Shoal: Network Fabric for Next Generation High-density, Disaggregated Racks

Vishal Shrivastav †, Asaf Valadarsky *, Hitesh Ballani †, Paolo Costa †, Ki Suh Lee †, Han Wang †, Rachit Agarwal †, Hakim Weatherspoon †

† Cornell University * The Hebrew University of Jerusalem ✦ Microsoft Research Cambridge, UK

Enabling Technology via High-density Racks

- Comprises 100s-1000s of micro-servers connected via an internal network fabric
- Leverages hardware technologies like SoCs, which are extremely space and power efficient, to achieve high density

![Diagram of standard and next-generation racks]

New Cloud Scaling via Resource Disaggregation

- Decoupling of CPU, memory, and storage, interconnected via an internal network fabric
- More efficient (fine-grained) resource provisioning
- Seamless scaling of capacity and bandwidth

Goal

Build a high-performant network fabric for high-density racks with disaggregated resources, at low power, cost and complexity

![Diagram of circuit switches and packet inspection mechanisms]

Challenges

- How to connect ~1000 nodes subject to space and power constraints of a rack?
- How to simultaneously achieve predictable, low latency and high utilization to support converged traffic (comprising IP, storage, and memory traffic)?

![Diagram of 2-hop routing scheme and Birkhoff-von Neumann switch]

Fabric Design

- At physical layer, fabric comprises simple circuit switches with no buffers, no arbitration and no packet inspection mechanisms
- Very precise rack-wide time and frequency synchronization
- Nodes send fixed-sized packets and switches reconfigure circuits, according to a static schedule

Routing & Congestion Control

- 2-hop routing scheme, emulating a load-balanced Birkhoff-von Neumann switch
- Packets are buffered at the intermediate node in the forwarding buffers, one for each destination
- Achieves bounded worst-case system throughput of 50% across any traffic pattern

![Diagram of packet buffering and simple congestion control mechanism]

Prototype

- Built a 10G network with 4 nodes using FPGA-based custom NICs and layer-1 circuit switches

Terasaic Altera DE5-Net boards with Stratix V FPGA

Simulation Results (512 nodes)

Shoal is equipped with 2x bandwidth, but the estimated total cost of the fabric is still less than that of an equivalent packet switch network