
Fast Checkpoint Recovery Algorithms for Frequently
Consistent Applications

Tuan Cao, Marcos Vaz Salles, Benjamin Sowell, Yao Yue,
Alan Demers, Johannes Gehrke, Walker White

Cornell University
Ithaca, NY 14853, USA

{tuancao,vmarcos,sowell,yaoyue,ademers,johannes,wmwhite}@cs.cornell.edu

ABSTRACT
Advances in hardware have enabled many long-running applica-
tions to execute entirely in main memory. As a result, these appli-
cations have increasingly turned to database techniques to ensure
durability in the event of a crash. However, many of these ap-
plications, such as massively multiplayer online games and main-
memory OLTP systems, must sustain extremely high update rates –
often hundreds of thousands of updates per second. Providing dura-
bility for these applications without introducing excessive overhead
or latency spikes remains a challenge for application developers.

In this paper, we take advantage of frequent points of consistency
in many of these applications to develop novel checkpoint recovery
algorithms that trade additional space in main memory for signif-
icantly lower overhead and latency. Compared to previous work,
our new algorithms do not require any locking or bulk copies of
the application state. Our experimental evaluation shows that one
of our new algorithms attains nearly constant latency and reduces
overhead by more than an order of magnitude for low to medium
update rates. Additionally, in a heavily loaded main-memory trans-
action processing system, it still reduces overhead by more than a
factor of two.

Categories and Subject Descriptors
H.2.2 [Information Systems]: Database Management—Recovery
and restart

General Terms
Algorithms, Performance, Reliability

1. INTRODUCTION
An increasing number of data-intensive applications are be-

ing executed entirely in main memory and eschewing traditional
database concurrency control mechanisms in order to achieve high
throughput. Examples include applications as diverse as mas-
sively multiplayer online games (MMOs) and scientific simula-
tions, as well as certain classes of main-memory OLTP systems
and search engines. Many of these systems either serialize opera-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

tions and execute them sequentially [36, 28] or develop application-
specific ways to avoid locking and prevent costly conflicts and roll-
backs [34, 35, 29]. These approaches lead to applications with
frequent points of consistency, which we call frequently consistent
or FC applications. Unlike traditional database applications, which
may never reach a point of consistency without quiescing the sys-
tem, FC applications reach natural points of consistency very fre-
quently (typically at least once a second) during normal operation.

Since FC applications store data in main memory, durability is
an important and challenging property to ensure, particularly given
the strict performance requirements of many FC applications. In
this paper we leverage frequent points of consistency to develop
checkpoint recovery algorithms with extremely low overhead. We
start by describing several important use cases.

MMOs are an important class of FC applications that have
recently received attention in the database community [27, 11].
MMOs are large persistent games that allow users to socialize and
compete in a virtual world. Most MMOs use a time-stepped pro-
cessing model where character behavior is divided into atomic time
steps or ticks that are executed many times per second and update
the entire state of the game [35]. The game state is guaranteed to be
consistent at tick boundaries. Behavioral and agent-based simula-
tions, which are often used by scientists to model phenomena such
as traffic congestion and animal motion, also use a time-stepped
model and have similar points of consistency [34].

Though we use MMOs as a running example throughout this
paper, our techniques can be applied to any application with fre-
quent points of consistency. For example, certain classes of main-
memory OLTP systems also have frequent points of consistency.
Traditional OLTP systems are heavily mutli-threaded to mask
the huge differences between access times to main memory and
disk, but the tradeoffs change when all data is stored in memory.
New OLTP systems like H-Store [28] (and its commercial version
VoltDB [33]) serialize all transactions so that each machine can ex-
ecute them using a single thread in order to avoid the overhead of
concurrency control and increase throughput. In these applications
the end of each transaction marks a point of consistency [32]. Other
examples of FC applications include new data-parallel systems to
program the cloud, such as BOOM [2], deterministic transaction
processing systems [30, 36], and in-memory search engines [29].

Many frequently consistent applications must handle very high
update rates, which can complicate recovery. For example, popular
MMO servers may have to process hundreds of thousands of up-
dates per second, including behaviors such as character movement.
Many traditional database recovery algorithms that rely on physi-
cal logging simply cannot sustain this update rate without resorting
to expensive special-purpose hardware [20, 24]. Another common

recovery approach, used by some OLTP systems such as H-Store,
is to replicate state on several machines and apply updates to all
replicas [28]. While this provides high availability, replication is
usually still combined with additional mechanisms such as regular
checkpointing to protect against large scale failures such as power
outages. Checkpointing can also be used to transfer state between
nodes during recovery or when a new replica is added to the system.

We can take advantage of frequent points of consistency to take
periodic consistent checkpoints of the entire application state and
use logical logging to provide durability between checkpoints.
Since we have frequent points of consistency, there is no need to
quiesce the system in order to take a checkpoint, and we benefit
from not having to maintain a costly physical log. Furthermore,
we can avoid the primary disadvantage of logical logging, namely
the cost of replaying the log during recovery. Since there are many
points of consistency, we can take checkpoints very frequently (ev-
ery few seconds), so the log can be replayed very fast.

Of course, taking very frequent checkpoints can increase the
overhead associated with providing durability. To make this fea-
sible, we need high performance checkpointing algorithms. In par-
ticular, we have identified several important requirements. First,
the algorithm should have low overhead during normal operation.
Ideally, taking a checkpoint should have very little impact on the
throughput of the system. Second, the algorithm should distribute
its overhead uniformly and not introduce performance spikes or
highly variable response times. This is particularly important in
applications such as MMOs where high latency may create “hic-
cups” in the immersive virtual experience. Finally, it should be
possible to take checkpoints very frequently so that the logical log
can be replayed quickly in the event of a failure. In a recent ex-
perimental study, Vaz Salles et al. evaluated existing main-memory
checkpointing algorithms for use in MMOs [27], however these
algorithms either use locks or large synchronous copy operations,
which hurt throughput and latency, respectively.

In this paper we propose and evaluate two new checkpointing al-
gorithms, called Wait-Free Zigzag and Wait-Free Ping-Pong, which
avoid the use of locks and are designed to distribute overhead
smoothly. Wait-Free Ping-Pong also makes use of additional main
memory to further reduce overhead. We evaluate these algorithms
using a high-performance implementation of TPC-C running in the
cloud as well a synthetic workload with a wide variety of update
rates. Our experiments show that both algorithms are successful in
greatly reducing the latency spikes associated with checkpointing
and that Wait-Free Ping-Pong also has considerably lower over-
head: up to an order of magnitude less for low to medium update
rates and more than a factor of two in our TPC-C experiments.

In Section 2 of this paper, we review several existing checkpoint-
ing algorithms [27]. We then make the following contributions:

1. We analyze the performance bottlenecks in prior work, and
propose two new algorithms to address them (Section 3).

2. We explore the impact of data layout in main memory on
cache performance and do a careful cache-aware implemen-
tation of all of our algorithms, as well as the best previous
algorithms [27]. We find that our algorithms are particularly
amenable to these low level optimizations (Section 4).

3. We perform a thorough evaluation of our new algorithms and
compare them to existing methods. We find that Wait-Free
Ping-Pong exhibits lower overhead than all other algorithms
by up to an of magnitude over a wide range of update rates.
It also completely eliminates the latency spikes that plagued
previous consistent checkpointing algorithms (Section 5).

We review related work in Section 6 and conclude in Section 7.

2. BACKGROUND
A frequently consistent (FC) application is a distributed applica-

tion in which the state of each node frequently reaches a point of
consistency. A point of consistency is simply a time at which the
state of the node is valid according to the semantics of the applica-
tion. The definition of frequently depends on the application, but
we expect it to be less than a second. For example, MMO servers
execute approximately 10 ticks/sec, while modern OLTP systems
may be able to execute a small transaction in tens of microsec-
onds [28, 17].

Throughout the paper, we use application state to refer to the
dynamic, memory-resident state of an FC application. FC applica-
tions may have additional read-only or read-mostly state that can
simply be written to stable storage when it is created. For exam-
ple, in an MMO, each character will have some attributes such as
position, health, or experience that are frequently updated and thus
part of the dynamic state, but it will also have other attributes such
as name, race, or class (the type or job of the character) that are
unlikely to change. Additionally, some applications include sec-
ondary data structures such as indices that can be rebuilt during re-
covery. We will focus exclusively on making the primary dynamic
state durable.

In this paper, we use coordinated checkpointing to provide dura-
bility for distributed FC applications at low cost [6]. Many appli-
cations already use replication to increase availability and provide
some fault tolerance [28], but checkpointing can still be used to
copy state during recovery and provide durability to protect against
power outages and other widespread failures.

Furthermore, we will focus exclusively on developing robust
single-node checkpointing algorithms, as these form the core of
most distributed checkpointing schemes. There is a large dis-
tributed systems literature that explores how to generalize efficient
single-node checkpointing algorithms to multiple nodes. Tightly
synchronized FC applications that reach global points of consis-
tency during normal operation are particularly easy to checkpoint,
as they can reuse their existing synchronization mechanisms to de-
cide on a global point of consistency at which each node can take a
local checkpoint. More general distributed applications may need
to use techniques such as message logging to create a consistent
checkpoint. These distributed approaches are discussed at length
in a recent survey by Elnozahy et al [9].

In the remainder of this section we discuss requirements for
checkpoint-recovery algorithms targeted at FC applications (Sec-
tion 2.1) and we present existing checkpoint-recovery methods for
these applications (Sections 2.2 and 2.3).

2.1 Requirements for Checkpoint Recovery
Algorithms

We can summarize the requirements for a checkpointing algo-
rithm for FC applications as follows:

1. The method must have low overhead. During normal oper-
ation, FC applications must process very high update rates,
and the cost of checkpointing state for recovery should not
greatly reduce the throughput.

2. The method should distribute overhead uniformly, so that
application performance is consistent. Even when the total
overhead is low, many applications depend on predictable
performance. For example, fluctuations in overhead affect
MMOs by interfering with time-synchronized subsystems
like the physics engine [16]. This problem is made even
worse when the checkpointing algorithm must pause the sys-
tem in order to perform a synchronous operation like a bulk

Interface 1: Algorithmic Framework

Mutator::PrepareForNextCheckpoint()
Mutator::PointOfConsistency()
Mutator::HandleRead(index)
Mutator::HandleWrite(index, update)

AsynchronousWriter::WriteToStableStorage()

copy. Such latency spikes can also be a problem for dis-
tributed applications. If a node sending a message experi-
ences a latency spike, the receiver may block, spreading the
effect of the latency spike throughout the system and reduc-
ing overall throughput.

3. The method should have fast recovery in the event of failure.
Ideally, the recovery time should be on the order of a few
seconds to avoid significant disruption. We will accomplish
this primarily by increasing the frequency of checkpoints.

Traditional approaches to database recovery such as ARIES-
style physiological logging [21] and fuzzy checkpointing [12, 26],
which uses physical logging, cannot keep up with the extremely
high update rates of FC applications without resorting to ex-
tremely expensive special-purpose hardware such as battery backed
RAM [10, 20, 24]. As the dollar cost per gigabyte of battery-backed
RAM exceeds the cost of traditional RAM by over an order of mag-
nitude, it is unlikely that cloud infrastructures or large enterprise
clusters will package this technology for use by FC applications.

In the following subsections, we review the framework we previ-
ously proposed for checkpointing MMOs on commodity hardware
and discuss how it can be extended to support FC applications [27].

2.2 Algorithmic Framework
In this section we discuss the basic algorithmic framework we

use for checkpointing. During normal operation, the application
takes periodic checkpoints of its entire dynamic state and maintains
a logical log of all actions. For example, in an MMO we would log
all user actions sent to the server; in a system like H-Store, we
would log all stored procedure calls. Because each logical update
may translate into many physical updates, we expect the overhead
of maintaining this log to be quite small, and we will focus pri-
marily on the overhead associated with checkpointing. In order to
compare with existing algorithms for games, we will use the same
algorithmic framework for checkpointing originally introduced by
Vaz Salles et al. [27]. Interface 1 lists the key methods in this API.

We model main-memory checkpointing algorithms using a sin-
gle Mutator thread that executes the application logic and syn-
chronously updates the application state. Our techniques can be
naturally extended to support applications with multithreaded mu-
tators as long as we include enough information in the logical log
to enable deterministic replay. For OLTP applications, for instance,
this might include transaction commit order so that transactions can
be serialized during replay. This may lengthen the recovery time
somewhat, but in practice we have observed that many FC applica-
tions are already deterministic or can be made deterministic using
existing methods [30].

In addition to the Mutator, we use two threads to write data to
disk. The Logical Logger thread synchronously flushes logical log
entries to disk. This could be done directly in the Mutator thread,
but we implement it as a separate thread so that we can overlap
computation and process additional actions while we are waiting
for the disk write to complete. Note that we must wait for all disk
writes to finish before proceeding to the next point of consistency
(e.g. reporting a transaction as committed).

The final thread, the Asynchronous Writer, writes some or all
of the main-memory state to disk. Note that this thread can be
run in the background while the Mutator concurrently updates the
state. Since the performance of the Asynchronous Writer thread
is primarily determined by disk bandwidth, we will focus on the
synchronous overhead introduced in the Mutator thread. However,
it is important to note that some existing checkpointing algorithms
require that the Asynchronous Writer acquire locks on portions of
the application state, which can impact the performance of all of
the threads [27].

The Mutator thread makes function calls before starting a new
checkpoint (PrepareForNextCheckpoint), when a point of con-
sistency is reached (PointOfConsistency), and during each read
and write of the application state (HandleRead and HandleWrite).
The PointOfConsistency method must be executed at a point of
consistency, but it need not be executed at every point of consis-
tency. If points of consistency are very frequent (e.g., every few
microseconds), we can wait for several of them to pass before call-
ing the method.

Different algorithms will implement these methods differently
depending on how they manage the application state. Most algo-
rithms will maintain one or more shadow copies of the state in main
memory. The Mutator may use this shadow state during the check-
point before it is written to stable storage by the Asynchronous
Writer. In the rest of the paper, we will refer to the time between
successive calls to PrepareForNextCheckpoint as a checkpoint
period. Note that this must be long enough for the Asynchronous
Writer to finish creating a checkpoint on disk. These checkpoints
may be organized on disk in several different ways. In our im-
plementation, we use a double-backup organization for all of the
algorithms, as it was reported in previous work to consistently out-
perform a log-based implementation [27].

The recovery procedure is the same for all algorithms that imple-
ment this framework. First, the most recent consistent checkpoint is
read from disk and materialized as the new application state. Then,
the logical log is replayed from the time of the last checkpoint until
the state is up-to-date. Since we take checkpoints very frequently,
the time to replay the logical log is quite small.

2.3 Existing Algorithms
Based on their experimental evaluation for MMOs, Vaz Salles

et al. concluded that there was no single checkpointing algorithm
that outperformed all the others over the entire range of update
rates [27]. Their evaluation included a number of synthetic exper-
iments, and we believe they provide a reasonable model for many
FC applications. They concluded that two algorithms, Copy-on-
Update and Naive-Snapshot, performed best for low and high up-
date rates, respectively.

Naive-Snapshot synchronously copies the entire state of the ap-
plication to the shadow copy at a point of consistency and then
writes it out asynchronously to disk. Naive-Snapshot is among
the best algorithms when the update rate is very high since it does
not perform any checkpoint-specific work in the HandleRead or
HandleWrite functions.

Copy-on-Update groups application objects into blocks and
copies each block to the shadow state the first time it is updated dur-
ing a checkpoint period. During a checkpoint, the Asynchronous
writer either reads state from the application state or the shadow
copy based on whether the corresponding block has been updated.
Since the Mutator is concurrently updating the application state, it
must acquire locks on the blocks it references. This may introduce
considerable overhead. By varying the memory block size, Copy-
on-Update can trade off between copying and locking overhead.

Method
Overhead Factor

Bulk Locking
Bulk Memory

Copying Bit-Array UsageReset
Naive-Snapshot Yes No No ×2
Copy-on-Update No Yes Yes ×2
Wait-Free Zigzag No No Yes ×2
Wait-Free Ping-Pong No No No ×3

Table 1: Overhead factors of checkpoint-recovery algorithms.

3. NEW ALGORITHMS
In this section, we present two novel checkpoint recovery algo-

rithms for FC applications. We first discuss important design trade-
offs that differentiate our algorithms from state-of-the-art meth-
ods (Section 3.1) and then introduce each algorithm in turn (Sec-
tions 3.2 and 3.3).

3.1 Design Overview
We have identified four primary factors that affect the perfor-

mance of checkpoint recovery algorithms:

1. Bulk State Copying: The method may need to pause the
application to take a snapshot of the whole application state,
as in Naive-Snapshot.

2. Locking: The method may need to use locking to isolate
the Mutator from the Asynchronous Writer, if they work on
shared regions of the application state.

3. Bulk Bit-Array Reset: If the method uses metadata bits to
flag dirty portions of the state, it may need to pause the ap-
plication and perform a bulk clean-up of this metadata before
the start of a new checkpoint period.

4. Memory Usage: In order to avoid synchronous writes to
disk, the method may need to allocate additional main mem-
ory to hold copies of the application state.

Table 1 shows how the factors above apply to both Naive-
Snapshot and Copy-on-Update. Naive-Snapshot eliminates all
locking and bulk bit-array resetting overhead, but must perform
a bulk copy of the whole application state. This introduces a la-
tency spike in the application since it must block during the copy.
Copy-on-Update avoids this problem since it does not perform syn-
chronous bulk copies, but incurs both locking and bulk bit-array re-
setting overhead. This extra overhead is small for moderate update
rates, but is significant for higher update rates [27]. Both methods
require additional main memory of roughly the size of the entire ap-
plication state. So the memory usage for the dynamic application
state increases to about twice its original size.

Our new algorithms, Wait-Free Zigzag and Wait-Free Ping-
Pong, are designed to eliminate all overhead associated with bulk
state copying and locking. Unlike Naive-Snapshot, they spread
their overhead over time instead of concentrating it at a single point
of consistency. Unlike Copy-on-Update, they only require synchro-
nization between the Mutator and Asynchronous Writer at the end
of a checkpoint period. This eliminates all locking overhead during
state updates. Additionally, the Mutator and Asynchronous Writer
are each guaranteed to make progress even if the other is preempted
within a checkpoint period. As a consequence, both algorithms are
wait-free within a checkpoint period [13]. Table 1 also summarizes
the overhead factors our algorithms incur.

To eliminate overhead factors, both of our new algorithms
strictly separate the state being updated by the Mutator from the
state being read by the Asynchronous Writer. In addition, both
track updates at very fine, word-level granularity. However, the
algorithms use different amounts of main memory. Wait-Free

Zigzag, like Naive-Snapshot and Copy-On-Update, uses additional
main memory on the order of the size of the application state. Wait-
Free Ping-Pong, however, requires twice that amount. We believe
that this is a reasonable tradeoff for most MMOs and OLTP appli-
cations, as the size of the dynamically updated state is generally
quite small – usually only a small fraction of the whole state.

3.2 Wait-Free Zigzag
The main intuition behind Wait-Free Zigzag is to maintain an un-

touched copy of every word in the application state for the duration
of a checkpoint period. These copies form the consistent image
that is written to disk by the Asynchronous Writer. As these copies
are never changed during the checkpoint period, the Asynchronous
Writer is free to read them without acquiring locks.

The algorithm starts with two identical copies of the application
state: AS0 and AS1 (Figure 1(a)). For each word i in the application
state, we maintain two bits: MR[i] and MW [i]. The first bit, MR[i],
indicates which application state should be used for Mutator reads
from word i, while the second bit, MW [i], indicates which should
be used for Mutator writes. The bit array MR is initialized with
zeros and MW with ones.

The bits in MW are never updated during a checkpoint period.
This ensures that for every word i, AS¬MW [i][i] is also never updated
by the Mutator during a checkpoint period. The Asynchronous
Writer flushes exactly these words to disk in order to take a check-
point. To avoid blocking the Mutator, however, we must also apply
updates to the application state. Whenever a new update comes to
word i, we write that update to position ASMW [i][i] and set MR[i] to
MW [i]. Before any read of a word i, the Mutator inspects MR[i] and
directs the read to the most recently updated word ASMR[i][i]. Fig-
ure 1(b) shows the situation after updates are applied to the shaded
words. For example, the value written for the third word by the
Asynchronous Writer resides in AS0 and remains unchanged dur-
ing the first checkpoint. Any reads by the Mutator after the first
update return the value in AS1.

At the end of the checkpoint period, the Mutator assigns the
negation of MR to MW , i.e., ∀i,MW [i] := ¬MR[i]. This is done so
that the current state of the application is not updated by the Mu-
tator during the next checkpoint period and can be written to disk
by the Asynchronous Writer. Figure 1(c) shows the state right after
the Mutator performs this assignment in our example. Again, up-
dates during the next checkpoint period follow the same procedure
outlined above. Figure 1(d) shows the application state after two
updates during the second checkpoint period. Note that the current
application state, as well as the state being checkpointed to disk, is
now distributed between AS0 and AS1.

Algorithm 1 summarizes Wait-Free Zigzag. While most of this
algorithm is a straightforward translation of the explanation above,
one further observation applies to the PointOfConsistency pro-
cedure. This Mutator procedure checks whether the Asynchronous
Writer has finished writing the current checkpoint to disk. Though
the threads communicate, this does not violate the wait-free prop-
erty of the algorithm, as it can be implemented using store and load
barriers instead of locks. Heavier synchronization methods are only
necessary at the end of every checkpoint period.

Wait-Free Zigzag does not require any lock synchronization dur-
ing a checkpoint period. In addition, there is no need to copy
memory blocks in response to an update from the Mutator. This
eliminates some of the largest overheads of Copy-on-Update. In
addition, Wait-Free Zigzag distributes its overhead smoothly and
avoids the latency spikes of Naive-Snapshot. On the other hand,
Wait-Free Zigzag adds bit checking and setting overhead to both
reads and writes issued by the Mutator. It also exhibits a small

AS0

5

9

7

2

4

3

AS1

5

9

7

2

4

3

MR

0

0

0

0

0

0

MW

1

1

1

1

1

1

(a) At the beginning of time, AS0
and AS1 contain the same infor-
mation

AS0

5

9

7

2

4

3

AS1

6

9

1

9

4

3

MR

1

0

1

1

0

0

MW

1

1

1

1

1

1

(b) During the first checkpoint
period, some updates from the
Mutator are applied

AS0

5

9

7

2

4

3

AS1

6

9

1

9

4

3

MR

1

0

1

1

0

0

MW

0

1

0

0

1

1

(c) The state right after switching
to the second checkpoint period

AS0

3

9

7

2

4

3

AS1

6

8

1

9

4

3

MR

0

1

1

1

0

0

MW

0

1

0

0

1

1

(d) In the second checkpoint pe-
riod, the Mutator applies addi-
tional updates

Figure 1: Wait-Free Zigzag Example

AS

5

9

7

2

4

3

Odd

0

0

0

0

0

0

Even

5

9

7

2

4

3

1

1

1

1

1

1

(a) At the beginning of time, AS
and Even contain the same infor-
mation

AS

6

9

1

9

4

3

Odd = Current

6

1

9

1

0

1

1

0

0

Even

5

9

7

2

4

3

1

1

1

1

1

1

(b) During the first checkpoint
period, Odd collects updates,
while Even is flushed to disk

AS

6

9

1

9

4

3

Odd

6

1

9

1

0

1

1

0

0

Even = Current

0

0

0

0

0

0

(c) The state right after switching
to the second checkpoint period

AS

3

8

1

9

4

3

Odd

6

1

9

1

0

1

1

0

0

Even = Current

3

8

1

1

0

0

0

0

(d) In the second checkpoint pe-
riod, Odd and Even invert roles

Figure 2: Wait-Free Ping-Pong Example

Algorithm 1: Wait-Free Zigzag
input:
/* ApplicationState is a vector containing words */
ApplicationState AS0← initial application state
ApplicationState AS1← initial application state
/* size of application state in words */
sizeWords← |AS0|
/* reads from the Mutator reference ASMR[k] */
BitArray MR←{0,0, . . . ,0}
/* writes from the Mutator affect ASMW [k] */
BitArray MW ←{1,1, . . . ,1}
———————————————————————
Mutator::PrepareForNextCheckpoint()
1: for i = 0 to sizeWords do
2: MW [i]←¬MR[i]
3: end for

Mutator::PointOfConsistency()
1: if Asynchronous Writer done then
2: PrepareForNextCheckpoint()
3: NotifyAsynchronousWriter()
4: end if

Mutator::HandleRead(index)
1: return ASMR[index][index]

Mutator::HandleWrite(index, newValue)
1: ASMW [index][index]← newValue
2: MR[index]←MW [index]

———————————————————————
AsynchronousWriter::WriteToStableStorage()
1: loop
2: WaitForMutatorNotification()
3: for k = 0 to sizeWords do
4: write-to-disk AS¬MW [k][k]
5: end for
6: end loop

latency peak associated with negating the bit array at checkpoint
boundaries.

3.3 Wait-Free Ping-Pong
All algorithms we have analyzed so far may introduce latency

spikes at the end of a checkpoint period due to either synchronous
copying or bulk bit-array reset. In this section, we present Wait-
Free Ping-Pong, an algorithm that invests extra main memory and
extra work per update to avoid these peaks. Wait-Free Ping-Pong
uses a total of three versions of the application state. Two of these
are used to ensure that the Mutator and Asynchronous Writer al-
ways access separate versions of the state and never have to ac-
quire locks. The final copy allows Wait-Free Ping-Pong to do only
a constant amount of work at checkpoint boundaries. Rather than
performing a large copy or linear time bit-array reset, it only needs
to swap two pointers before starting the next checkpoint.

The three copies of the state maintained by Wait-Free Ping-Pong
are called AS, Odd, and Even. The Mutator thread reads from AS
and applies each update to both AS and one of the other copies
(either Odd or Even). The Asynchronous Writer uses the other
copy to construct a consistent checkpoint that it writes to disk in
the background. At the end of the checkpoint period the roles of
Odd and Even are switched so that new updates can be flushed
to disk. In order to avoid unnecessary disk writes, each word in
Odd and Even has an associated mark bit that indicates whether it
has been updated during the current checkpoint period. The Asyn-
chronous Writer merges those words that have their mark bits set
with the previous checkpoint in order to create a new consistent
checkpoint.

We show the initial state of Wait-Free Ping-Pong in Figure 2(a).
AS contains the application state, Odd is empty, and Even contains
a copy of AS. The Asynchronous Writer will process Even and
flush to disk all of the words that have a mark bit set. During the
first checkpoint period, this corresponds to the whole state. In the
meantime, the Mutator applies updates to AS. For every such up-
date, the Mutator must guarantee that the corresponding mark bit
for the updated word is set on Odd and that the update is also ap-
plied to Odd. The situation after a few mutator updates is shown in

Algorithm 2: Wait-Free Ping-Pong
input:
/* ApplicationState is vector containing words */
ApplicationState AS← initial application state
ApplicationState currentAS
ApplicationState previousAS← initial application state
/* size of application state in words */
sizeWords← |AS|
/* dirty words in the current checkpoint */
BitArray currentBA←{0,0, . . . ,0}
/* dirty words from the last checkpoint */
BitArray previousBA←{1,1, . . . ,1}
———————————————————————
Mutator::PrepareForNextCheckpoint()
1: /* pointer swapping */

swap (previousAS,currentAS)
swap (previousBA,currentBA)

Mutator::PointOfConsistency()
1: if Asynchronous Writer done then
2: PrepareForNextCheckpoint()
3: NotifyAsynchronousWriter()
4: end if

Mutator::HandleWrite(index, newValue)
1: AS[index]← newValue
2: currentAS[index]← newValue
3: currenBA[index]← 1

———————————————————————
AsynchronousWriter::WriteToStableStorage()
1: loop
2: WaitForMutatorNotification()
3: for k = 0 to sizeWords do
4: if previousBA[k] then
5: write-to-disk previousAS[k]
6: previousBA[k]← 0
7: previousAS[k]← empty
8: else
9: write-to-disk word k from previous checkpoint

10: end if
11: end for
12: end loop

Figure 2(b). Updated words are shaded in the figure – their most
recent values are present in both AS and Odd.

At the end of the first checkpoint period, the Asynchronous
Writer will have written all of the marked words in Even out to
disk. In addition, it will have reset their mark bits. For clarity of
presentation, we assume that not only the mark bits but also the
contents of those words are reset by the Asynchronous Writer. In
an implementation, however, this latter action may be skipped for
performance. Note that the Mutator is still applying updates to Odd
up to this point. Now, the Asynchronous Writer is done with this
checkpoint period. The next checkpoint period proceeds similarly
with the roles of Odd and Even inverted. This is shown in Fig-
ure 2(c). During the next checkpoint period, the algorithm applies
updates to Even and the words marked in Odd are flushed to disk by
the Asynchronous Writer. Figure 2(d) displays the situation after a
few updates from the Mutator in the second checkpoint period.

Algorithm 2 presents the logic of Wait-Free Ping-Pong. Note
that currentAS and currentBA point to the copy of the applica-
tion state collecting updates for the current checkpoint period (ei-
ther Odd or Even). From a high-level perspective, currentAS and
currentBA may be seen as an in-memory, compressed implementa-
tion of a log of updates for this checkpoint period.

Note that as part of the WriteToStableStorage method, the
Asynchronous Writer must merge the words updated during the
most recent checkpoint (previousAS[k]) with the last consistent

checkpoint in order to construct a new consistent checkpoint that
can be written to disk (lines 5 and 9). This merge can be done
in one of two ways. In the first method, which we call Copy, the
Asynchronous Writer maintains an extra copy of the application
state which it “rolls forward” by applying the new updates before
flushing the full checkpoint to disk. In the second method, called
Merge, the Asynchronous Writer reads the most recent checkpoint
from disk and applies the new updates before streaming the new
checkpoint to disk. Note that the updates can be applied as the
checkpoint is read, so it is not necessary to maintain an additional
copy of the state in main memory. We compare these alternatives
in Section 5.5

Wait-Free Ping-Pong introduces negligible overhead to the Mu-
tator at the end of a checkpoint period; only simple pointer swaps
are needed. Thus, there is no single point in time at which the algo-
rithm introduces a latency peak. On the other hand, this algorithm
doubles the number of updates, as each update is applied both to
the application state and to a copy.

4. IMPLEMENTATION
Since all of the algorithms we evaluate make frequent access to

multiple copies of the application state in main memory, cache and
TLB performance are important considerations to reduce overhead.
In this section, we describe the important features of our cache-
optimized implementations.

4.1 Existing Algorithms
We start by describing our implementations of the two existing

algorithms: Naive-Snapshot and Copy-on-Update.
Naive Snapshot (NS). As this algorithm is relatively straightfor-
ward, we focused on making the memory copy at the beginning of
a new checkpoint period as efficient as possible. With microbench-
marks, we observed that a memcpy of a memory-aligned application
state was better than our attempts to manually unroll the copy loop.
Bit-Array Packed Copy-on-Update (BACOU). The main data
structures used by Copy-on-Update include the primary and
shadow states maintained by the algorithm, bit arrays with meta-
data on dirty memory blocks, and lock information for these blocks.
In order to minimize the overhead of bulk bit-array resetting, we
packed the bits into (64 byte) cache lines and used long word in-
structions for all operations. Furthermore, we interleaved blocks
of the primary and shadow copies of the application state into one
cache line, so that they will be fetched together. This optimized
implementation gave us a factor of five improvement over a naive
implementation of the algorithm.

4.2 Wait-Free Zigzag
The Wait-Free Zigzag algorithm has two major sources

of overhead: the bit array lookups in the handleRead
and handleWrite routines, and the bulk negation in the
prepareForNextCheckpoint routine. To address these sources
of overhead, we devised the following data layout variations.
Naive Wait-Free Zigzag (NZZ). This is the naive translation of the
algorithm presented in Section 3.2. We represented each of AS0,
AS1, MR, and MW as a separate array in main memory and encoded
each bit of MR and MW as one byte for efficient access.
Interleaved Wait-Free Zigzag (IZZ). In this variant, we inter-
leaved the main-memory layout of AS0, AS1, MR, and MW . Each
cache line holds a fixed number of interleaved records, containing
a word from each data structure, stored in order. Placing all of the

words necessary for handleRead and handleWrite in the same
cache line reduces memory stalls on read and write instructions.
Packed Wait-Free Zigzag (PZZ). This variant is similar to IZZ,
but organizes data inside of a cache line differently. Instead of
laying out interleaved records row-at-a-time, we laid them out
column-at-a-time, in a style reminiscent of PAX [1]. This maintains
the benefits for handleRead and handleWrite, while allowing
prepareForNextCheckpoint to be implemented more efficiently
with long word negation instructions.
Bit-Array Packed Wait-Free Zigzag (BAZZ). We observed ex-
perimentally that negating the MR bits at the end of each check-
point period was the major source of overhead in Wait-Free Zigzag
(Section 5.2). As with BACOU, we optimized this bulk negation
by combining the representation of MR and MW into a single bit-
packed array. We divided each cache line in the array in half, and
used the first half for the bits of MR and the second half for bits
of MW . In a system with a cache line size of 64 bytes, each cache
line encodes 256 bits from each array. We negated the bits of MR
efficiently with long word instructions.

4.3 Wait-Free Ping-Pong
Unlike Wait-Free Zigzag, Wait-Free Ping-Pong has a very inex-

pensive prepareForNextCheckpoint routine. On the other hand,
it must write to two copies of the application state during each up-
date. With this in mind, we investigate the following two variants
of Wait-Free Ping-Pong.
Naive Wait-Free Ping-Pong (NPP). In this variant, we allocated
AS, Odd, Even, and their respective bit arrays as independent arrays
in main memory. Additionally, we also represented each bit using
one byte in order to avoid bit encoding overhead on writes.
Interleaved Wait-Free Ping-Pong (IPP). As in the correspond-
ing variant for Wait-Free Zigzag, we interleaved the memory lay-
out of AS, Odd, Even, and their respective bit arrays. Each cache
line contains a set of interleaved records with one word from each
data structure in sequence. In this way, the additional writes of
handleWrite fall on the same cache line as the original write to the
application state. We thus expect to eliminate any DTLB or cache
miss overheads associated with the additional writes of Wait-Free
Ping-Pong using this organization.

We also applied a number of other optimizations, including us-
ing different page sizes, eliminating conditionals, and aggressively
inlining code. Using large pages resulted in a considerable perfor-
mance improvement, which we report in Section 5.6.

5. EXPERIMENTS
In this section we compare the performance of Wait-Free Zigzag

and Wait-Free Ping-Pong with existing algorithms. We consider
several metrics in our evaluation. First, we look at the synchronous
overhead per checkpoint. This added overhead indicates the to-
tal amount of work done by the checkpointing algorithm during
a checkpoint period. We also measure how the overhead is dis-
tributed over time in order to see whether the checkpointing algo-
rithms introduce any unacceptable latency peaks.

5.1 Setup and Datasets
We compare Wait-Free Zigzag and Wait-Free Ping-Pong with

Naive-Snapshot and Copy-on-Update using two different synthetic
workloads and a main-memory TPC-C application.
Synthetic Workloads. For the synthetic workloads, we produced
trace files containing the sequence of physical updates to apply to
the application. We make these traces sufficiently large to avoid
transient effects and keep them in main memory to avoid I/O ef-

fects. Updates are applied as fast as possible by our benchmark,
but to normalize results for presentation, we group updates into
intervals that correspond to 0.1 seconds of simulated application
logic. In addition, to meaningfully compare the overhead of check-
pointing algorithms, we ensure that the checkpointing interval is
the same for all algorithms.

In the first workload, we model the application state as a set of
8 KB objects. Different FC applications may have different data
models or schemas, but this is a reasonable general model that al-
lows us to vary the state size by changing the number of objects. We
use 25,000 rows as a default, which yields approximately 200 MB
of dynamic state. In this workload, we distribute updates by select-
ing an object and then selecting one of the 2,000 four-byte words
of the object using identical Zipf-distributions with parameter α.
Using this skewed distribution allows us to model applications in
which part of the state is “hot” and is frequently updated. We have
found that our results remain consistent across a range of α values,
so for space reasons we present all results with α = 0.5.

We also experimented with a synthetic MMO workload. Accu-
rately modeling an MMO is challenging as games vary widely, but
we have attempted to capture the salient features using a Markov
model. Each agent in the game is represented as an object and
modeled with a set of five semi-independent probabilistic state ma-
chines associated with common gameplay behaviors. We tuned the
transition probabilities for each state machine by looking at up-
date rates produced for each type of action. We then adjusted the
state-transition probabilities until these update rates corresponded
to those we have observed in specific MMOs. For our experiments,
we used 2,000 players and a total of 531,530 updates per second.
Each player object contains roughly 100 KB of state corresponding
to a wide variety of character attributes.

We ran all synthetic experiments on a local Intel Xeon 5500
2.66 GHz with 12 GB RAM and four cores running CentOS. Its
Nehalem-based CPU has 32 KB L1 cache, 256 KB L2 cache for
each core and a shared L3 cache of 8 MB. We measured disk band-
width in this server to be roughly 60 MB/s. For the experiments
with synthetic workloads, we first ensured that the checkpoint inter-
val was large enough for any of the algorithms to finish writing the
entire checkpoint to disk. Then, we normalized checkpoint interval
at roughly 4 seconds, so as to provide for short estimated recov-
ery time. Once we established this, we turned off both the Asyn-
chronous Writer and logical logging. These mechanisms perform
the same amount of work independently of checkpointing method,
and disabling them enabled us to measure the synchronous over-
head introduced by different algorithms more accurately.
TPC-C Application. We implemented a single-threaded transac-
tion processing system in main memory. Following the method-
ology from [28], we implemented the TPC-C workload by writ-
ing stored procedures in C++. We drive this application with a
memory-resident trace containing transaction procedure calls re-
specting the transaction mix dictated by the TPC-C specification.
As in [28], we do not model think times in order to stress our im-
plementation. As usual, we report the number of new order trans-
actions per second.

Unlike in the synthetic benchmark experiments, we checkpoint
as frequently as possible in order to understand the maximum im-
pact of our algorithms in a realistic application. This yields the
minimum possible recovery time, as the length of the log since
the last checkpoint is minimized. We ran our TPC-C application
on an Amazon Cluster Compute Quadruple Extra Large instance
with 23 GB RAM, and computing power equivalent to two In-
tel Xeon X5570 quad-core Nehalem-based processors. We write
checkpoints and the log to two separate RAID-0 devices, which

we configured with ten Amazon Elastic Block Storage (Amazon
EBS) volumes. We observed that the aggregate bandwidth of these
RAID-0 devices depended on the size of the I/O request, ranging
from under 10 MB/s for small requests to over 150 MB/s for large
requests exceeding 1 GB. In order to completely utilize disk band-
width, we scale the checkpoint interval with the size of the dynamic
application state, so that the Asynchronous Writer always writes
data to disk as fast as possible. This differs from our synthetic
experiments where we set the checkpoint interval to a constant for
all measurements. Nevertheless, to fairly compare the overhead of
different algorithms, we set the length of the checkpoint interval to
be the same for all methods at each database size.

Since each EC2 instance communicates with EBS over the net-
work, there is a CPU cost to writing out state in the Asynchronous
Writer. To limit this effect, we set the thread affinity so that the
Asynchronous Writer always runs on a separate core from the Mu-
tator thread. As the number of cores per machine continues to in-
crease, we believe that it will become increasingly feasible to de-
vote a core to durability in this way. A thorough evaluation of these
methods on a single core remains future work.

In addition to turning on the Asynchronous Writer, we also en-
able logging for these experiments. To minimize synchronous I/O
effects, we configured the Logger thread to perform group commit
in batches of 500 transactions. We also overlap computation with
IO operations so that when the Logger is writing the actions of one
batch of transactions, the Mutator is processing the next batch.

In standard OLTP systems, it is common to use the ARIES re-
covery algorithm [21]. As a baseline for our TPC-C experiments,
we have implemented an optimized version of ARIES for main-
memory databases. As FC applications do not have transactions
in flight at points of consistency, checkpointing does not need to
be aware of transaction aborts. This eliminates the need to main-
tain undo information. In addition, since the database is entirely
resident in main memory, there is no need to keep a dirty page ta-
ble. So in our scenario, ARIES reduces to physical redo logging
with periodic fuzzy checkpoints. To optimize it as much as possi-
ble, we compressed the format of physical log records by exploit-
ing schema information instead of recording explicit offsets and
lengths whenever profitable.

In the remainder of this section, we first compare the different
implementation options from Section 4 for our algorithms (Sec-
tion 5.2). After selecting the alternatives with the best performance,
we observe how our new algorithms compare to existing methods
using both the Zipf and MMO workloads (Sections 5.3 and 5.4).
Then, we report on how our methods affect application throughput
in our TPC-C application (Section 5.5). Finally, we investigate the
impact of a further optimization, using large pages, on the relative
performance of all algorithms (Section 5.6).

5.2 Comparison of Implementation Variants
In this section we compare the performance of the different im-

plementations of our algorithms on the Zipf workload. To get a
deeper understanding of the runtime characteristics, we profiled our
implementation with the Intel VTune Performance Analyzer [15].
Table 2 shows a subset of the statistics we collected from VTune.
It includes cycles per instruction (CPI) as well as various measures
to characterize the behavior of cache, DTLB, and page walks. For
reference, we display these statistics not only for all algorithms, but
also for the raw Mutator program without checkpointing.

5.2.1 Wait-Free Zigzag
Figure 3 shows the average overhead per checkpoint period of

the different variants. Both IZZ and PZZ are less efficient than NZZ,

Algorithma CPI
L1D L1D L2 DTLB # Page

Misses / Miss Miss Miss % Walks /
Update Rate Rate (STORE) Update

NS 1.79 2.1 6.6% 10.8% 7.1% 0.50

COU 2.91 1.2 8.5% 9.2% 23.5% 0.53
BACOU 2.51 1.1 4.5% 4.5% 6.5% 0.41

NZZ-UP 13.6 0.8 22.3% 24.6% 95.2% 0.78
NZZ-NE 0.7 0.2 3.1% 3.1% 0.8% -
IZZ-UP 11.1 0.2 7.7% 7.2% 49.2% 0.29
IZZ-NE 0.7 1.0 3.0% 3.4% 1.6% 0.02
PZZ-UP 7.1 0.3 5.0% 5.2% 48.7% 0.37
PZZ-NE 5.0 0.8 22.8% 25.4% 3.3% 0.02
BAZZ-UP 1.5 0.04 6.9% 7.2% 0.03% -
BAZZ-NE 1.6 0.03 6.9% 8.0% - -

NPP 7.1 1.9 23.6% 24.0% 97.4% 0.96
IPP 2.5 1.7 7.4% 7.8% 98.3% .85

Raw Mutator 2.4 2.0 9.4% 8.0% 96.0% 1.00

a-UP: update handling phase; -NE: bulk negation phase

Table 2: Profiling on synthetic workload, 320K updates/sec

except for extremely high update rates. With NZZ and PZZ, the
use of long word instructions during negation brings benefits over
IZZ, which negates single bytes at a time. However, the benefits
are much smaller for PZZ, given that it still interleaves state infor-
mation between small bit blocks. BAZZ, a variant that focuses on
optimizing bulk bit-array negation, dominates all other variants.

In general, there is a tension between accelerating bulk bit-array
negation and reducing per-update overhead. Table 2 shows pro-
filing results for 320,000 updates per second. NZZ’s update han-
dling phase has an L1D cache miss rate of 22.3% and an L2 cache
miss rate of 24.6%. In addition, every update incurs 0.78 page
walks on average, given NZZ’s independent allocation of data struc-
tures. Bulk negation, on the other hand, benefits from prefetching
on these data structures. The cache miss rate is about 3% for both
the L1D and the L2 cache; the DTLB miss rate is also low. IZZ
trades bulk negation performance for better update performance.
Its DTLB miss rate is much lower than that of NZZ. The ratio of
cache misses to updates for IZZ is much higher during the bulk
negation phase, however. PZZ pays more on cache misses and
page walks at the update phase, but less during the bulk negation
phase. Meanwhile, BAZZ focuses solely on making negation more
compact, and dramatically improves performance despite a higher
cache miss rate. As Figure 3 shows, this is an important effect at
most update rates.

Overall, we have observed that negation is the most significant
source of overhead for Wait-Free Zigzag unless the update rate is
extremely high. Thus, BAZZ is the best variant for this algorithm
under typical workloads. For example, at 320,000 updates per sec-
ond, BAZZ exhibits about half as much overhead as NZZ and one
third the overhead of IZZ.

5.2.2 Wait-Free Ping-Pong
Figure 4 shows the overhead of the two variants of Wait-Free

Ping-Pong. NPP’s overhead is roughly six times higher than IPP’s
over all update rates. Like NZZ, NPP runs into similar problems
with DTLB and cache performance. Table 2 shows observation.
that NPP’s cycle-per-instruction ratio (CPI) is 2.8 times higher.

IPP, on the other hand, potentially incurs a cache miss on the
write to the application state, but then is guaranteed to find the other
words to be written on the same cache line. This has a positive
effect in the L1D LOAD hit rate and eliminates most of the stalls
on LOAD. IPP pays only a 43% performance overhead on top of
the raw Mutator, a great improvement compared to the 258% of
NPP. These numbers are very consistent across update rates.

10
-4

10
-3

10
-2

10
-1

10
0

 10000 100000 1e+06

O
v

er
h

ea
d

 p
er

 C
h

ec
k

p
o

in
t

[s
ec

],
 l

o
g

sc
al

e

Updates per Second, logscale

NZZ

IZZ

PZZ

BAZZ

Figure 3: Wait-Free Zigzag Overhead

10
-4

10
-3

10
-2

10
-1

10
0

 10000 100000 1e+06

O
v

er
h

ea
d

 p
er

 C
h

ec
k

p
o

in
t

[s
ec

],
 l

o
g

sc
al

e

Updates per Second, logscale

NPP

IPP

Figure 4: Wait-Free Ping-Pong Overhead

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 10000 100000 1e+06

O
v

er
h

ea
d

 p
er

 C
h

ec
k

p
o

in
t

[s
ec

],
 l

o
g

sc
al

e

Updates per Second, logscale

NS

BACOU

BAZZ

IPP

Figure 5: Zipf workload: Overhead

In short, this experiment shows that IPP comfortably dominates
NPP over the whole spectrum of update rates evaluated.

5.3 Synthetic Zipf Workload
In this section, we compare the performance of our new algo-

rithms with the best cache-aware variants of Naive Snapshot (NS)
and Copy-on-Update (BACOU). We report numbers for the opti-
mized variants described in Section 4. For both BACOU and BAZZ,
the overhead numbers we report are lower bounds. Since we turned
off the Asynchronous Writer, there is no lock contention between
the Mutator and the Asynchronous Writer in BACOU. We also do
not model reads, which discounts the small amount of per-read
overhead for BAZZ. As shown below, IPP significantly dominates
all these algorithms, so we do not explore these effects further.
Checkpointing Overhead. Figure 5 shows the overhead of the al-
gorithms for update rates between 10,000 and 5,120,000 updates
per second. As expected, NS is essentially constant regardless
of the number of updates, since it always copies the entire state.
This is the worst strategy for very low update rates since many un-
changed cells get copied, but it dominates the other algorithms,
with the notable exception of IPP, for more than 160,000 updates
per second. This agrees with the results of [27] – when a large frac-
tion of the words gets updated, taking a checkpoint requires copy-
ing most of the state anyway, and NS does this very efficiently.

Among the existing algorithms, BACOU is the best strategy for
low update rates [27], and it is four times faster than NS for 10,000
updates per second. Its overhead increases steadily with the up-
date rate, however, since it must lock and copy a memory block
the first time the block is updated. As we increase the update rate,
more blocks get updated, leading to higher locking and copying
overheads. Even though updates are distributed using a Zipf distri-
bution, we have observed only a minor effect from the fact that up-
dates have higher likelihood to hit hot words that fall into the same
memory block. This measurement corroborates prior simulation
results [27]. We observe that BACOU is never the best algorithm
for any update rate. It is always dominated by IPP, and it is also
dominated by NS for high update rates.

IPP displays the best performance of any of the algorithms for
all but the highest update rates. At 80,000 updates per second, it
is nine times better than BAZZ and over an order of magnitude bet-
ter than NS and BACOU. At 320,000 updates per second, the gap is
still a factor of 8.4 with respect to BAZZ, 9.6 with respect to BACOU
and three with respect to NS. IPP scales linearly with the number of
updates over the entire range of update rates, since the predominant
cost is updating each of two copies of the application state. The ab-
solute overhead of the extra updates performed by IPP is extremely
low, however, due to its cache-aware data layout and its wait-free
operation. Unlike in BAZZ, in IPP the Mutator does not do any
bit negations, and the beginning of a checkpoint consists only of
swapping pointers.

This experiment shows that, for our default application state size

of 200MB, IPP is the method with the lowest overhead for all but
the highest update rates. Next, we validate that this trend is robust
for a wide range of state sizes.
Scaling the State Size. To understand how our algorithms per-
form for applications with larger state sizes, we scale the applica-
tion state from 100 MB to 1.6 GB by adding more objects to the
state. Figures 6 and 7 show the overhead per checkpoint period for
two different update rates. In each case, we scale the update rate
with the state size, so in Figure 6, for every second, we update a
number of words equal to 0.08% of the state size. This corresponds
to 40,000 updates per second for 200 MB of state. In Figure 7 the
update rate corresponds to 2.56%, which is 1,280,000 updates per
second for 200 MB of state.

From these graphs we confirm that the trends we described above
for 200 MB of application state continue to hold for larger state
sizes. When the update rate is fairly low (Figure 6), IPP has roughly
an order of magnitude lower overhead than NS regardless of the
state size. On the other hand, when the update rate is very high
(Figure 7), NS dominates all other algorithms, as it is insensitive
to the number of updates. IPP continues to dominate BACOU and
BAZZ for larger state sizes regardless of the update rate.
Overhead Distribution. The above experiments already show that
IPP dominates BACOU and is preferable to NS for all but the high-
est update rates, but the overhead does not tell the whole story. As
discussed in Section 2.1, we also want the overhead to be uniformly
distributed over time. Figures 8 and 9 show the cost of the Mutator
thread for 320,000 and 1,280,000 updates per second, respectively.
Points on the x-axis correspond to time intervals of 0.1 sec, or al-
ternatively the time it takes to execute 32,000 or 128,000 updates.
Each point in the graphs indicates the total time taken by the Mu-
tator thread during one such interval. The graphs thus give us an
indication of how work is distributed over time.

From these graphs, we see that NS has the worst overhead dis-
tribution of any of the algorithms. At 320,000 updates per second
(Figure 8) it has a latency peak of 29 ms during intervals when the
state is copied. BAZZ and BACOU have much smaller peaks, at 4 ms
and 6 ms, respectively. These results indicate that there is a trade-
off between the absolute overhead per checkpoint and the overhead
distribution. Recall from Figure 5 that NS has lower overhead than
BACOU at 320,000 updates per second, but the latter has a much
lower spike. Fortunately, this tradeoff is not present for IPP, which
has a nearly constant overhead of 0.8 ms per 0.1 second interval at
320,000 updates per second. This is because IPP only has to swap
pointers at the beginning of each checkpoint, and most of the work
is distributed evenly among the updates.

Figure 9 tells a slightly different story. The number of updates
executed during each point of the graph has increased to 128,000,
and this increases the baseline overhead for all of the strategies that
do some work per update. BAZZ shows the most dramatic increase
with a nearly constant overhead of 10 ms. BACOU and IPP also
show modest overhead increases. Additionally, we can see the finer

10
-3

10
-2

10
-1

10
0

 100 200 400 800 1600

O
v

er
h

ea
d

 p
er

 C
h

ec
k

p
o

in
t

[s
ec

],
 l

o
g

sc
al

e

Application State Size [MB], logscale

NS

BACOU

BAZZ

IPP

Figure 6: Scaleup: 0.08% updates/sec

10
-3

10
-2

10
-1

10
0

 100 200 400 800 1600

O
v

er
h

ea
d

 p
er

 C
h

ec
k

p
o

in
t

[s
ec

],
 l

o
g

sc
al

e

Application State Size [MB], logscale

NS

BACOU

BAZZ

IPP

Figure 7: Scaleup: 2.56% updates/sec

0.01

0.02

0.03

 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

M
u

ta
to

r
C

o
st

 [
se

c
]

Time [sec]

NS

BACOU

BAZZ

IPP

Figure 8: Latency: 320K updates/sec

structure of BACOU. There is a spike in the overhead at the end of
each checkpoint period, and then the overhead gradually decreases
during the checkpoint. This is because BACOU only has to copy
a block the first time it is updated. As the checkpoint progresses,
more blocks are already dirty and do not need to be copied.

Significantly, the behavior of NS changes very little at the higher
update rate. This is because all of the work done by NS is done
at the end of a checkpoint period. The small increase in the figure
is due to the time necessary to apply the updates. This indicates a
distinction between the overhead incurred by NS and the overhead
incurred by the other algorithms. Aside from the small spikes for
BAZZ and BACOU, the other algorithms incur most of their cost
for work they do at each update. Thus as we increase the number
of updates per unit of time, we expect their overhead to increase.
Furthermore, the cost shown in each point of Figures 8 and 9 is dis-
tributed across all of the updates in the 0.1 second increment. On
the other hand, the entire cost of NS occurs between two updates
at the end of each checkpoint period. Thus NS is insensitive to the
update rate, but it may force the system to block for a consider-
able amount of time during the synchronous copy. As the height of
NS’s latency spike is proportional to the application state size, this
problem becomes worse when we scale the state size.

Overall, IPP has the most consistent overhead of any tested al-
gorithm, and its total overhead is also lowest for all but the highest
update rates. Thus we believe that it best satisfies the requirements
for FC applications described in Section 2.1.

5.4 Synthetic MMO Workload
We also ran our experiments on a trace produced using our MMO

workload. Figure 10 shows the checkpoint overhead. In this case,
both wait-free strategies outperform BACOU. As expected, IPP per-
forms the best, with nearly seven times less overhead than NS.
BAZZ is comparable to NS, even though it had higher overhead than
NS for 500,000 updates per second in the Zipf experiments. Part of
the reason our new algorithms do so well in this case is that many
attributes were almost never updated. About 80 percent of the at-
tributes are only updated in response to player actions, which are
human initiated and thus occur infrequently. This type of workload
is bad for NS, as it has to copy many cells that are never updated.

Figure 11 shows the performance of each algorithm in the MMO
simulation over time. The Mutator cost is quite variable compared
to Figure 8, due to the more realistic workload, but the trends are
the same. NS shows peaks of up to 29 ms, while IPP has a very low,
almost uniform latency of at most 0.9 ms. These results suggest that
Wait-Free Ping-Pong offers real advantages for MMO workloads.

Finally, we measured the recovery time for the MMO workload.
We expected this to be the same for all of the algorithms, as they
all store complete checkpoints on disk. In addition, this time is
the same as for the synthetic workload, given that the application
state size for both scenarios is the same. To measure this time, we
observed the time to reread the checkpoint from disk after a crash

simulated by server reboot, obtaining an average of 3.9 seconds out
of five measurements. To simulate replaying the logical log, we can
reapply the updates from the MMO trace file that occurred since
the last checkpoint. The maximum time to reapply those updates
is equal to our checkpointing interval of 4.2 seconds, resulting in
a worst-case recovery time of only 8.1 seconds. Given that current
MMO players regularly tolerate downtime [7], we think this is very
reasonable for real systems.

In short, the above experiments show that IPP is the method with
the lowest overhead and the best overhead distribution for a realistic
application with hundreds of thousands of updates per second. In
addition, IPP exhibits short recovery times in this scenario.

5.5 TPC-C Application
To validate the usefulness of our techniques in realistic FC ap-

plications with logging and checkpoint writing enabled, we com-
pare the total overhead introduced by different checkpointing tech-
niques in our main-memory implementation of the TPC-C bench-
mark [31]. We stress our implementation by processing as many
transactions per second as possible and show results for the two
best methods for high update rates: Naive Snapshot (NS) and Wait-
Free Ping-Pong (IPP). In addition, we show the performance of our
optimized version of ARIES (OPT. ARIES) as a baseline method.

Figure 12 shows throughput as we increase the number of ware-
houses in TPC-C. Recall that in this measurement we keep the ra-
tio of application state size to checkpoint interval fixed. In other
words, we checkpoint as fast as possible to achieve short recov-
ery times while ensuring that the checkpoint interval is equal for
all methods so as to allow for direct overhead comparison. Thus
the checkpoint sizes grow and so do the costs per checkpoint. The
maximum attainable performance is displayed by running the ap-
plication with checkpointing disabled. Maximum throughput de-
clines as we scale the number of warehouses given that we must
operate over a larger database in main memory.

We observe that the relative performance of all methods remains
roughly unchanged as we scale the number of warehouses. The
variants of IPP using the Copy and Merge methods described in
Section3.3 for merging the new updates with the previous check-
point perform similarly. IPP-Copy always slightly outperforms
IPP-Merge at the cost of maintaining an additional copy of the
application state. Both IPP variants dominate NS, which in turn
dominates OPT. ARIES. At 60 warehouses, application throughput
decreases by 10.11% when using IPP-Copy, by 27.92% when using
NS, and by 34.21% when using OPT. ARIES.

In order to understand the distribution of overhead in the TPC-
C experiment, we also measured the response time of each of the
algorithms. Figure 13 reports these results, where each point corre-
sponds to a batch of 500 transactions that are committed together.
The response time is measured as the time between the start of one
batch of transactions and the start of the next. The large peaks in
the response time of NS are due to the synchronous copy time at the

0.00

0.01

0.01

0.01

0.02

0.03

0.03

 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

M
u

ta
to

r
C

o
st

 [
se

c
]

Time [sec]

NS

BACOU

BAZZ

IPP

Figure 9: Latency: 1,280K updates/sec

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

NS BACOU BAZZ IPP

O
ve

rh
ea

d
pe

r C
he

ck
po

in
t [

se
c]

Figure 10: MMO: Overhead

0.001

0.003

0.006

0.029

 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

M
u

ta
to

r
C

o
st

 [
se

c]
,

lo
g

sc
al

e

Time [sec]

NS

BACOU

BAZZ

IPP

Figure 11: MMO: Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
[T

P
S

]

Warehouses

Checkpoint Disabled
IPP-Copy

IPP-Merge
NS

OPT. ARIES

Figure 12: TPC-C Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2000 2200 2400 2600 2800 3000

R
es

p
o

n
se

 T
im

e[
se

c]

Batch Number

IPP-Copy
IPP-Merge

NS
OPT. ARIES

Figure 13: TPC-C Latency

10k
0 %

20 %

40 %

60 %

80 %

100 %

40k 160k 640k 2.5m 10m

!"
#$
%#
&'
!(
)#
$*
#+
,!
-.
/
0
!1
+2
#3
!4!
-5
6
0
!1
+2
#3

7!81,+'#9!1#$!:#%;&,

NZZ
IZZ

PZZ
BAZZ
NPP
IPP

NS
BACOU

Figure 14: Large Page Overhead

end of each checkpoint period. The remaining peaks in all of the
algorithms are due to the cost of logging to EBS. Recall that while
the Logger is writing to EBS, the Mutator executes the next batch
of transactions. This hides some of the disk latency, but the Mutator
still blocks if it finishes the next batch before the Logger. Thus the
response time is still quite erratic due to variability in transaction
lengths and EBS latency. Since OPT. ARIES uses physical logging,
it must write more data to disk, and thus the peaks for OPT. ARIES
are both larger and more frequent than the other methods.

Based on these results, we find that IPP allows for frequent
checkpointing with significantly lower overhead than the best ex-
isting methods. Further, it distributes overhead more evenly than
either Naive Snapshot or ARIES, and thus is more suitable for
latency-sensitive applications. As the memory capacity and num-
ber of cores in a single node continue to increase, we will be able to
process even more warehouses within a single machine. Thus, the
absolute difference in throughput between using IPP and existing
methods will become even more dramatic in the future. There-
fore, our experiments suggest that IPP should be the checkpointing
method of choice for FC applications.

5.6 Further Optimizations: Large Pages
In order to further increase update rates and stress the limits of

all methods, we investigate the effect of an additional optimization.
As discussed above, page walks resulting from TLB misses are a
significant bottleneck for the Mutator in most algorithms we exam-
ined. Large pages may reduce TLB misses because they cover the
same region of physical memory with a smaller number of TLB
entries. In our scenario, the whole application state and auxiliary
data structures are implemented as a few large objects in memory,
so using large pages causes very little internal fragmentation.

Figure 14 shows the reduction in overhead when we use different
page sizes in the Synthetic Zipf workload. Large pages have little
impact on NS and BACOU, since these two methods do not put
much stress on TLB (Table 2). In constrast, all variants of Wait-
Free Zigzag and Wait-Free Ping-Pong benefit noticeably from large
pages. In BAZZ, using large pages yields a 40% to 60% cut in
overhead. In IPP, a consistent 80% overhead cut is obtained. These
two algorithms benefit the most from using large pages, and remain
the best candidates from their respective family of variants. We also

increased the update rates to an extremely high value to compare
the overhead of IPP and NS when using large pages. Over a range
up to ten million updates per second, IPP outperforms NS by up to
three orders of magnitude and maintains nearly constant latency.

6. RELATED WORK
There has been extensive work in checkpointing algorithms for

main-memory DBMSs [8, 23, 25, 26, 36]. Recently, Vaz Salles et
al. evaluated the performance of these algorithms for MMO work-
loads [27]. Naive-Snapshot and Copy-on-Update came out as the
most appropriate algorithms for checkpointing these FC applica-
tions. As we have seen in our experiments, Wait-Free Ping-Pong
dominates those methods over a wide range of update rates. In con-
trast to Naive-Snapshot, Wait-Free Ping-Pong distributes overhead
better over time, eliminating latency peaks. In contrast to Copy-on-
Update, Wait-Free Ping-Pong completely eliminates locking over-
heads, as it is wait-free within checkpoint periods.

There have been different approaches to integrating checkpoint-
recovery systems with applications. One consideration is whether
to integrate checkpointing at the system [19, 22] or application
level [4, 5]. Additionally, checkpointing may be offered to applica-
tions embedded in a language runtime [37], through a library [22],
or via compiler support [5]. Our work performs application-level
checkpointing and integrates with the application logic through a
library API (Section 2.2). Thus we are able to checkpoint only the
relevant state of the application, something not achieved by system-
level checkpointing schemes. We are also able to exploit applica-
tion semantics, such as frequent points of consistency, to determine
when a consistent image of the state is present in main memory.

In classic relational DBMSs, ARIES is the gold standard for
recovery [21]. As we have seen in Section 5.5, approaches that
necessitate physical logging, such as ARIES or fuzzy checkpoint-
ing [12, 26], exhibit unacceptable logging overheads for the stream
of updates produced by FC applications in main memory.

Hot standby architectures have been commonly used to provide
fault tolerance on multiple database nodes [3, 14]. Recently, Lau
and Madden [18] and Stonebraker et al. [28] propose implement-
ing active standbys by keeping up to K replicas of the state. Sys-
tems using this approach can survive up to K failures, and they can

also use those replicas to speed up query processing. Our check-
pointing algorithms can be used in tandem with these approaches to
bulk-copy state during recovery or when the set of replicas changes.
Many replicated systems (such as VoltDB [33]) also include check-
pointing in order to ensure durability in the event that all replicas
fail (e.g., due to a power outage).

7. CONCLUSIONS
In this paper, we have proposed two novel checkpoint recovery

algorithms optimized for frequently-consistent applications. Both
methods implement highly granular tracking of updates to elimi-
nate latency spikes due to bulk state copying. Moreover, the wait-
free properties of our methods within a checkpoint period allow
them to benefit significantly from cache-aware data layout opti-
mizations, dramatically reducing overhead. Wait-Free Zigzag elim-
inates locking overhead by keeping an untouched copy of the state
during a checkpoint period. Wait-Free Ping-Pong improves both
overhead and latency even more by using additional main memory
space. Our thorough experimental evaluation shows that Wait-Free
Ping-Pong outperforms the state of the art in terms of overhead
as well as maximum latency by over an order of magnitude. In
fact, given that Wait-Free Ping-Pong dominates Copy-on-Update
and may have significantly lower overhead than Naive-Snapshot
over a wide range of update rates, our new algorithm should be
considered as an alternative wherever copy on write methods have
been used in the past.

Acknowledgments. We would like to thank our shepherd,
Daniel Abadi, for his detailed and insightful comments as well
as the anonymous reviewers for their feedback. This material is
based upon work supported by the New York State Foundation for
Science, Technology, and Innovation under Agreement C050061,
by the National Science Foundation under Grants 0725260 and
0534404, by the iAd Project funded by the Research Council of
Norway, by the AFOSR under Award FA9550-10-1-0202, and by
Microsoft. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.

8. REFERENCES
[1] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. Weaving

Relations for Cache Performance. In Proc. VLDB, 2001.
[2] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein,

and R. C. Sears. BOOM: Data-centric programming in the
datacenter. Technical Report UCB/EECS-2009-113, EECS
Department, University of California, Berkeley, 2009.

[3] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in tandem computer
systems. Technical Report 86.2, PN87616, Tandem Computers, 1986.

[4] A. Beguelin, E. Seligman, and P. Stephan. Application Level Fault
Tolerance in Heterogeneous Networks of Workstations. Journal of
Parallel and Distributed Computing, 43(2):147–155, 1997.

[5] G. Bronevetsky, M. Schulz, P. Szwed, D. Marques, and K. Pingali.
Application-level Checkpointing for Shared Memory Programs. In
Proc. ASPLOS, 2004.

[6] K. M. Chandy and L. Lamport. Distributed Snapshots: Determining
Global States of Distributed Systems. ACM TOCS, 3(1):63–75, 1985.

[7] R. Cortez. World Class Networking Infrastructure. In Proc. Austin
GDC, 2007.

[8] D. J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and
D. Wood. Implementation Techniques for Main Memory Database
Systems. In Proc. SIGMOD, 1984.

[9] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey of
Rollback-Recovery Protocols in Message-Passing Systems. ACM
Computing Surveys, 34(3):375–408, 2002.

[10] H. F. Guðjónsson. The Server Technology of EVE Online: How to
Cope With 300,000 Players on One Server. In Proc. Austin GDC,
2008.

[11] N. Gupta, A. J. Demers, J. Gehrke, P. Unterbrunner, and W. M.
White. Scalability for virtual worlds. In ICDE, 2009.

[12] R. Hagmann. A Crash Recovery Scheme for a Memory-Resident
Database System. IEEE Transactions on Computers, 35(9):839–843,
1986.

[13] M. Herlihy. Wait-free Synchronization. ACM TOPLAS,
13(1):124–149, 1991.

[14] S.-O. Hvasshovd, O. Torbjornsen, S. Bratsberg, and P. Holager. The
ClustRa Telecom Database: High Availability, High Throughput, and
Real-Time Response. In Proc. VLDB, 1995.

[15] Intel VTune Performance Analyzer.
http://software.intel.com/en-us/intel-vtune.

[16] Jason Gregory. Game Engine Architecture (Section 7.5). A K Peters,
2009.

[17] E. P. C. Jones, D. J. Abadi, and S. Madden. Low overhead
concurrency control for partitioned main memory databases. In Proc.
SIGMOD, 2010.

[18] E. Lau and S. Madden. An Integrated Approach to Recovery and
High Availability in an Updatable, Distributed Data Warehouse. In
Proc. VLDB, 2006.

[19] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint
and Migration of Unix Processes in the Condor Distributed
Processing System. Technical Report 1346, University of
Winsconsin-Madison, 1997.

[20] T. MacDonald. Solid-state Storage Not Just a Flash in the Pan.
Storage Magazine, 2007. http://searchStorage.techtarget.com/
magazineFeature/0,296894,sid5_gci1276095,00.html .

[21] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM TODS, 17(1):94–162, 1992.

[22] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
Checkpointing under UNIX. In Proc. USENIX Winter Technical
Conference, 1995.

[23] C. Pu. On-the-Fly, Incremental, Consistent Reading of Entire
Databases. Algorithmica, 1:271–287, 1986.

[24] RamSan-400 Specifications.
http://www.ramsan.com/products/ramsan-400.htm .

[25] D. Rosenkrantz. Dynamic Database Dumping. In Proc. SIGMOD,
1978.

[26] K. Salem and H. Garcia-Molina. Checkpointing Memory-Resident
Databases. In Proc. ICDE, 1989.

[27] M. V. Salles, T. Cao, B. Sowell, A. Demers, J. Gehrke, C. Koch, and
W. White. An evaluation of checkpoint recovery for massively
multiplayer online games. In Proc. VLDB, 2009.

[28] M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The End of an Architectural Era (It‘s Time for a
Complete Rewrite). In Proc. VLDB, 2007.

[29] T. Strohman and W. B. Croft. Efficient Document Retrieval in Main
Memory. In Proc. SIGIR, 2007.

[30] A. Thomson and D. Abadi. The case for determinism in database
systems. In Proc. VLDB, 2010.

[31] Transaction Processing Council. TPC Benchmark(TM) C, 2010.
http://www.tpc.org/tpcc/spec/tpcc_current.pdf.

[32] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and
D. Kossmann. Predictable performance for unpredictable workloads.
PVLDB, 2(1):706–717, 2009.

[33] VoltDB. http://voltdb.com/product.
[34] G. Wang, M. V. Salles, B. Sowell, X. Wang, T. Cao, A. Demers,

J. Gehrke, and W. White. Behavioral simulations in mapreduce. In
Proc. VLDB, 2010.

[35] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan.
Scaling Games to Epic Proportions. In Proc. SIGMOD, 2007.

[36] A. Whitney, D. Shasha, and S. Apter. High Volume Transaction
Processing Without Concurrency Control, Two Phase Commit, SQL,
or C++. In Proc. HPTS, 1997.

[37] G. Zheng, L. Shi, and L. V. Kale. FTC-Charm++: an In-Memory
Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPI. In
Proc. CLUSTER, 2004.

http://searchStorage.techtarget.com/magazineFeature/0,296894,sid5_gci1276095,00.html
http://searchStorage.techtarget.com/magazineFeature/0,296894,sid5_gci1276095,00.html
http://www.ramsan.com/products/ramsan-400.htm

	Introduction
	Background
	Requirements for Checkpoint Recovery Algorithms
	Algorithmic Framework
	Existing Algorithms

	New Algorithms
	Design Overview
	Wait-Free Zigzag
	Wait-Free Ping-Pong

	Implementation
	Existing Algorithms
	Wait-Free Zigzag
	Wait-Free Ping-Pong

	Experiments
	Setup and Datasets
	Comparison of Implementation Variants
	Wait-Free Zigzag
	Wait-Free Ping-Pong

	Synthetic Zipf Workload
	Synthetic MMO Workload
	TPC-C Application
	Further Optimizations: Large Pages

	Related Work
	Conclusions
	References

