C and A€ T, thenC e T.

Proof. This is not obvious, since the Leibniz axiom is not present in the logic.
However, equality is defined by Ap-formula and the claim follows by transitivity
of T.
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Lemma 18. T = “every set is L-stable”.
Lemma 19. FEquality is absolute for T.

The following three lemmas are proved together by mutual induction on the
definition of terms and formulas.

), T =Va,b, f. a=b— t(a, f) = t(b, f).

Lemma 20. For any term t(a, f),
), Va,feT. tT(a,f)€T.

f
Lemma 21. For any term t(a, f

Lemma 22. T L

¢(a.f)’
Proof. The only interesting case is when ¢ is atomic. Suppose t(A4, F) € s A, )
for some terms ¢, s. We need to show that if A, B €T, A= B and t'(A,F) ¢

sT(A, F), then tT(_B7F) € sT(B,F). By Lemma 20, tT(A,F_) = tT(B, F). By
Lemma 21, s” (A, F) € T, so by Lemma 18 t" (B, F) € s” (A, F). By Lemma 20,
sT(A,F) = sT(B,F), so tT(B, F) € sT(B, F).

Theorem 4. T EIZFy.

Proof. Straightforward. To prove (IND) use €-induction.

Lemma 23. IZFp + Va. tT(a) = t(a) and IZFg + Va. ¢* (a) < ¢(a).
Proof. By induction on the definition of terms and formulas.
Lemma 24. IZFy b ¢ iff IZFy, - ¢7.

Proof. The left-to-right direction follows by Theorem 4, the right-to-left direction
by Lemma 23.

Note that this means that IZF, can interpret IZFp, so any argument for-
malizable in IZF can be also formalized in IZF , by relativizing everything to
T.

Corollary 8. IZFp satisfies DP and NEP.

Proof. For DP, suppose IZFr - ¢ V1. By Lemma 24, IZF ;- o7 vyT. By DP
for 1ZF ,, either 1ZF, - ¢7 or IZF - 47 Using Lemma 24 again we get either
1ZFp - ¢ or 1ZF g F 1.

For NEP, suppose IZFi - 3z. € w A ¢(). By Lemma 24, IZF ;- 3z. = €
T Az € wl. ¢T(z), so IZFz+ Jz € wT. z € T A ¢T(z). Since w? = w, using
NEP for IZF ;we get a natural number n such that IZF ;- 3z. ¢ (z) Az = 7.
By Lemma 24 and @ = 7’ , we get IZFg - 3x. ¢(z) A z = 7. By the Leibniz
axiom, IZF g + ¢(m).

We cannot establish TEP and SEP for IZFy as easily, since it is not the
case that t7 = t for all terms ¢ (in other words, not all operations defined by
terms are absolute with respect to 7). However, a simple modification to the
axiomatization of IZFp yields these results too. It suffices to guarantee that
whenever a set is defined, it must be in 7. To do this, we modify three axioms
and add one new, axiomatizing transitive closure. Let PT'C(a,c) be a formula
that says: a C ¢ and c is transitive. The axioms are:
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(SEP’qb(a,?)) VfVave. c € S b0 (a,f) = ceandl(cf)
(POWER’) VaVe.c€ P(a) = ce TAVL.bec—bea _
(REPL’ 7)) VfVaVec € Ry, , 5 (a, f) < (Vo € adly € T.¢" (2,9, f)) A

(Fz € a. " (z,¢, )
(TC) Va,c. ce TC(a) < (c€ aVId e TC(a). c € d) AVd. PTC(a,d) — c € d.

In the modified axioms, the definition of 7' is written using T'C' and rela-
tivization of formulas to T this time leaves terms intact, we set ¢ = ¢ for all
terms t. Let us call IZF p with modified axioms IZFg’. It is not difficult to see
that IZF g’ is equivalent to IZF g and is also a definitional extension of term-free
presentations of IZF p from [Myh73], [Bee85] and [FS85]. We can therefore adopt
it as the official axiomatization of IZFg. All the developments in sections 4-8
can be done for the new axiomatization in the similar way. In the end we get:

Corollary 9. IZFy satisfies DP, NEP, TEP and SEP.

Proof. DP and NEP follow in the same way as in Corollary 8. For TEP, if
IZF g + 3z. ¢(z), then IZF+ Jo € T. ¢7(z), so there is a term ¢ such that
IZF ;- t € T A ¢T(t), so since tT = t, IZF g + ¢(t). To prove SEP proceed as in
Corollary 6.

9 Related work

In [Myh73], DP, NEP, SEP are proven for IZF  without terms. TEP is proven for
comprehension terms, the full list of which is not recursive. It is easy to see that
IZF 1 is a definitional extension of Myhill’s version. Our results therefore improve
on [Myh73], by providing an explicit recursive list of terms corresponding to IZF
axioms to witness TEP.

In [Bai8§] strong normalization of a constructive set theory without induction
and replacement axioms is shown using Girard’s method. As both normalization
and theory are defined in a nonstandard way, it is not clear if the results could
entail any of DP, NEP, SEP and TEP for the theory.

Krivine in [LKO01] defines realizability using lambda calculus for classical set
theory conservative over ZF. The types for his calculus are defined. However, it
seems that the types correspond more to the truth in the realizability model, not
to provable statements in the theory. Moreover, there are typable terms which
do not weakly normalize.

In [Miq03], a set theory without the induction and replacement axioms is
interpreted in the lambda calculus with types based on Fw.2. Strong normaliza-
tion of the calculus is proved. As this is an intepretation, not an isomorphism,
we do not think it could be used to show any of DP, NEP, SEP and TEP. This
has been extended with conservativeness result in [DMO06], which might yield the
properties for the theory.

In [Rat05], DP and NEP along with other properties are derived for CZF
using a combination of realizability and truth. The technique likely extends to
IZF r and IZF ¢, however, it does not seem to be strong enough to prove SEP
and TEP for IZF .
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10 Conclusion

We believe that this work can serve as a basis for a practical prover based on
set theory with extraction mechanisms. We envision a prover for IZF + EM +
AC = ZFC, which would have a pleasant property that constructive proofs yield
extracts. We will describe precisely extraction in [CMO6].

I would like to thank my advisor, Bob Constable, for giving me the idea
for this research and support, Richard Shore for helpful discussions and Daria
Walukiewicz-Chrzaszcz for the counterexample, thanks to which I could prove
Theorem 3.
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