Shoal: A Network Architecture for Disaggregated Racks

Vishal Shrivastav (*Cornell University*)
Asaf Valadarsky (*Hebrew University of Jerusalem*)
Hitesh Ballani, Paolo Costa (*Microsoft Research*)
Ki Suh Lee (*Waltz Networks*)
Han Wang (*Barefoot Networks*)
Rachit Agarwal, Hakim Weatherspoon (*Cornell University*)
Traditional racks in datacenters
Disaggregated racks in datacenters

Prior works [OSDI’16] [HPCA’12] [Keeton’15]
- High compute density
- Fine-grained resource pooling and provisioning
- Seamless scaling and independent evolution of resources

Intra-rack Network

I/O controllers
- CPU
- Memory
- NIC

Inter-rack DC Network

- NVMe
- Storage
- SoCs
- accelerators (FPGA, GPU, TPU)
Disaggregated racks in datacenters

Prior works [OSDI’16] [HPCA’12] [Keeton’15]
- High compute density
- Fine-grained resource pooling and provisioning
- Seamless scaling and independent evolution of resources

Intra-rack Network

Acclerators (FPGA, GPU, TPU)
NVMe
Storage
SoCs

I/O controllers
- CPU
- Memory
- NIC

Inter-rack DC Network
Challenges for disaggregated rack network

- Connect as many as an order of magnitude more nodes than traditional racks

Network
- ~15KW power budget [NSDI'16]

Compute

- Be high performant
 - low latency / high throughput

- Be power efficient
 - to enable high compute density
Challenges for disaggregated rack network

- Connect as many as an order of magnitude more nodes than traditional racks

- Be high performant
 - low latency / high throughput

- Be power efficient
 - to enable high compute density

~15KW power budget [NSDI’16]
Challenges for disaggregated rack network

- Connect as many as an order of magnitude more nodes than traditional racks

~15KW power budget [NSDI’16]

- Be high performant
 - low latency / high throughput

- Be power efficient
 - to enable high compute density
Potential disaggregated rack network designs

<table>
<thead>
<tr>
<th></th>
<th>Low Power consumption</th>
<th>High Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet-switched</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ToR chasis switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Network of switches</td>
<td></td>
</tr>
<tr>
<td>Direct-connect</td>
<td>✓</td>
<td>❌</td>
</tr>
<tr>
<td>Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Packet-switched Networks**
 - ToR chassis switch
 - Network of switches

- **Direct-connect Networks**
 - ✓ Low Power consumption
 - ❌ High Performance (low latency / high throughput)
Shoal is a network stack and fabric for disaggregated racks that is both low power and high performance (low latency, high throughput)

Key feature:
Shoal network fabric comprises purely fast circuit switches that can reconfigure within nanoseconds
Shoal is a network stack and fabric for disaggregated racks that is both low power and high performance (low latency, high throughput)

Key feature:
Shoal network fabric comprises purely fast circuit switches that can reconfigure within nanoseconds
Goal 1: Low power consumption

Circuit switches
- No buffering
- No packet processing
- No serialization/de-serialization

Consumes significantly less power than packet switches
Goal 2: High network performance

Key Challenge:
Need to explicitly set up circuits (reconfigure) before sending packets

- **Traditional circuit-switched networks**
 - Uses switches with high reconfiguration delay, up to milliseconds
 - Uses a central controller to decide the circuits (reconfiguration algorithm)
 - Not suitable for low latency traffic

- **Shoal**
 - Leverages circuit switches with nanosecond reconfiguration delay

Key Design Idea:
De-centralized, traffic agnostic reconfiguration algorithm

- Inspired from LB monolithic packet switches [Comp Comm’02]
Shoal for a single circuit switch network

A permutation of connections

N-1 time slots (an epoch)

A permutation of connections

Static pre-defined schedule (a cyclic permutation)

Time slot

1 2 3 4 5 6 7

A: B C D E F G H
B: C D E F G H A
C: D E F G H A B
D: E F G H A B C
E: F G H A B C D
F: G H A B C D E
G: H A B C D E F
H: A B C D E F G

Each node has N-1 queues (one per dst)

Arbitrary traffic pattern

Uniformly load-balanced traffic

100% throughput

50% throughput in worst-case
Extending Shoal to a network of circuit switches

A non-blocking topology of circuit switches
Extending Shoal to a network of circuit switches

Requires very tight network-wide synchronization

- DTP [Sigcomm’16] + WhiteRabbit can achieve sub-nanosecond synchronization precision

A non-blocking topology of circuit switches
Congestion in Shoal

Time slot

1 2 3 4 5 6 7

A B C D E F G H
B C D E F G H A
C D E F G H A B
D E F G H A B C
E F G H A B C D
F G H A B C D E
G H A B C D E F
H A B C D E F G

Flow to H

Flow to H

A -> H

A -> H
Congestion control in Shoal

Each per-destination queue Q_i corresponding to destination i is bounded!

\[\text{len}(Q_i) \leq 1 + \text{incast_degree}(i) \] packets
Key properties of Shoal

- No central controller for reconfiguration
 - Fully de-centralized, traffic agnostic reconfiguration logic
 - Allows circuit switches to reconfigure at nanosecond timescales

- Each per-destination queue in the network is bounded

- Each packet traverses the network \textit{at most} twice
 - Worst-case 50\% throughput compared to an ideal packet-switched network
 - Can be compensated by allocating 2X bandwidth per node
 - Cost (Shoal) \leq Cost (packet-switched network with ½ bandwidth of Shoal)
Implementation

- Stratix V FPGA
 - Bluespec System Verilog

- Implemented custom NIC and circuit switch on FPGA

Circuit switch implementation can reconfigure in < 6.4ns

Verified the queuing and throughput properties of Shoal on a 8-node testbed
Evaluation

- **Power consumption**

 For a 512-node rack

 - Packet-switched network comprises 24 64x50 Gbps packet switches
 - Shoal comprises 48 64x50 Gbps circuit switches

<table>
<thead>
<tr>
<th></th>
<th>Power Consumption (KW)</th>
<th>(% of Rack Budget)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet-switched Network</td>
<td>8.72</td>
<td>58%</td>
</tr>
<tr>
<td>Shoal</td>
<td>2.55</td>
<td>17%</td>
</tr>
</tbody>
</table>

- Shoal consumes 3.5x less power than packet-switched network!
Evaluation

Network performance

- Packet-level simulator in C
- 512-node rack
- 5 disaggregated workload traces [OSDI’16]
- Shoal has 2X bandwidth (with comparable cost)

- Shoal performs comparable or better than several recent designs for packet-switched networks!
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Low Power consumption</th>
<th>High Performance (low latency / high throughput)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet-switched Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct-connect Networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoal (circuit-switched)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you!

Shoal FPGA prototype and simulator code is available at:

https://github.com/vishal1303/Shoal