
BRRL: A Recovery Library for Main-Memory Applications
in the Cloud

Tuan Cao, Benjamin Sowell, Marcos Vaz Salles,
Alan Demers, Johannes Gehrke

Cornell University
Ithaca, NY 14853, USA

{tuancao, sowell, vmarcos, ademers, johannes}@cs.cornell.edu

ABSTRACT
In this demonstration we present BRRL, a library for making dis-
tributed main-memory applications fault tolerant. BRRL is opti-
mized for cloud applications with frequent points of consistency
that use data-parallelism to avoid complex concurrency control
mechanisms. BRRL differs from existing recovery libraries by
providing a simple table abstraction and using schema informa-
tion to optimize checkpointing. We will demonstrate the utility
of BRRL using a distributed transaction processing system and a
platform for scientific behavioral simulations.

Categories and Subject Descriptors
H.2.2 [Information Systems]: Database Management—Recovery
and restart

General Terms
Performance, Reliability

1. INTRODUCTION
In order to provide low latency and high throughput, an increas-

ing number of applications, from online games to OLTP applica-
tions and key-value storage systems, are storing their state entirely
in main memory. However, these applications must still be made
durable and typically use some combination of checkpointing and
logging to write their data to stable storage. For applications that
are not based on traditional databases or do not need all of the
ACID properties, this approach requires developers to write and
maintain complex recovery logic themselves. In this demonstra-
tion, we present the Big Red Recovery Library (BRRL), a library
to automate the process of checkpoint-recovery for distributed main
memory applications. BRRL allows developers to easily make their
applications fault tolerant without having to write custom code.

Unlike existing checkpointing libraries such as Libckpt [5] and
PORCH [6] which are designed solely for single-node applications,
BRRL is primarily intended for distributed applications deployed
on the cloud or other large shared-nothing clusters. Many of these
applications have embraced data-parallelism in order to scale to a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

very large number of nodes and are frequently designed with lim-
ited or periodic synchronization in place of traditional lock-based
concurrency control. BRRL takes advantage of these points of con-
sistency to take efficient checkpoints without interfering with appli-
cation performance [3]. Additionally, BRRL includes an efficient
and low-latency implementation of logical logging to ensure that
checkpointed applications can recover to the point of failure.

Another key way in which BRRL differs from previous work is
that it uses schema information to select the best checkpointing al-
gorithms for mutable and immutable state. Developers implement
their state using a BRRL provided table abstraction, and they anno-
tate the schema with access pattern details to guide BRRL’s opti-
mization decisions. For instance, updates to append-only tables can
be logged without the need for additional checkpoints. BRRL uses
the high-performance Wait-Free Ping-Pong checkpointing algo-
rithm [3], and it reorganizes the physical storage of tables so that
access to checkpointing data is cache optimized. We have shown
previously that this can lead to dramatic performance improve-
ments [3]. Unlike BRRL, most existing approaches provide a
generic memory abstraction and use compiler support to add appro-
priate checkpointing logic [1, 2]. While these approaches require
very little information from the developer, their generality may lead
them to choose sub-optimal checkpointing algorithms.

In this demonstration, we will provide an overview of the
BRRL library and show how it can be applied to two very different
applications. First, we will show how a main-memory OLTP sys-
tem can be made fault-tolerant with minimal effort without com-
promising performance. Second, we will apply BRRL to a scalable
agent-based simulation platform we developed called BRACE [8]
and show how we can take advantage of global points of consis-
tency to avoid the need for logging.

2. OVERVIEW OF BRRL
BRRL is a library for making application state durable. Unlike

existing recovery libraries that present a generic memory abstrac-
tion [1, 2], BRRL uses semantic information about the application
to optimize logging and checkpointing. BRRL is suitable for a wide
variety of data-intensive applications, but it does have several re-
quirements. BRRL applications must store their data in tables and
access them only through BRRL API functions. They must also
have relatively frequent points of consistency at which the appli-
cation is consistent and can be safely checkpointed. Many appli-
cations have these properties, including main-memory transaction
processing systems such as H-Store [7] and time-stepped simula-
tions [3].

BRRL uses logical logging to persist state during the time be-
tween checkpoints in order to roll the application forward to a

class Customer {
immutable:

int c_id;
double c_phone[16];
...

mutable:
double c_balance;
double c_ytd_payment;
...

};

class OrderLine {
immutable:

int ol_o_id;
int ol_w_id;
int ol_quantity;
double ol_amount;
char ol_dist_info[24];
...

};

Figure 1: Example BRRL Tables

Method Description
init(recoveryPolicy) Initialize BRRL with the appropriate policy.
pointOfConsistency() Indicates that the application state is consistent
logNewRecord(record) Logs a new record as an uninterpreted string of bytes.
recoverTable(tableID) Recovers a table from a checkpoint
getLogIterator() Gets an iterator to replay the log.

Table 1: The BRRL API

consistent state in the event of a failure. Though logical logging
can increase recovery time compared to physical logging, it intro-
duces less overhead during normal operation, and we can reduce
the replay time by taking very frequent checkpoints. To facili-
tate logging, applications must produce log records for any non-
deterministic behavior necessary for re-execution. This includes
the content of all external messages and the outcome of any random
decisions. For instance, in a DBMS, the logical log would include
the type or code and parameters for each transaction as well as their
serialization order.

2.1 The BRRL API
BRRL is implemented as a pre-compiler and a C++ library with

a simple interface. Application developers specify their state in a
set of BRRL tables using a syntax similar to structure definitions
in C with scalar types. All of the state in these tables is check-
pointed automatically so that it can be recovered in the event of
a failure. Figure 1 shows how two TPC-C tables would be spec-
ified in BRRL. Each attribute in these tables is classified as ei-
ther mutable or immutable based on whether it is ever updated.
Immutable attributes can never be updated unless the entire tu-
ple is deleted. In Figure 1, all of the attributes in OrderLine
are immutable since the table is append only, but the c_balance
and c_ytd_payment attributes in the Customer table are mutable
as they are updated whenever a customer makes a purchase or
a payment. The BRRL compiler uses these annotations to com-
pile BRRL tables into a set of C++ classes that are optimized for
checkpoint-recovery. As BRRL may reorganize the storage layout,
applications access their state using get and set methods generated
by the compiler. Additionally, rows have no public constructors and
must be created and deleted by calling methods on the appropriate
table.

Table 1 shows additional BRRL methods to identify points
of consistency, write log records, and recover state in the event
of a crash. When the library is initialized (init), the applica-
tion must specify high-level information about the application,
including the checkpoint interval, the number of log servers to
use, whether or not to use group commit. The application then
calls pointOfConsistency at every point of consistency. Note
that BRRL does not necessarily take a checkpoint each time this
method is called, but every checkpoint will start at a point of
consistency. The application logs non-deterministic events using
logNewRecord. The format of the log records is determined by the
application – BRRL never executes the log. The recovery portion
of the API consists of a method to return the most recent checkpoint
of a persistent table (recoverTable) and an iterator to access the

Application 1 Servers

Checkpoint Server

Persistent Log Servers

Application 2 Servers

Figure 2: The BRRL Architecture

logical log (getLogIterator). It is the application’s responsibility
to use these methods to recover to a consistent state.

2.2 Checkpointing and Recovery in BRRL
BRRL includes components for efficient logging and check-

pointing. The high-level architecture is shown in Figure 2. Log-
ging is implemented using a set of shared persistent log servers.
When the application calls logNewRecord, the BRRL library sends
the record to one or more log servers (the number is configurable).
When one of these servers receives a log record, it stores the record
in main memory and flushes it asynchronously to disk. This allows
for very low-latency logging since the log server returns as soon
as the log record has been written to memory, and we expect the
network latency to be much lower than the cost of a disk seek. This
approach is similar to the buffered logging technique proposed by
the RamCloud project [4]. For applications that cannot tolerate the
loss of any of the log tail in the event of a catastrophic failure or
power outage, the application servers can use group commit and
wait until the log servers have flushed each record to disk.

Notice that since the persistent log servers do not have to per-
form any computation and can write to disk asynchronously, they
can be shared by many applications. This is shown in Figure 2,
where two applications share the same two log servers and the same
shared disk. This sharing is particularly beneficial for cloud com-
puting environments where many applications are multiplexed on
the same infrastructure. This sharing can yield better resource uti-
lization than approaches such as k-safety that rely on many addi-
tional replicas [7].

By default BRRL checkpoints data to a shared disk, though any
stable-storage media would be suitable. We use the Wait-Free
Ping-Pong checkpointing algorithm which we developed for fre-
quently consistent main-memory applications [3]. This algorithm
maintains two copies of the application state in memory and col-
lects updates in one of them for each checkpoint period (thereby
“ping-ponging” between them). BRRL automatically interleaves
attributes from the original state and the two copies in order to
minimize the number of cachelines that must be accessed during an
update. This was shown to improve performance dramatically [3].
BRRL only applies these optimizations to mutable state in order to
reduce the memory and update overhead. Immutable state is only
written to the checkpoint once when it is first created. Deletes are
persisted by writing a delete record with the checkpoint that can be
replayed during recovery.

3. DEMONSTRATION
We will demonstrate how to use BRRL to make two different

applications durable. In the first part of the demonstration, we will
demonstrate a main-memory transaction processing system with

Figure 3: Interface for the TPC-C Demonstration

the TPC-C benchmark, and in the second part we will demonstrate
the recovery procedure using our behavioral simulation platform,
BRACE [8]. All of our demonstrations will be run in the cloud us-
ing Amazon’s web services (AWS) platform, though we will have
a local backup in case of network problems.

3.1 Making TPC-C Durable
We will demonstrate a distributed main-memory implementation

of TPC-C for the cloud that uses BRRL to provide durability. Our
implementation horizontally partitions the data by warehouse and
distributes the partitions across several processors. We can repli-
cate these partitions to provide high availability, but checkpointing
is still necessary to provide durability in the event of correlated fail-
ures such as power outages.

All transactions are written as stored procedures in C++, and
each processor executes transactions sequentially in a single thread.
This method was shown to be effective in main-memory transac-
tion processing systems [7]. Client requests include a transaction
identifier and list of parameters and are passed through a proxy that
serializes them and distributes them to the appropriate partitions.
The proxy, application servers, and persistence servers are imple-
mented on Amazon EC2 instances, and the checkpoint server is
implemented using Amazon’s Elastic Block Storage (EBS) service.

Using our transaction processing system, we will show that it
is easy to use the BRRL API, and that the overhead for providing
durability is modest, even for distributed applications. To demon-
strate the first point, we will show the code of the stored procedures
that process each of the TPC-C transactions. We will show that it is
natural to use the BRRL persistent table to store and access tuples
and that it is straightforward to implement additional indices on top
of the BRRL API.

Additionally, we will demonstrate the performance of BRRL us-
ing the monitoring application shown in Figure 3. This tool reports
the transaction throughput and latency measured at the proxy, and
includes a plot of throughput over time. By turning checkpointing
on and off, we will show that throughput remains high even when
checkpointing is enabled. We will also demonstrate what happens
to the performance in the event of a crash. Our tool includes buttons
to fail individual nodes, and we will show that throughput quickly
returns to its pre-crash rate in the event of a failure.

Figure 4: Interface for the BRACE Demonstration

3.2 Recovering a BRACE Simulation
In order to show that BRRL provides very short recovery times

for a wide range of applications, we will also show a version of the
BRACE simulation platform that uses BRRL to provide durability.
BRACE is a simulation framework we developed for behavioral
simulations [8]. Behavioral simulations are typically spatial, and
BRACE assigns the task of simulating disjoint regions of space
to different nodes. Each node must synchronize with its spatial
“neighbors” at the end of each time-step, which creates a global
point of consistency. As BRACE simulations are otherwise de-
terministic, we can use a global checkpointing policy and turn off
logical logging.

We will demonstrate BRACE using a simulation of schooling
fish, as shown in the interface in Figure 4. This application includes
information about the status of each machine in the cluster and the
tick each machine is executing. When a machine crashes, we will
show that the entire system can be quickly restarted from the most
recent global checkpoint and re-executed to the point of failure.
The viewer will be able to verify that the tick numbers and fish
positions return to their values as of the point of failure.

Acknowledgments. This material is based upon work supported
by the New York State Foundation for Science, Technology, and
Innovation under Agreement C050061, by the National Science
Foundation under Grants 0725260 and 0534404, by the iAd Project
funded by the Research Council of Norway, by the AFOSR under
Award FA9550-10-1-0202, and by Microsoft.

4. REFERENCES
[1] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated

Application-level Checkpointing of MPI Programs. In Proc. PPoPP,
2003.

[2] G. Bronevetsky, M. Schulz, P. Szwed, D. Marques, and K. Pingali.
Application-level Checkpointing for Shared Memory Programs. In
Proc. ASPLOS, 2004.

[3] T. Cao, M. V. Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke, and
W. White. Fast checkpoint recovery algorithms for frequently
consistent applications. In Proc. SIGMOD, 2011.

[4] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman. The case for
ramclouds: scalable high-performance storage entirely in dram.
SIGOPS Oper. Syst. Rev., 43(4):92–105, 2010.

[5] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
Checkpointing under UNIX. In Proc. USENIX Winter Technical
Conference, 1995.

[6] B. Ramkumar and V. Strumpen. Portable checkpointing for
heterogeneous architectures. In In Symposium on Fault-Tolerant
Computing, pages 58–67. Kluwer Academic Press, 1997.

[7] M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The End of an Architectural Era (It‘s Time for a
Complete Rewrite). In Proc. VLDB, 2007.

[8] G. Wang, M. V. Salles, B. Sowell, X. Wang, T. Cao, A. Demers,
J. Gehrke, and W. White. Behavioral simulations in mapreduce. In
Proc. VLDB, 2010.

	Introduction
	Overview of BRRL
	The BRRL API
	Checkpointing and Recovery in BRRL

	Demonstration
	Making TPC-C Durable
	Recovering a BRACE Simulation

	References

