
SGL: A Scalable Language for Data-Driven Games

[Demonstration Paper]

Robert Albright, Alan Demers, Johannes Gehrke, Nitin Gupta, Hooyeon Lee,
Rick Keilty, Gregory Sadowski, Ben Sowell, Walker White

Cornell University
Ithaca, New York

{ademers, johannes, niting, sowell, wmwhite}@cs.cornell.edu
{rfa5, hl364, rpk22, gjs33}@cornell.edu

ABSTRACT
We propose to demonstrate SGL, a language and system
for writing computer games using data management tech-
niques. We will demonstrate a complete game built using
the system, and show how complex game behavior can be
expressed in a declarative scripting language. The demo will
also illustrate the workflow necessary to modify a game and
include a visualization of the relational operations that are
executed as the game runs.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages

General Terms
Languages

Keywords
Games, Scripting, Aggregates, Indexing

1. INTRODUCTION
Computer games are an important and rapidly growing

class of applications that require extensive computational
resources. In addition to remaking the entertainment indus-
try, games have been used in many applications including
military simulations and education [3]. While games have
traditionally incorporated research from the graphics com-
munity, modern games must solve a wide variety of compu-
tational challenges and can leverage results from many other
areas of computer science [2].

White et al. [1] recently described a broad class of games
called simulation games that can be optimized using data
management techniques. A simulation game is one in which
the player has indirect control of some or all of the char-
acters in the game. In this case, the game engine spends
a significant amount of time simulating character behavior
at each game tick, and this significantly limits the scala-
bility and expressiveness the game. Strategy games and
“doll house” games like The Sims are examples of simulation
games, whereas as some graphics-driven 3d games are not.
To improve the performance of simulation games, White et

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

al. represent objects and characters in the game in a main-
memory relational database and then split up each tick into
a sequence of queries followed by a single database update.
By leveraging query rewrite and aggregate indexing tech-
niques, they show how to reduce many common computa-
tions from O(n2) to O(n logd n).

We have developed a complete system for expressing games
that extends the SGL scripting language from [1]. Since
much of the industry is accustomed to object-oriented or
procedural languages, we have abstracted away much of the
relational framework while taking care to ensure that scripts
can easily be converted to a multiset relational algebra.

In this demonstration, we will show a complete game built
using the SGL language as well as a novel workflow for de-
veloping data-driven games. In Section 2 we will introduce
a simple schema definition language and describe the work-
flow used to design games in our system. In Section 3 we
will detail the demonstration and describe our interface for
visualizing queries.

2. THE SGL SYSTEM
In order to facilitate code reuse, most modern games sep-

arate game content from the game engine. Game content
includes media like art and music, but it also includes char-
acter behavior. Typically a game designer will write scripts
to specify this behavior, which are then compiled and exe-
cuted by the engine.

We have extended the SGL language from [1] to support
user defined aggregation and schemas with multiple tables,
while taking special care to ensure that it remains usable by
game designers who may not have extensive experience with
the relational model.

The core of the SGL system is a compiler that will trans-
late SGL scripts into relational algebra and a produce a set of
C# classes that can be used for rendering graphics. These
classes are largely independent from the SGL scripts, and
only need to be recompiled if the graphics changes. We will
not discuss the problem of rendering here, except to remark
that our system uses a threaded model in which rendering
is decoupled from the game simulation.

We will defer a complete description of the syntax of SGL
until Section 3. In the remainder of this section we will
describe the workflow that a designer might use to develop
games in our system and introduce the schema definition
component of SGL.



TXT

Data Definition

XML

Starting Config

XML

Interface Description

TXTTXTTXTTXT

Character Scripts

BAG

Bag Algebra

Game Engine
Script

Compiler

Figure 1: The SGL Workflow

2.1 The SGL Workflow
An SGL game consists of four components: i) a schema

definition; ii) a set of game scripts; iii) a set of starting
conditions; and iv) an interface description. We will consider
how a game designer specifies each of these in our system.

Schema Definition. The game designer specifies the types
of all of the objects and characters in the game by creating
classes in a simple data-definition language. These are com-
piled into the relations that are used at runtime.

Game Scripts. All game-specific behavior is included in
an SGL script that is executed at every tick. This script
can access the attributes specified in the schema and can
create temporary attributes for intermediate computations.
SGL scripts are compiled with the schema-definition file into
an intermediate file containing relational operators that is
executed by the runtime system.

Starting Conditions. The initial game state is specified in
a simple XML file that sets initial values for various objects
in the game.

Interface Description. Finally, the designer needs to
specify how the user interacts with the game. The SGL
system includes an XML file that specifies what commands
are executed by buttons in the GUI.

Figure 1 shows a diagram of this workflow.

2.2 The Data-Definition Language
The first component of our scripting environment is a

data-definition language that allows designers to specify the
schema in an object oriented way. Each relation is repre-
sented as a class, using syntax similar to C++ or Java. In
Figure 2 we give an example of the Unit class that is part of
our demonstration. The demonstration actually uses a more
complex schema than the one presented here, but Figure 2
illustrate the salient parts of the data definition language.

As in an object-oriented language, every object has fields
which correspond to attributes in our relation. Every at-
tribute is either a primitive type (currently just a number),
a class type, or a set type. Class types express relation-
ships between objects, and are represented in the relational
schema using foreign keys and join tables. For example, in
Figure 2, the class fields of Unit are those under the heading
of State. We see that most of the fields are simple numeric
fields. However, one field — squad — is actually a set. Se-
mantically, this is because a unit can belong to more than
one squad, and so we need to represent this information as
a set. In our implementation, the field squad is actually a
separate table that must be joined with the Unit table. The
schema of this table consists of a number (representing the
squad identifier) and a foreign key into the Unit table.

class Unit {

State:

number unit_id;

number player;

number command;

number pos_x, pos_y;

number health;

Set<number> squad;

Effects:

number move_x : AVG;

number move_y : AVG;

number damage : SUM;

Set<number> joined : UNION;

Set<number> left : UNION;

Update:

pos_x = pos_x + move_x;

pos_y = pos_y + move_y;

squad = squad UNION joined SETMINUS left;

health = health - damage;

}

Figure 2: An Example Schema

In order to support efficient processing, we add two addi-
tional constructs to the data definition language. First, we
allow the designer to specify the effects that can be applied
to an object. Since we use set-at-a-time processing during a
tick, there is only a single update phase at the end of every
tick. Scripts cannot update the game state directly, they
can only make assignments to effect attributes. Each such
assignment occurs in isolation, and is combined into a single
effect (which is used to update the state) at the end of the
tick. Each effect is annotated with a combination operation
that specifies how multiple effects should be combined.

Again, we see an example of this annotation in Figure 2.
In this case damage should be summed, but that the move-
ment amount should be averaged. The set-valued effects —
joined and left — are all unioned. In general, we can use
any aggregate function to combine effects, so long as the
aggregate is defined on that data type.

Finally, the designer must provide the update rules that
are used to apply effects to the game state. These rules are
specified using assignments following the Update label. The
lvalue of these assignments must be an attribute of the class.
In Figure 2 we see that we update the health of a unit by
subtracting the (combined) damage effect. Similarly, we use
the joined and left effect sets to update the squads that
include the unit.

2.3 Game Scripts
SGL is a declarative scripting language that can easily be

compiled to a multiset relational algebra. As with the data-
definition language, we have made the syntax as simple and
imperative as possible.

The syntax includes standard constructs such as assign-
ment using the let keyword, if-else conditionals, and com-
mon arithmetic operations. The syntax also includes the me

keyword, which refers the object executing the script. It is
important to stress that these features are ultimately com-
piled to relational operations. For instance, let simply adds
a temporary column to a relation or creates a temporary join
table, depending upon the data type being created.



Every expression in SGL is either numerical or set-valued.
Numerical expressions represent (possibly temporary) at-
tributes of some relation, whereas set-valued expressions
represent one or more tuples. SGL uses a familiar dot no-
tation for projections. For instance, u.health returns the
health of the Units tuple u. By referring to an entire ta-
ble instead of a single tuple (e.g. class instance) can also
use this syntax to access an entire column; for example,
Units.health would return the set of all health values for
all units.

To support selections, we introduce the all-where con-
struct. This returns the set of tuples satisfying a particular
expression. For instance, the query

all (u in Units where u.health > 10)

returns the set of all units with health greater than 10. We
can also apply aggregates to these selections, or to any set-
valued expression. For example, MIN(Units.health) will
return the smallest health of any unit.

The SGL language can also support more complex ag-
gregate expressions involving group-by clauses. To present
this to designers in an object-oriented fashion, we have the
over-each control structure. This is a loop-like structure
that allows the script to evaluate expressions over the ele-
ments of set. For example, the expression

over u in unit {

let u.maxsquad = MAX(squad);

}

let allmax = MAX(Unit.maxsquad);

uses an over-each expression to determine the maximum
squad identifier for each unit. Though over-each looks like
like iteration, the statements in the body of this control-
structure are actually computed in parallel and combined
using the ⊕ operator described in [1].

2.4 The XML Files
As explained in Section 2.1, the game designer also needs

to present two sets of XML files. Of these, the starting
configuration is the most self-explanatory. This XML file
defines the initial tables for each of the game objects defined
in the data-definition language. For each object in the game,
this XML file needs to specify a value for every attribute
under the State heading.

The second XML file, the interface description, is much
more subtle. For the most part it specifies obvious user
interface elements like the location and size of buttons, or
the icon on a button. However, it also contains specific
logic for controlling the game script. To understand this
game-specific logic, we first need to understand how the user
interface typically works in simulation games.

In simulation games we control the game objects indirectly
through commands. These commands are parameters that
that influence the behavior of the object in the game script.
For example, in Figure 2, we have implemented commands
as a simple state attribute in the Unit data type. To deter-
mine its next action, a unit uses if-then statements to pick
the correct behavior for that command.

The value of this command attribute is determined by the
player’s interaction with the game. While playing the game,
a player uses a bounding box to select the units to control,
and then issues the command by either pressing a button or

Figure 3: The Knights and Archers Game

a special key-combination. This, therefore, is the purpose
of the interface description XML file. In addition to user
interface elements, the interface description specifies how a
button or key-combination changes the state of the currently
selected game objects.

3. DEMONSTRATION FEATURES
Our demonstration contains three major components: (i)

A fully functional game; (ii) an interface for visualizing query
execution at the relational algebra level; and (iii) a demon-
stration of modifying an SGL script and changing the game
behavior.

3.1 An SGL Game
We have implemented a modified version of the knights

and archers game described in [1] using Microsoft’s XNA
framework. This is an extension to C# that includes basic
functionality for rendering graphics and handling user input.
The game is squad-based, and users will be able to group
units together and direct them to attack other squads. Ad-
ditionally, the interface will include command buttons that
can be used to perform more complex behaviors. Figure 3
shows the user interface of the game.

We have implemented all of the behavior in this game us-
ing the SGL language, and we will demonstrate a number
of specific queries to show how complex actions can be ex-
pressed in our system. For example, the following fragment
is used to direct a unit to move away from the centroid of all
enemy units (i.e. those units controlled by a different player).

let enemies = (all u in Units

where u.player != me.player);

let centroid_x = AVG(enemies.x_pos);

let centroid_y = AVG(enemies.y_pos);

let me.move_x = (me.pos_x - cosest.pos_x)/norm;

let me.move_y = (me.pos_y - closest.pos_y)/norm;

Here me is a special keyword refering to the unit executing
the script, and norm is shorthand for sqrt(move_x2+move_y2).
This query first selects all units controlled by a different
player and computes their centroid using the AVG aggregate.
It then directs me to move along a vector in the opposite
direction using an effect assignment. Note that if there
were multiple statements assigning a value to an effect like



Figure 4: The query visualization tool

me.move_x, then the values would be combined using the
appropriate aggregate (AVG in this case).

We will demonstrate the results of this query in two dif-
ferent ways. First, we will compile our game script into the
bag algebra using the script compiler, as shown in Figure 1.
We will display the bag algebra side-by-side with the game
script and compare how they each express this same query.
Then, we will run the game with this script and show how
this behavior appears on the screen. We will use the starting
configuration file to populate the game with several enemies
arranged in a crowd, and show that friendly units use this
query to run away from the center of this crowd.

3.2 Visualizing Queries
Looking at the bag algebra file is one way to understand

how our game scripts are processed using relational opera-
tors. However, ideally we would like to see how a query plan
corresponds to specific actions on screen. For that purpose
we have created a query visualization tool that will allow
users to see the relational operators as they are being exe-
cuted in the game.

To understand how the query visualizer works, recall that
a traditional query plan is a pipeline through which the tu-
ples of our relations pass. In our game, the tuples are units,
which are displayed onscreen as character avatars. Thus,
to visualize our query pipeline, we need only show the rela-
tional operator currently being executed, and highlight the
characters that are being processed by that operator.

Figure 4 shows this visualization interface for a simple
query. We display the current relational operator in the box,
while we highlight the subjects of this relational operator on
screen. In order to better see this, our GUI has an option
to enable “step mode.” In step mode, gameplay slows down
and its speed can be controlled by the user. In addition
to visualizing the query pipeline, this feature can help the
game designer debug and optimize the game scripts.

3.3 Modifying Scripts
In order to demonstrate the workflow necessary to develop

a game using SGL, we will show how to modify a script to
change the game semantics. First, we will demonstrate how
to add new behavior to the game by adding the following
script, which finds the enemy unit closest to me, and directs
me to move toward that unit.

over each u in unit {

if (x.player != me.player) {

let u.rel_dist = sqrt((me.pos_x-u.pos_x)^2

+(me.pos_y-u.pos_y)^2);

}

}

let closest = ONEOF(all x in Units

where x.rel_dist == MIN(Units.rel_dist));

let me.move_x = (closest.pos_x - me.pos_x)/norm;

let me.move_y = (closest.pos_y - me.pos_y)/norm;

This script uses the over-each control structure to com-
pute the distance from the unit to each of its neighboring
enemies. It then uses a MIN aggregate to find the distance
to the nearest enemy unit. Finally, it uses the all-where

operator to choose only those enemies that are the minimum
distance away, and then uses ONEOF to pick nondeterminis-
tically among them.

Given this new behavior, we will also demonstrate how
to incorporate it into the user interface of the game. As
described in Section 2.4, we use XML files to specify how a
command button affects the behavior of a unit within a game
script. As part of this demonstration, we will show how
to modify the interface description XML file to produce a
button that, when pushed, instructs a selected unit to move
towards the nearest enemy unit.

3.4 Modifying the Schema
To make more complex changes, designers may also need

to modify the game schema. As part of our demonstration,
we will add the attribute num_arrows to the schema shown
in Figure 2. We will also add the num_fired effect and
an update rule that decrements num_arrows whenever the
unit fires an arrow. Note that these changes do not require
changing any of the graphics in game, so the engine does not
need to be recompiled. Using these new attributes, we can
demonstrate the following script, which directs an archer to
fire at the nearest enemy if he or she has enough arrows or
run away if not.

if (me.num_arrows > 0) {

me.num_fired = 1;

closest.damage = _ARROW_DAMAGE_;

} else {

let me.move_x = (closest.pos_x-me.pos_x)/norm;

let me.move_y = (closest.pos_y-me.pos_y)/norm;

}

As before, we will also show how to modify the interface
description XML file to produce a button that commands a
selected unit to perform the above behavior.

4. CONCLUSIONS
SGL is an expressive scripting language for developing

data-driven games. By allowing designers to modify the
schema, scripts and preference files, we have developed a
system in which it is easy to change gameplay without alter-
ing the core engine. In addition, we have shown that game
development can derive significant benefits from database
techniques, and we have just scratched the surface of what
we can do with this approach [2].



Acknowledgments. This research is based upon work
supported by the National Science Foundation under Grant
IIS-000492612, by the Air Force under Grant AFOSR FA9550-
07-1-0437, by a grant from Microsoft Corporation, and by
a Faculty Development Grant from the New York State
Foundation for Science, Technology, and Innovation. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

5. REFERENCES
[1] W. White, A. Demers, C. Koch, J. Gehrke, and

R. Rajagopalan. Scaling games to epic proportions. In
Proc. SIGMOD, pages 31–42, 2007.

[2] W. White, C. Koch, N. Gupta, J. Gehrke, and
A. Demers. Database research opportunities in
computer games. SIGMOD Record, September 2007.

[3] M. Zyda. Introduction: Creating a science of games.
Communications of the ACM Special Issue: Creating a
science of games, 50(7):26–29, July 2007.


