
EJNIKO METSOBIO POLUTEQNEIO
TMHMA HLEKTROLOGWN MHQANIKWN KAI MHQANIKWN

UPOLOGISTWN

TOMEAS TEQNOLOGIAS PLHROFORIKHS KAI UPOLOGISTWN
ERGASTHRIO LOGIKHS KAI EPISTHMHS UPOLOGISMWN

Katast�seic IsorropÐac se Montèla PaignÐwn
Sumfìrhshc:

'Uparxh, Poluplokìthta, kai Apìdosh

DIPLWMATIKH ERGASIA

tou

BASILEIOU Q. SURGKANH
Foitht c Hlektrolìgoc Mhqanikìc
kai Mhqanikìc Upologist¸n E.M.P.

(2004)

Epiblèpwn: Eust�jioc Z�qoc
Kajhght c E.M.P.

Aj na, IoÔlioc 2009





EJNIKO METSOBIO POLUTEQNEIO
TMHMA HLEKTROLOGWN MHQANIKWN KAI
MHQANIKWN UPOLOGISTWN
TOMEAS TEQNOLOGIAS PLHROFORIKHS
KAI UPOLOGISTWN
ERGASTHRIO LOGIKHS KAI UPOLOGISMWN
CORELAB

Katast�seic IsorropÐac se Montèla PaignÐwn
Sumfìrhshc:

'Uparxh, Poluplokìthta, kai Apìdosh

DIPLWMATIKH ERGASIA

tou

BASILEIOU Q.
SURGKANH

Epiblèpwn: Eust�jioc Z�qoc
Kajhght c E.M.P.

EgkrÐjhke apì thn trimel  exetastik  epitrop  thn 22a IoulÐou 2009.

........................................
E. Z�qoc

Kajhght c E.M.P.

........................................
A. Pagourtz c

Lèktorac E.M.P.

........................................
D. Fwt�khc

Lèktorac E.M.P.

Aj na, IoÔlioc 2009.

3



...................................
BasÐleioc Q. Surgk�nhc
DiplwmatoÔqoc Hlektrolìgoc Mhqanikìc kai Mhqanikìc Upologist¸n E.M.P.

c© (2009) BasÐleioc Q. Surgk�nhc.
Me epifÔlaxh pantìc dikai¸matoc. All rights reserved.

ApagoreÔetai h antigraf , apoj keush kai dianom  thc paroÔsac ergasÐac, ex olokl rou
  tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apoj keush kai
dianom  gia skopì mh kerdoskopikì, ekpaideutik c   ereunhtik c fÔshc, upì thn
proôpìjesh na anafèretai h phg  proèleushc kai na diathreÐtai to parìn m numa.
Erwt mata pou aforoÔn th qr sh thc ergasÐac gia kerdoskopikì skopì prèpei na
apeujÔnontai proc ton suggrafèa.
Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton
suggrafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic tou
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PerÐlhyh

H paroÔsa diplwmatik  ègkeitai sto eurÔtero pedÐo thc JewrÐac PaignÐwn kai
aqoleÐtai me th melèth thc allhlepÐdrashc idiotel¸n paikt¸n pou droun autìnoma
qwrÐc k�poia rujmistik  arq . H diplwmatik  epikentr¸netai se katast�seic ìpou
oi paÐktec epijumoÔn na desmeÔsoun pìrouc ephre�zontac ètsi emmèswc to ìfeloc
twn upoloÐpwn paikt¸n. Tètoiec katast�seic sth jewrÐa paignÐwn sun jwc mon-
telopoioÔntai me th qr sh PaignÐwn Sumfìrhshc.

Arqik� parousi�zoume basikèc ènnoiec sqetikèc me thn JewrÐa PaignÐwn kai pio
kuriìtera me jèmata pou �ptwntai kai thc Epist mhc Upologist¸n. Sth sunèqeia
parajètoume ta basikìtera qarakthristik� twn PaignÐwn Sumfìrhshc kai anafèroume
shmantik� parapl sia montèla pou èqoun protajeÐ sth bibliografÐa.

To pr¸to er¸thma pou melet�me eÐnai poiec kl�seic paignÐwn epidèqontai Amig 
IsorropÐa NASH. AfoÔ parajèsoume ta shmantikìtera apotelèsmata thc bibli-
ografÐac parousi�zoume mÐa nèa apìdeixh Ôparxhc amigoÔc isorropÐac NASH se
paÐgnia sumfìrhshc ìpou oi paÐktec èqoun b�rh, oi sunart seic kìstouc twn pìrwn
eÐnai fjÐnousec kai oi strathgikèc twn paikt¸n apoteloÔn b�seic k�poiou mhtroeidoÔc.

To deÔtero er¸thma me to opoÐo asqoloÔmaste eÐnai h poluplokìthta upol-
ogismoÔ miac AmigoÔc IsorropÐac NASH se PaÐgnia Sumfìrhshc. Parajètoume,ta
shmantikìtera apotelèsmata twn teleutaÐwn et¸n sto pedÐo autì. Epiplèon, ex�goume
kai k�poia nèa apotelèsmata poluplokìthtac, pou upodeiknÔoun th duskolÐa upolo-
gismoÔ amigoÔc isorropÐac NASH se èna montèlo parapl sio me ta paÐgnia sumfìrhshc.

Tèloc, exet�zoume thn apìdosh thc isorropÐac NASH upì to prÐsma k�poiac
sun�rthshc koinwnikoÔ kìstouc. Parousi�zoume, apotelèsmata gia to tÐmhma thc
anarqÐac se orismèna endiafèronta montèla paignÐwn sumfìrhshc. Par�llhla proteÐ-
noume èna nèo montèlo gia thn perigraf  snujhk¸n idioteloÔc dromolìghshc kai
an�jeshc mhk¸n kÔmatoc se polunhmatik� optik� dÐktua, gia to opoÐo upologÐzoume
epakrib¸c to tÐmhma thc anarqÐac gia diaisjhtik� qr simec sunart seic koinwnikoÔ
kìstouc.
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Abstract

This diploma thesis lies in the general area of Game Theory and copes with
the study of the interaction of independent selfish agents under the absence of
some central authority. We mainly focus on situations where players want to
allocate resources in order to perform some task and hence affect the other players
implicitly. Such situations are typically modeled with Congestion Games.

Initially, we present some basic notions of Game Theory, mainly focusing on
its aspects that are related to Computer Science. Subsequently we study the
characteristics of Congestion Games and present some interesting game theoretic
models related to them.

The first question that we focus on is the existence of a Pure Nash Equilibrium
(PNE) in the most important models related to Congestion Games. We present
significant results from bibliography and we give a novel proof on the existence
of PNE in matroid weighted congestion games with non-increasing facility cost
functions.

The second issue we investigate is the complexity of computing a PNE in Con-
gestion Games. We give analytic proofs on recent results concerning this problem.
Moreover, we present some new results on the complexity of computing a PNE in
an alternative model of Congestion Games.

Moreover, we examine the deterioration caused by selfishness in congestion
games and present some recent results on the Price of Anarchy for some interesting
Congestion Game models. Finally, we introduce a new model that is related to
selfish routing and wavelenght assignment in multifiber all-optical networks and we
compute its Price of Anarchy for several intuitively interesting social cost functions.
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EuqaristÐec

Me thn olokl rwsh thc diplwmatik c mou kaj¸c kai tou proptuqiakoÔ mou
kÔklou spoud¸n aisj�nomai thn an�gkh na euqarist sw bajÔtata mÐa seir� apì
anjr¸pouc pou mou prìsferan aplìqera th bo jeia kai th sumpar�stas  touc
kaj�olh th di�rkeia thc poreÐac mou.

Arqik� ja  jela na euqarist sw bajÔtata ton kajhght  mou St�jh Z�qo pou
mou enèpneuse ton èrwta gia th jewrhtik  plhroforik  apì ta pr¸ta kiìlac èth thc
sqol c, me ton enjousiasmì kai thn metadotikìtht� tou. Up rxe dÐpla mou kajìlh
th di�rkeia thc diplwmatik c me ag�ph, katanìhsh kai sumpar�stash. Jèlw na ton
euqarist sw pou me èkane mèloc tou ergasthrÐou tou kai mou prìsfere mÐa monadik 
empeirÐa sto teleutaÐo ètoc twn proptuqiak¸n mou spoud¸n.

Epiplèon, ja  jela na pw èna meg�lo euqarist¸ sto lèktora k. Dhm trh
Fwt�kh pou me bo jhse se polÔ meg�lo bajmì na ekpon sw th sugkekrimènh er-
gasÐa. 'Htan p�nta prìjumoc na me bohj sei kai na suzht sei mazÐ mou opoiad pote
aporÐa, en¸ me empisteÔthke pollèc forèc me tic idèec tou, gegonìc pou to ek-
tim¸ bajÔtata. Jèlw, epÐshc, na euqarist sw ton lèktora k. 'Arh Pagourtz 
pou st�jhke dÐpla mou apì tic pr¸tec stigmèc pou ègina mèloc tou CORELAB. H
sumbol  tou sthn poreÐa mou  tan kajoristik , afoÔ mou prìsfere thn pr¸th mou
eukairÐa na summet�sqw sthn apÐsteuth qar� thc èreunac. Jèlw na ton euqarist sw
gia thn empistosÔnh tou kai gia thn filikìtht� tou.

Jewr¸ tic empeirÐec pou sugkèntrwsa kat� to teleutaÐo ètoc twn proptuqiak¸n
mou spoud¸n anektÐmhtec kai èna efìdio pou sÐgoura ja me bohj sei stic mellontikèc
mou spoudèc. Gia to lìgo autì ja  jela na pw èna euqarist¸ kai se ìla ta mèlh
tou CORELAB pou me bo jhsan kat� thn ekpìnhsh thc diplwmatik c.

EpÐshc, ja  jela na euqarist sw ìlouc touc fÐlouc mou kai touc sumfoithtèc
mou, pou me st rixan ìla ta qrìnia twn spoud¸n mou me thn katanìhsh kai th
sumpar�stas  touc. En¸, epÐshc, ja  jela na euqarist sw kai th Marièta gia thn
upost rix  thc kat� th di�rkeia twn spoud¸n mou.

KÔriwc, ìmwc, ja  jela na euqarist sw thn oikogènei� mou pou briskìtan p�nta
dÐpla mou se opoiad pote epilog  mou. H upèrmetrh ag�ph touc eÐnai to megalÔtero
st rigma sthn poreÐa mou kai h skèyh ìti ja me sthrÐxoun se opoiod pote prìblhm�
mou emfanisteÐ eÐnai to pio polÔtimo agajì. Epomènwc, ja  jela na afier¸sw
th diplwmatik  aut  stouc goneÐc mou Qr sto kai EuaggelÐa kai sta adèrfia mou
Dhmosjènh kai Panagi¸th.
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Chapter 1

Introduction

1.1 Introduction to Game Theory

Game Theory is the field of studying in a formal way the interaction of indepen-
dent, selfish agents. Ever since the initial work of von Neummann and Morgestern
in 1944 it has played a key role in economics, politics, biology, law, sports and
quite recently in Computer Science (hence the topic of this thesis).

In order to model game theoretic environments one should cope with two major
issues: What does ”selfish agent” mean, in other words what is the goal of a
”rational” selfish agent?, How do we model the interaction of those agents or
equivalently how do we formalize the ”game” that the selfish agents are playing
with each other and the ”actions” available to them?

The first question is answered by the theory of Rationality and Rational Be-
haviour using concepts such as utility and preference. The second question has
its answer in the several different game models proposed in bibliography, most of
which are subclasses of or can be represented by what is called a Simultaneous
Game. A Simultaneous Game is a game where all players make a decision with-
out knowing the strategies chosen by other players. One of the most common
representation of simultaneous games are Strategic (or Normal) form games.

The details of the above notions that will be of use in this work are presented
in the following sections.

1.1.1 Rational Behaviour and Utility

When stating that agents act selfishly we must be cautious of what selfishness
really means. It does not mean that agents try to hurt each other or that they
ignore the others. It means that agents have preferences over the several possible
outcomes of the game they play and act rationally in the sense that their actions
have as goal to achieve their prefered outcome.

Generally, players have preference orderings over the outcomes of the general
form: oi º oj to declare that they prefer outcome oi over oj . The most common
attempt to model the agents preferences of the outcome of the game is using utility
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theory. Utility theory tries to quantify the preference of agents over outcomes by
using a one dimensional utility function u : O → <, where O is the set of outcomes
oi. Although such a representation of agents’ preferences is intuitively reasonable
there must be some justification as to why just a single dimensional function is
sufficient to model preference over a multidimensional space of outcomes. In fact
such a declaration cannot be made if agents’ preferences dont satisfy specific axioms
that hold in most real world situations.

These axioms where completely defined by von Neumman and Morgenstern
and are namely the axioms of completeness, transitivity, substitutability, decom-
posability, monotonicity and continuity. Due to the fact that utility theory is not
of main concern in this thesis we will not present the details of such axioms and
the reader is redirected to pp.24-27 of [NM44] for their initial definition and to
pp.49-54 of [Sho08] for a more elaborate explanation. The axioms are just refered
here to portray that there exist many conditions for utility theory to be able to
represent the preferences of a player in a game and it is not trivial to claim so.
What we will need in subsequent analysis throughout this work is the following
theorem that intuitively states that for the games studied here single dimensional
utility functions are sufficient:

Theorem 1. If a preference relation º satisfies the axioms of completeness, tran-
sitivity, substitutability, decomposability, monotonicity and continuity then there
exists a function u : O 7→ [0, 1] with the properties that:

1. u(o1) ≥ u(o2) iff o1 º o2, and

2. u ([p1 : o1, . . . , pk : ok]) =
∑k

i=1 piu(oi)

Where [p1 : o1, . . . , pk : ok] denotes a probabilistic outcome where outcome oi will
occur with probability pi.

The second intuitively claims that the utility of a probabilistic outcome is the
expected utility over the several deterministic outcomes.

With the above theorem in mind we will use utility functions in the rest of
the thesis without making any explicit assumption on the players’ preferences but
always implying that the axioms presented here hold.

By using utilities we answer the question of how to efficiently and simply model
the preference of the players over the possible set of game outcomes. However it
is not trivial to define what rationality really means in a game. If the outcome
of the game was completely decided by a player or her utility was unaffected by
actions of others, then we would talk of a simple decision-making problem that
would break down to an optimization problem of maximizing the player utility
separately by each player. However, in a game the outcome and hence the utility
of a player is affected by the actions of others and hence rationality is not trivial.
The several concepts of rational behaviour are examined by the solution concepts
discussed in the next section, with most dominant that of a Nash Equilibrium.
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1.1.2 Modeling the Game. Extensive and Normal Form
Games

The next issue that we will cope with is how to model the interaction of players
and give a completely mathematical definition of a game. When we think of a game
in practice what always comes to mind are games like chess, backgammon, tic-tac-
toe etc., i.e. games where players take turns to play and every player chooses his
moves based on the current state of the game. To illustrate the points we want to
make in this section we will use the following simple game as an example.

Example 1. (Matching Pennies). In the game of matching pennies we have two
players. Player 1 chooses “heads” or “tails”. Then player 2 without knowing what
player 1 has played, chooses “heads” or “tails”. If they choose the same then player
1 gives a penny to player 2. If not then player 2 gives a penny to player 1.

The above way of defining the game of matching pennies is quite sequential and
involves taking turns, i.e. similarly to the games mentioned in the first paragraph.
These games led to the formalization of games in extensive form. The official
definition of an extensive form game is as follows:

Definition 1. An n-person game in extensive form consists of the following:

• a tree Γ with a distinguished vertex A called the starting point

• a function, called the payoff function, which assigns an n-vector to each
terminal vertex of Γ

• a partition of the nonterminal vertices of Γ into n+1 sets S0, S1, . . . , Sn

called the player sets

• a probability distribution, defined at each vertex of S0, among the immediate
followers of this vertex

• for each i = 1, . . . , n, a subpartition of Si into subsets Sj
i , called informa-

tion sets, such that two vertices in the same information set have the same
number of immediate followers and no vertex can follow another vertex in
the same information set

• for each information set Sj
i , an index set Ij

i , together with a 1-1 mapping of
te set Ij

i onto the set of immediate followers of each vertex of Sj
i .

More informally a game in extensive form consists of a tree. Each vertex of the
tree corresponds a state of the game. At each vertex either some player i makes
the move and thus the vertex is a member of the set Si or a moves is made by
a chance factor not controlled by any player and thus it is a member of the set
S0. If it is a chance move then the game continues to the next step with some
probability distribution over all possible next states. Moreover a player may not
know the exact state of the game but a set of states that the game might be and
these states constitute an information set.
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Games in extensive form provide a very detailed and general framework that
is very usefull when there is need to examine the dynamics of the game. But in
our contexts we need to hide these dynamics and speak more about the strategic
characteristics of a game. The model that is more suitable in such situations is
that of a simultaneous move game in strategic form. In such games players choose
their strategies withouth knowing those of the rest of the players. Players may
have decided their strategies in different times but they all play once and together.

One practical game that might be most suitable to explain simultaneous move
games is rock-paper-scissors. In such a game players decide their strategy which
consists of one action: that of choosing between the three alternatives. They
play without knowing the strategy that the other has chosen and their utility is
computed according to the well known rules of the game. This is of course a special
case of simultaneous move games where the notion of strategy and action coincide.
It will be seen later on that this is not always the case and in fact when trying to
simulate an extensive form game with a strategic one, a strategy will represent a
whole plan of actions.

Definition 2. A simultaneous-move, strategic form game consists of

• A set of N players, {1, 2, . . . , N}.
• A set of possible strategies Si for each player i

• For each player i a preference relation %i on the set S = ×iSi or most often
a utility function ui : S 7→ < such that ∀s, s′ ∈ S : s % s′ ⇔ ui(s) ≥ ui(s′).

Thus a strategic form game can be succinctly denoted as a tuple 〈N, (Si) , (%i)〉 or
〈N, (Si) , (ui)〉.

When a player plays, he chooses from a set of possible strategies Si. We
define with s = (s1, . . . , sn), where si ∈ Si, the strategy vector. All possible
strategy vectors define all possible outcomes of the game. Thus the space of
possible outcomes O defined in the previous chapter, coincides in simultaneous
move games with S = ×iSi. Consequently a possible outcome oi coincides with
a possible strategy vector s. Having in mind the discussion from the previous
section players have a preference ordering over all possible strategy vectors and if
that ordering satisfies the axioms refered there then we can model it with a utility
function ui : S 7→ <.

Although simultaneous move games seem unconnected with extensive form
games and dont seem to capture many well known games, there exists a very
strong implicit connection between the two models. The notion of strategy in
strategic form games is essentially a plan of all actions that a player will take
in every possible state of the extensive form game. Although in real situations
noone plans all his moves at every possible state, this is p ossible in theory. For
example noone will make a plan of whatever she would play in a game of chess
for every possible move of the other player. In theory we can assume that such
game playing is possible, so as to examine the strategic and not the dynamic
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characteristics of a game. This full plan is what we formally defined as a strategy.
Under this perspective it is easy to understand that all extensive form games can be
transformed in a strategic form game hidding of course the dynamic characteristics
that in some situations might seem usefull.

To illustrate the above we give the definition of the matching pennies in strate-
gic form:

Example 2. (Matching Pennies). In the games of matching pennies two players
choose one side of the penny “heads” or “tails”. They put forward their penny and
if the sides coincide then player 1 gives one penny to player 2, else the opposite.
More formally the matching pennies game consists of 2 players {1, 2}. The set of
strategies for player 1 and 2 is S1 = S2 = {H, T}. The utility function for player
1 is: u1((H, H)) = −1, u1((H, T )) = 1, u1((T,H)) = 1, u1((T, T )) = −1 and for
player 2: u2(s) = −u1(s).

1.1.3 Expressing Strategic Form Games

One next question that is of crucial importance in game theory and especially
when we want to deal with its computational aspects, is how the utility functions
are described and, generally, what is the typical encoding of a game. This issue will
be very important when we will try to consider a game as input to an algorithm.

One option widely used is to define explicitly the value of the utility function for
each possible strategy vector. This representation of normal form games is called
standard form or matrix form. In 2 player games with few possible strategies it
is the most convenient way to describe a game. In fact for two player games the
matrix form is literally a matrix that contains the utility values of each player.

Example 3. (Matching Pennies). The matching pennies game in matrix form is
the following:

H T
H -1,1 1,-1

1,-1 -1,1T

Although this type of representation is the most simple one, most of the times it
is not suitable as it is obvious that it is exponential in the number of the strategies
that players have. More succinct representations exist such as graphical games
or congestion games and some of them will be described in later chapters of this
thesis.

1.1.4 Solution Concept

Having clarified a bit what selfishness means in terms of game theory and how
to mathematically define games that we will cope with, the next question to ask
is:

Can we make a prediction of what will be the outcome of the game?
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This prediction is what we formally call a solution concept. A solution concept
is most often called an equilibrium of the game, which stems from the fact that
we can consider a game as a dynamic system. The structure and the rationality
of the players constitute its dynamics. The outcome of the game is where the
corresponding dynamic system will stabilize, i.e. where it will converge to or if it
ever arrives at that state it will never leave without external intervention.

Most widely known and studied solution concepts that will be of use in the
thesis will be presented in the next section. But first we must examine some infor-
mation considerations that will be useful in understanding the solution concepts.

1.1.5 Information Considerations

What we haven’t coped with yet in the previous sections is what information
is available to the players.

In most cases and in most solution concepts presented in the next section we
assume that the form and the whole structure of the game is common knowledge
to the players. This is not always the case. For example it is common practice
for companies to hide from the clients the details of the mechanism they use to
perform some task. One such example is that of sponsored search auctions. When
participating in a sponsored search auction the bidders give their valuations for an
ad to be presented to users when they search a specific keyword. Although auction
companies like Google and Yahoo! publish the mechanism that they use to decide
which advertiser will be given a slot they don’t publish the code of the program
that carries out the mechanism. Hence some details of the structure of the game
that players (bidders) participate in are not common knowledge.

Moreover, in most solution concepts presented in the next section the ratio-
nality of other players is also common knowledge. This means that all players
consider that the other players think rationally and have as goal to maximize their
utility choosing the appropriate strategy. However, this also is not the case in real
games, where there exist both mallicious and oblivious players. By malicious we
refer to players that dont choose the strategy that maximizes their utility but the
strategy that minimizes the utility of the rest of the players. By oblivious we refer
to players that dont care to maximize their utility and play an arbitrary strategy.
Most solution concepts presented in the next section are not robust to this kind
of perturbations that are exhibited in real life situations.

Last but not least, another type of information that players may be uncertain
is the utilities of the others. They might be totally ignorant about the utility
function of others or they might have a probability distribution on possible utility
values of other players for the outcomes of the game. This type of information
consideration is tuckled by imperfect information games and by Bayesian games
with their respective solution concepts such as Bayesian Equilibrium.
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1.2 Equilibria in Strategic Form Games

1.2.1 Pure Nash Equilibrium

The Nash Equilibrium is the most widely accepted and used solution concept.
It was first proposed by Nash in his revolutionary work ”Equilibrium Points in n-
Person Games” ([Nas50]) and in his PhD thesis ”Non cooperative games ([Nas51]).
Formally a Nash Equilibrium of a strategic form game is defined as follows:

Definition 3. (Pure Nash Equilibrium). Let G = 〈N, (Si) , (ui)〉 be a game in
strategic form. A strategy vector s is said to be a Pure Nash Equilibrium (PNE)
of the game if:

ui(si, s−i) ≥ ui(s′i, s−i),∀s′ ∈ Si (1.1)

Where with ui(si, s−i) we denote the utility of the strategy vector where player i
plays according to si and the rest of the players play their strategy in the strategy
vector s

More informally a strategy vector constitutes a PNE if no player has incentive
to change strategy unilaterally, i.e. will not gain more by changing his strategy if
all other players remain in the same state.

The intuition behind the PNE and the reasons why it has a very broad accep-
tance when game theory is applied to areas such as economics and social sciences
lies in two different perspectives: common knowledge and dynamics.

Under the perspective of common knowledge the PNE (as brillinatly stated
in [OR94]) is the state where “each player holds the right expectation of other
players’ behaviour and acts rationally”. As stated in the first chapter we take as
granted that all players act rationally. Here we define what rationally means under
the sense of PNE: a player plays rationally if he plays his best response to what
the rest of the players are playing. So lets define the following function.

Definition 4. (Best Response). We denote with Bi(s−i) : ×j 6=iSj 7→ 2Si the
function that maps a strategy vector of the players other than i to a set of strategies
of player i that are best responses, in the sense that:

si ∈ Bi(s−i) ⇔ ui(si, s−i) ≥ ui(s′i, s−i), ∀s′i ∈ Si (1.2)

Now it is clear to see that in a PNE all players know that they are playing
their best response and more importantly that others are also playing theirs.

To make things clearer lets consider a two player game with PNE s = (s1, s2).
If player one thought that player two was playing strategy s′2 6= s2 then he would
play some strategy s′1 ∈ B1(s′2). But then since rationality is common knowledge
player one would say: if I think that player two is playing s′2 and then I would play
s′1 then player two would think rationally and play s′′2 ∈ B2(s′1), so then I would
have to play s′′1 ∈ B1(s′′2) and this goes on forever. However, if player one thought
that player two was playing his Nash strategy s2, then he would have to play his
Nash strategy s1 also. Then s2 would also be a best response for player two and
the, otherwise infinite, thinking would stop here.
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In terms of dynamics the PNE can be thought of as the stable point of the fol-
lowing dynamic system. The initial point of the system is some arbitrary strategy
vector s0. At each time step every player plays his best response to the strategies
of the rest of the players in the previous time step. That is

sk ∈ B(sk−1) = ×iBi(sk−1) (1.3)

We can restrict the dynamic system by saying that sk is the first in some lexico-
graphic order of the strategies in the set ×iBi(sk−1). In the above discrete dynamic
system the PNE is a stable point since it is a fixed point of the mapping B. This
type of dynamic system can also be represented in graphical form. Consider a di-
rected graph where each node ni corresponds to a strategy vector s(ni) and there
exists an edge from node ni to nj iff s(nj) ∈ B(s(ni)). This graph is called a Best
Response graph and a path on that graph leading to a PNE is a Best Response
Path.

The above dynamic system captures the case of a repeated game where every
repetition is strategically independent of the others. You can think of strategic
independence as a situation similar to what Phill Connors had to face playing the
same game of life every day in the movie Groundhod Day [Mac].

The fact that the PNE is a fixed point of the mapping B also leads to some
sufficient but not necessary conditions for a PNE to exist in a game. For instance
if B satisfies Kakutani’s theorem conditions [Kak41] then a PNE is guarranted to
exist. For example in every finite game the above conditions do not hold and a
PNE is not guarranted to exist.

1.2.2 Mixed Nash Equilibrium

A mixed strategy in a game is a distribution on the set of pure strategies. Hav-
ing defined a strategic game G = 〈N, (Si) , (ui)〉 we can define its mixed extension
as G = 〈N, (D(Si)) , (Ui)〉 where:

• D(Si) is the set of probability distributions on the strategies in Si

• Ui : ×iD(Si) 7→ < is the expected value of the utility of a player

Definition 5. A Mixed Nash Equilibrium (NE) of a strategic form game is a Nash
Equilibrium of its mixed extension.

Another important notion related to mixed strategies is that of support.

Definition 6. (Support). The support of a mixed strategy is the set of pure strate-
gies that receive non zero probability, and is denoted by Supp(s).

Moreover the following theorem can also be easily proved:

Theorem 2. Let G = 〈N, (Si) , (ui)〉 be a game in strategic form. A mixed strategy
vector a ∈ ×iD(Si) is a NE for the game if and only if for every player i ∈ [N ]
every pure strategy s ∈ Supp(ai) is a best response to a−i.

22



In other words the above theorem states that all players are indifferent between
the pure strategies in the support of their mixed strategy in the sense that they
all yield the same utility.

What is really important about the NE is that it always exist in a finite game.
This can be easily proved if we just see that in the mixed extension of a game the
mapping B defined in the previous section satisfies Kakutani’s conditions.

The problem with the NE is that it is not as intuitive as the PNE and it
is not clear why would a player randomize over strategies in a real situation.
However there exist a lot of work on how a mixed strategy can be interpreted
in real situations and the reader is redirected to pp. 37-44 of [OR94] for a brief
review.

1.2.3 Correlated Equilibrium

One of the intuitions behind the mixed strategies is that players receive external
signals that are random variables with certain probability distributions. According
to the signal they receive they execute some pure strategy in the support of the
mixed strategy. The distribution of the random variable is such that the probability
of playing a specific pure strategy is equal to the probability stated by the mixed
strategy.

The random variables stated above are independent. A reasonable question
to ask next is what would happen if there was a correlation between them. This
question is answered by the solution concept of correlated equilibrium. The notion
of correlated equilibrium was introduced by Aumann [Aum74] and some further
intuition on it was given in his subsequent work [Aum87]. The formal definition
is the following:

Definition 7. A correlated equilibrium of a strategic form game G = 〈N, (Si) , (ui)〉
consists of

• a finite probability space (Ω, π) (Ω is the set of states and π is a probability
measure on Ω).

• for each player i ∈ [N ] a partition Pi of Ω

• for each player i ∈ [N ] a function σi : Ω → Si with σi(ω) = σi(ω′) whenever
ω ∈ Pi and ω′ ∈ Pi for some Pi ∈ Pi

such that for every i ∈ [N ] and every function τi : ω → Si for which τi(ω) = τi(ω′)
whenever ω ∈ Pi and ω′ ∈ Pi for some Pi ∈ Pi we have:

∑

ω∈Ω

π(ω)ui(σ−i, σi) ≥
∑

ω∈Ω

π(ω)ui(σ−i, τi) (1.4)

Thus we can state succinctly that a correlated equilibrium is a tuple 〈(Ω, π), (Pi) , (σi)〉 .
The above definition is very general and not often used in practice due to the fol-
lowing theorem:
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Theorem 3. Let G = 〈N, (Si) , (ui)〉 be a strategic form game. All probability
distributions over outcomes that can be produced by a general correlated equilibrium
can be produced by the set of restricted correlated equilibria where Ω = S and the
information partition of player i consists of all the sets of the form {s ∈ S : ai = bi}
for some bi ∈ Si.

Thus the representation of a correlated equilibrium as a tuple 〈(Ω, π), (Pi) , (σi)〉
comes down to just a probability distribution on the set of possible strategy vectors
s of the game. Thus the more informal definition that we will use hereafter is the
following:

Definition 8. Let G = 〈N, (Si) , (ui)〉 be a strategic form game. A correlated
equilibrium of the game is a probability distribution π over the space S such that:

∀si, s
′
i ∈ Si :

∑
s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s′i, s−i) (1.5)

Now lets look at the intuition behind the above definition. A correlated equi-
librium implies that there exists an external factor other than the players that
gives advice to the players on what to play. Lets call him the correlator. The
correlator gives advice to the players according to a probability distribution on
the outcomes. After performing some random procedure that complies with that
distribution he picks an outome s. He then tells player i to play strategy si. If the
probability of the correlator satisfies the equation given in definition 8 then the
players have no incentive to choose a strategy other than that proposed to them
by the correlator.

Thus we make the following mapping in the intuition: Ω=the set of outcomes,
π=the probability distribution p, Pi=the set of outcomes that make the correlator
propose the same strategy to player i,σi=the strategy proposed by the correlator.

1.2.4 Bayesian Nash Equilibrium

In this section we cope with the third type of information consideration dis-
cussed in section 1.1.5, namely that where the players are uncertain of the utilities
and preference of other players. The most widely used concept for coping with
such uncertainty is Bayesian Games introduced by Harsanyi in his three part work
”Games with Incomplete Information Played by ”Bayesian” Players” (possibly his
most important contribution for which he was awarded the Nobel in Economics).

A Bayesian Game as will be used in this thesis is defined as follows:

Definition 9. A Bayesian Game consists of :

• A set of players [N ]

• A set of actions for each player Ai

• A set of types for each player Ti
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• A utility function ui : ×i(Ai × Ti) 7→ <

• For each player i a probability function pi : Ti 7→ D(T−i) (the set of probabil-
ity distributions over T−i). This function specifies a probability distribution
pi(•|ti) that represents player’s i belief on other player types given that his
type is ti.

Thus a Bayesian Game is succintly represented as a tuple 〈N, (Ai) , (Ti) , (ui) , (pi)〉

A strategy in a Bayesian game is a bit different compared to that of a strategic
form game in the sense that it is a function from the set of types of a player to the
set of actions. Thus to define a Bayesian Nash Equilibrium we have to define the
corresponding mixed strategy vector of a Bayesian Game.

Definition 10. Let 〈N, (Ai) , (Ti) , (ui) , (pi)〉 be a Bayesian Game. A strategy of
a player in the game is a function si : Ti 7→ Ai. A strategy vector (s1, . . . , sN )
constitutes a Bayesian Nash Equilibrium if :

∀i ∈ [N ], ∀ti ∈ Ti,∀s′i ∈ Si :
Epi(ti)[ui (ti, t−i, si(ti), s−i(t−i))] ≥ Epi(ti)[ui

(
ti, t−i, s

′
i, s−i(t−i)

)
]

(1.6)

In other words playing according to the function si is a best response in expec-
tation over the types of the players.

We can easily define the mixed extension of a Bayesian Nash Equilibrium where
a strategy is a function from the set of types to the set of probability distributions
on players action. Then a strategy vector would be an Equilibrium if playing
according to the mixed strategy, that is outputed by the function si, is a best
response in expectation over the types of the players and in expectation over the
possible outcomes defined by the mixed strategies.

1.2.5 ε-Approximate Equilibrium

The ε-approximate Nash Equilibrium is a solution concept recently proposed
by the CS community. It was mostly brought to attention by the work of Lipton et
al. [LMM03]. Before discussing the several arguments and motivations concerning
this solution concept lets give its formal definition.

Definition 11. Let G = 〈N, (Si) , (ui)〉 be a strategic form game. A strategy vector
s is called an ε-approximate Nash Equilibrium or ε-Nash Equilibrium (e-Nash) iff:

∀i ∈ [N ], ∀s′i ∈ Si : ui(s′i, s−i) ≤ ui(si, s−i) + ε (1.7)

In other words, no player will gain more than ε by changing his strategy unilater-
ally.
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Figure 1.1: Parallelism of approximation notions between finding root of a
function and equilibrium

First lets consider what approximate means in ε-approximate. From the above
definition we get that it means that players are approximately rational, i.e. they
play an approximate best response. This however does not at all imply that the
ε-approximate nash equilibrium is an approximation of a nash equilbrium, i.e.
that the probability distribution of the ε-Nash over the set of pure strategies is an
approximmation of the probability distribution of some NE of the game.

To understand the different notions of approximation lets consider the problem
of finding the root of a function. Lets say that the graph of the function is the one
depicted in figure 1.1.

Now we have to consider the following: is A an approximation of the root or
is it B. Well in analogy with ε−Nash equilibria we would have to say A. A great
amount of work has been carried out in the other direction also under the more
general issue of finding approximate fixed points of functions (see [EY07] for some
latest results and a small review on past work).

What is left is to justify why choosing this type of approximation is interesting
and why it constitutes a good solution concept. The answer is given by the work
of Lipton et al. where they prove the following theorem (Theorem 2 [LMM03])

Theorem 4. Let s = (s1, . . . , sN ) be a NE of a game G = 〈N, (Si) , (ui)〉 . Then
for any ε there exists, for every k ≥ 3N2 ln(N2 maxi |Si|)

ε2
, a set of k-uniform strategies

s′1, s
′
2, . . . , s

′
N such that:

• s′ = (s′1, s
′
2, . . . , s

′
N ) is a ε−Nash

• |ui(s′i)− ui(si)| < ε for i = 1 . . . N

where a k-uniform strategy is a mixed strategy where all probabilities of the support
are multiples of 1/k.

The above theorem gives to major arguments of why to consider ε−Nash as
a good solution concept. First, in every game there are guaranted to exist ε −
Nash equilibria with very simple strategies. Simple means that all players have
to just randomize over a very small support of pure strategies using a very sim-
ple probability distribution. This is very important in the contexts of bounded
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rationality. If the set of pure strategies was a set of resources in a game and thus
was very large then randomizing over all pure strategies would be very difficult
to implement by players. Moreover, randomizing with a very complex probability
distribution is again difficult. On the other hand uniformly randomizing over a
small set requires only polylogarithmically many bits to implement.

The second advantage of ε−Nash is that the utilities of the players in those
ε − Nash that have small support don’t deviate a lot from the utilities in some
NE. Hence the disatisfaction of the players is limited and is counterweighted by
the fact that they play a simple strategy.

One last argument in favor of ε−Nash equilibria that is implicitly captured by
the above theorem is that there always exist such equilibria that involve computing
only rational numbers. Although in 2-player games NE are always rational num-
bers when moving to more players, most of the times the probability distributions
of NEs involve irrational numbers and hence computing the exact NE is inherently
impossible. Thus we need some kind of approximation and the ε−Nash equilibria
is a good solution in this direction.

1.2.6 In Search of New Notions

The pursuit of new solution concepts other than Nash dates back to the 70s.
Mostly economists, started proposing refinements of the Nash Equilibrium that
where either more suitable to specific situations or had better characteristics.
Trembling-hand, perfect, sequential, subgame perfect, lexicographic are some of
the most well known refinements of Nash Equilibrium (see [WG05] for a brief re-
view). However most of those refinements where restrictions of Nash Equilibria to
smaller subsets with favorable characteristics.

The increasing interest of the Computer Science community and the several
complexity results regarding the computation of a Nash Equilibrium led to the
search of completely new equilibrium notions. Before presenting what are favorable
characteristics of a solution concept lets study what are the arguments against the
Nash Equilibrium.

Arg 1. Nash is not always natural game playing

Arg 2. Nash Equilibrium is extremely fragile to oblivious or unexpected behaviour
of players or to colluding players.

Arg 3. Nash Equilibrium doesn’t take computational concerns into account.

Arg 4. Nash Equilibrium presumes that players are aware of the whole structure
of the game and of all the players playing it. This is a truly unrealistic
situation in games taking place in huge environments such as the internet.

The first argument is best portrayed by the following The Traveller’s Dilemma
game proposed by Basu [Bas07]:
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Example 4. An airline loses two suitcases belonging to two different travelers.
Both suitcases happen to be identical and contain identical antiques. An airline
manager tasked to settle the claims of both travelers explains that the airline is
liable for a maximum of $100 per suitcase, and in order to determine an honest
appraised value of the antiques the manager separates both travelers so they can’t
confer, and asks them to write down the amount of their value at no less than
$2 and no larger than $100. He also tells them that if both write down the same
number, he will treat that number as the true dollar value of both suitcases and
reimburse both travelers that amount. However, if one writes down a smaller
number than the other, this smaller number will be taken as the true dollar value,
and both travelers will receive that amount along with a bonus/malus: $2 extra will
be paid to the traveler who wrote down the lower value and a $2 deduction will be
taken from the person who wrote down the higher amount. The challenge is: what
strategy should both travelers follow to decide the value they should write down?

In the above game the only Nash Equilibrium is playing (2,2). The above out-
come is the most unnatural one in real situations and in fact a lot of experimental
results are available (even when the above game is played among game theorists)
showing that a game playing of above 90 by both players is most probable.

For the second issue Halpern ([Hal08]) proposed the notion of (k, t)-robustness.
An equilibrium concept is (k, t)-robust if it is unaffected by k players colluding or
by t players behaving unexpectedly. Obviously the NE is (1, 0) robust. A major
disdvantage is that (k, t) robust equilibria are not guarranted to exist, except for
the case where (k, t) = (1, 0).

For the computational issue there has been a great amount of work mainly
by the CS community to present solutions that take complexity characteristics
into account. In most realistic situations players have bounded computational
resources something that may make NE almost impossible to be the outcome of
a game. Consider for example the following one player game: A person is given
a number and is asked to state if it is a prime. If she guesses correct she is
given 10 euros, if she guesses wrong she gives 10 euros and if she walks away no
transaction is made. Obviously the NE of this game is guessing right. But guessing
right requires a tremendous amount of computation that is most of the time not
available to players. An even more robust statement would be the following slight
modification of the above game: Instead of asking to state if a number is a prime
you give the person a program and ask them to state if it halts. Claiming that
this game reaches a NE for all games in the class (i.e. for all different programs
given to the player) is equivalent to claiming that the player has the computational
power to solve an undecidable problem!

The general way of trying to tuckle with this problem is by substituting play-
ers or strategies with some computational machine (e.g. automaton [PY94], poly-
nomialy bounded turing machine [DHR00], or general turing machine [HP08a]).
Moreover, efforts have been made by the economics community also, such as that of
Rubinstein [Rub86] who tries to incorporate the computational cost in the player’s
utility function. Recent progress in this direction is made by Halpern and Pass
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Figure 1.2: Succinct characterization of currently widely used solution con-
cepts. None satisfies all three desired traits.

[HP08a] where they propose a general framework for taking into account compu-
tation in Game Theory.

All the above arguments against the NE solution are sufficient to trigger a whole
new research area in search of new solution concepts. What is mostly desirable by
a solution concept (as stated by Papadimitriou [Pap08]) is that it implies a natural
game playing by the players (natural), that it always exists (universal) and that
it is computationaly tractable (efficient).

Most of the existing solution concepts satisfy at most two of the above require-
ments. The PNE is natural and tractable in the standard form representation of
the game. NE is universal and under some arguments natural but is inefficient
even in the standard form. Correlated equilibrium is both universal and efficient
but it is not natural in the sense that the existence of a correlating factor is not
always present in games.

In the rest of this section we will discuss the following solution concepts pro-
posed recently mainly by the CS community: (1) sink equilibria [GMV05], (2)
program equilibria [Ten04], (3) unit-recall equilibria [FP08]. We will give a basic
outline of all of them and present their major advantages and disadvantages.

Sink equilibria are closely related to the dynamic system intuition behind
the PNE. In section 1.2.1 we presented a dynamic system and a Best Response
Graph where all players played simultaneously their best response to the previous
strategy vector. Goemans, Mirrokni and Vetta considered the case where only one
player at a time could make a best response move. This type of dynamic system
is represented in graphical form by the Nash Dynamics.

Definition 12. The Nash Dynamics of a game G = 〈N, (Si) , (ui)〉 is a directed
graph Γ = (V, E) where:

V = ×iSi (1.8)
E = {(si, sj) : si, sj ∈ V ∧ (∃k ∈ [N ] : sj ∈ (Bk(si), s−k))} (1.9)
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i.e. an edge exists between two nodes if the end node is a best response move to
the start node for some player i.

On the Nash Dynamics graph we can define the following Random Walk
(NDRW): At each node some player from the set of players that have a best
response move is chosen uniformly at random. He performs an arbitrary move
among his best responses. This random walk is generally not irreducible and has
many transient states (see [MR96] for a brief introduction in random walks and
markov chains). However a sink strong connected component of the Nash Dy-
namics graph forms a reducible Markov Chain with positive recurrent states and
a stationary distribution can be calculated when we constrain the random walk in
that component.

Definition 13. A Sink Equilibrium of a game G = 〈N, (Si) , (ui)〉 is a tuple (S, π)
where S is a set of strategy vectors that constitute a sink stronly connected com-
ponent of the Nash Dynamics of the game and π is the stationary distribution of
the NDRW when constraint to S

Thus a Sink Equilibrium is not a deterministic outcome of a game but a proba-
bility distribution on deterministic outcomes as defined in the previous definition.
The major claim in favor of Sink Equilibria is that they may be more natural
since they don’t require randomization by the players, like NE does. On the
other hand they always exist in a game. Thus, they are universal. However,
as proved in [GMV05] they are intractable (PLS-complete) even in subclasses of
strategic form games and as Fabrikant and Papadimitriou proved [FP08] they are
PSPACE-complete for graphical games.

Moreover, if we construct the Nash Dynamics of the Traveller’s Dilemma Game
we could easily see that the only Sink Equilibrium of the game is (2,2). Thus, we
argue that Sink Equilibria still don’t imply natural game playing in all types of
games. It is most probable that they are most suitable in games played over the
internet such as congestion games, where it might be true that players don’t update
their strategies simultaneously as they repeatedly play the game but each person
updates his strategy independent of others at an arbitrary time.

Program Equilibrium is a concept that was proposed by Tennenholtz [Ten04]
mostly in order to capture the idea of game playing in a computer environment
like the internet. Tennenholtz proposed that players don’t choose strategies by
themselves but instead choose a loop-free program to do that. The program of
each player takes other players’ programs as inputs and outputs a strategy for
that player. Those strategies are then played simultaneously and so the one-shot
nature of the game does not change.

Definition 14. Let G = 〈N, (Si) , (ui)〉 be a strategic game. Let PROGi(G) be the
set of programs available to player i in game G. Let PROG(G) = ×iPROGi(G) be
the set of program profiles of game G. A program profile (p1, . . . , pn) ∈ PROG(G)
is said to be a program equilibrium of game G iff:

∀i ∈ [N ] : Ui(pi, p−i) ≥ Ui(p′i, p−i) (1.10)
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where Ui(p) = ui(s) where s is the mixed strategy vector that is the output of the
programs in p.

One could say that program equilibrium is the unification of the two major con-
tributions of von Neummann, the von Neummann architecture and Game Theory.
One of the major characteristics of program equilibrium is that it allows for any
individually rational strategy vector to be the outcome of a program equilibrium.
A strategy vector is said to be individually rational if the payoff of each player
in that vector is greater or equal to the amount vi = mins−imaxsiui(si, s−i) (i.e.
the utility of the minimum best response). Thus under this perspective we can
claim that a program equilibrium is both universal and natural since an arbitrary
individually rational strategy vector always exists and is efficiently computable.
In addition it sometimes implies more natural game playing than that of the NE.
For example in the Prisoner’s Dilemma game it is possible for the (not confess,not
confess) strategy to be the strategic outcome of a Program Equilibrium. How-
ever, program equilibrium implies the use of a medium like a computer where the
programs of the players are gathered and run before playing the game. This me-
diator is equivalent to the correlator in a correlated equilibrium however here the
mediator has no strategic meaning.

Unit Recall Equilibria were proposed by Fabrikant and Papadimitriou [FP08]
as a form of equilibrium that is both universal and efficient. The origin of the notion
of unit-recall comes from repeated games when bounded rationality is introduced.
In repeated games players strategize having in mind the whole history of game
playing. But if we try to incorporate bounded rationality then it is reasonable to
claim that players remember (recall) only a limited number of past games.

Sink Equilibria have a major drawback, they are based on a very myopic game
playing. The utility of each player is totally different among different sinks and
thus it is reasonable to claim that in the first steps of the dynamics players are
not myopic and are willing to sacrifice best response for some other strategy that
will lead them to their favourite sink. Therefore, we have to capture somehow the
strategic game playing of players. If we restrict to unit-recall players then each
player would decide his strategy only based on the current state of the game. Thus
the dynamics of the game would not be best response Nash Dynamics but would
be defined by an automaton chosen by each player. The states of the automaton
would be all possible strategies of the player and the input alphabet would be all
possible strategy vectors of the rest of the players. In this new dynamics we allow
all players to make simultaneous improvement moves from the current state to the
next.

A profile a = (a1, . . . , an) of player automata defines a function from the set
S to itself. Since S is finite the repeated transitions from one strategy vector to
another will eventually lead to a cycle. Lets denote such a cycle with limitcycle(a)
We define the utility of each player as his average utility over the strategy vectors
in this cycle. With the above it is reasonable to define the following equilibrium.

Definition 15. Let G = 〈N, (Si) , (ui)〉 be a game. Each player chooses an au-
tomaton ai ∈ Ai where Ai is the space of automata with state space Si and alphabet
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S−i. An automaton strategy profile a = (a1, . . . , an) is a Unit Recall Equilirium
(URE) iff:

∀i ∈ [N ], ∀a′i ∈ Ai :
averagelimitcycle(ai,a−i)[ui(ai, a−i] ≥ averagelimitcycle(a′i,a−i)[ui(a′i, a−i]

(1.11)

Another way of viewing the intuition behind the unit recall equilibria has its
origins at the best response mapping that was used in the dynamic intuition of
PNEs and for the proof of existence of NEs. When Nash was trying to prove
his existence theorem he thought of his equilibrium point as a fixed point of the
best response mapping B. But what if we dont restrict ourselves to the best
response behaviour? What if we examine the equilibrium (fixed point) of some
other reasonable mapping? What if even better we give the players the freedom
to choose among a set of mappings? And this is what the unit recall equilibrium
really is about. When players are given the choice to choose among the set of
finite automata Ai they are given the freedom to choose among the set of possible
mappings defined by the automaton profile (a1, . . . , aN ). This freedom gives rise
to new strategic outcomes in equilibrium that where not possible when restricted
to best response dynamics.

URE unlike the PNE doesn’t consider as equilibrium the fixed point of this
new mapping over the set of mixed strategies, since a fixed point, just like the
PNE, is not guarranteed to exist here neither. However, what is guarranteed to
exist is a periodic cycle of strategy vectors where the dynamics are going to settle.
This cycle is equivalent to a cycle in the best response dynamics whenever a game
has no PNE. In the unit recall equilibrium we consider as utility of the player the
average of his utility on the strategy vector of this periodic cycle.

Two major disadvantages of URE is that they don’t always exist (even in the
game of matching pennies) and that it is not yet proved if they are efficient. The
reason why it seems promising is because of the great characteristics of a restriction
of URE, called Componentwise URE. In CURE an equilibrium is reached when
players cannot achieve a better average utility by changing only one transition of
their automaton and not their whole automaton. CURE are both efficient and
always exist, however insufficient results exist on why they would be considered
natural even in specific game theoretic environments like the internet.

Another direction towards new solution concepts involves incorporating learn-
ing strategies by the players. Such solution concepts are regret-minimizing and
learning protocols [BHLR07, KPT09, HP08b].

We conclude this section by pointing out that there is still a lot of research to
be done towards identifying a universal, natural and efficient solution concept and
it will certainly be a prolific research area in the years to come.

1.3 Game Theory and Computer Science

At the end of the last century computer science started coping with problems
and environments where central coordination was impossible (e.g. the Internet).
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Thus computer scientists had to turn to game theory leading to the formation
of a new scientific field: Algorithmic Game Theory. Algorithmic Game Theory
comes to answer two questions: how Game Theory can help Computer Science in
contexts where introducing selfishness is inevitable; how Computer Science can
help Game Theory by identifying complexity characteristics of game theoretic
problems ([Das08]) or examining algorithmic aspects of mechanism design [NR99].
In the sections that follow we will try to describe briefly the interplay of the two
fields (CS and Game Theory) in several contexts.

1.3.1 Game Theory to the Rescue

Some of the main fields of Computer Science where Game Theory has become
an invaluable tool are the analysis of the Internet, cryptography, study of compet-
itive versions of classic algorithmic problems (facility location, k-median etc.).

The internet is arguably the most interesting and complex artificial system.
Its characteristics have been the study of many subfields of computer science.
What is unique about it is that it hasn’t been designed by the beginning and it
hasn’t been developed by a single entity. Instead it is run by a very large and
heterogeneous set of organizations each trying to maximize their own gain. The
complexity of the Internet is so big that it is most suitable to be studied as a
physical system with the use of the scientific method (Observations, Experiments,
Falsifiable Theories, Specialized Applied Mathematics). Moreover, the intense
connection among the Internet and the people that make use of it makes inevitable
the study of its socioeconomic aspects. Thus, as stated by Papadimitriou the
Internet has slightly turned Computer Science into a natural and social science
over the past two decades.

When coming to the Specialized Applied Mathematics part of studying the
web, the distributed and multiagent environment of the net makes Game Theory
the ideal mathematical model to use ([Pap01]). As stated by Scott Schenker:

The internet is an equilibrium, we just have to identify the game.

Thus an interesting part of Algorithmic Game Theory lies in the modeling of
games in the Internet and of its characteristics. The most well studied model to-
wards this direction is congestion games. With congestion games and more specif-
ically with network congestion games we are trying to capture the selfish character
of routing in the internet. Most of the results in this field will be presented in the
second chapter of the thesis.

The interplay between Cryptography and Game Theory ([DR07]) has been
mutual and mainly in the subfield of Cryptography called Multi-Party Computa-
tion (MPC). MPC studies the following case. We have n ≥ 2 parties P1, . . . , Pn

where party Pi holds input ti, and they wish to compute together a function
s = f(t1, . . . , tn). The goal is that every party will learn the output s of the
function but will not gain any knowledge on the inputs of other parties except
what can be deduced from the pair (ti, s). Game Theory comes into the scene by
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replacing parties that follow a cryptographic protocol with rational players that
want to maximize some payoff function.

Ever since Game Theory has gained the attention of the CS community many
competitive versions of classic algorithmic problem arised. The introduction of
selfishness gave room for new questions and new research goals. For example the
seminal work of Vetta [Vet02] introduced the competitive facility location and
k-median problem.

1.3.2 Computer Science to the Rescue

What Computer Science has to offer to Game Theory mainly comprises of
two parts: studying complexity characteristics of computing equilibria in games
and studying complexity and algorithimic aspects of mechanism design. The two
subsequesnt chapters cover in brief and certainly not completely the most recent
results in these two areas.

Complexity Results

The major complexity result so far in game theory is that the problem of
computing a Nash Equilibrium when given as input the standard form of game is
complete for the complexity class PPAD. For the ”game theory” reader there are
two points that need explanation: How do we formally define what is the problem
of computing a NE and how do we count its complexity?, What is PPAD?. We
will try to answer these two questions in the following paragraphs.

First we have to state that Nash Equilibria for 3 players and more involve in
general irrational numbers. Thus it is futile to try to compute NE exactly. So
we have to use the notion of approximation. Moreover, from Theorem 2 we know
that the pure strategies in the support of each players mixed strategy are a best
response. In fact the difficulty of computing a NE lies in computing the support
for each player. After finding the support what remains is just solving a linear
system which is computationally easy.

By combining the above properties the combinatorial problem that we need
to focus on is finding the support of an approximate Nash equilibrium. In the
recent complexity results concerning the NE ([DGP06, CD06]) the combinatorial
relaxation of finding a NE is the following:

Definition 16. r-Nash is the search problem R with input x, a r-player game
G = 〈N, (Si) , (ui)〉 in standard form and a binary integer A and output a mixed
strategy profile a ∈ ×iD(Si) that is an ε-approximately well supported equilibrium,
that is:

∀i ∈ [N ], ∀si, s
′
i ∈ Si : Ui(si, a−i) > Ui(s′i, a−i) + ε ⇒ s′i /∈ Supp(ai) (1.12)

The above means that we allow pure strategies that are a distance ε of the
best response to be in the support of a players mixed strategy. This notion of ap-
proximate equilibrium is more strict than the ε-approximate equilibrium described
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in section 1.2.5 in the sense that the ε-approximate equilibrium is a subset. How
ever, the problem of calculating an ε-approximate NE can be reduced in polyno-
mial time to that of calculating an ε-approximately well supported NE. Thus any
computational property of the second also applies to the first.

One advantage of the above approximate equilibrium against NE is that there
always exists ε-approximately well supported equilibrium where the probabilities
of the mixed strategies for each player are rational numbers. In fact by rounding
a NE to the nearest mixed strategy profile where all probabilities are multiples of
ε/ maxi

∑
s ui(s) we achieve an ε-approximately well supported equilibrium.

Having defined the strict computational problem of computing a NE we will
now state more strictly the recent results concerning its computational intractabil-
ity.

Theorem 5. r-Nash is computationally equivalent to 2-Nash and both are PPAD-
complete

The above theorem was a result of three papers. Initially Daskalakis et al.
[DGP05] proved that 4-Nash is PPAD complete. This result was a breakthrough
after a lot of years of efforts for some intractability result on the problem. After
a really short time Daskalakis et al. [DP05] and Cheng et al. [CD05a] proved
indepentently that 3-Nash is PPAD complete. Finally, in [CD05b] Cheng et al.
achieved the final result that 2-Nash is PPAD complete. The last result was
somehow unexpected since it was long thought that the two player case would be
computationally easier since the techniques used in calculating equilibria in such
games where similar to linear programming.

What remains still unanswered is what is the class PPAD and why theorem
5 consitutes an intractability result similar to the NP-complete results for other
problems.

So why not NP-complete is a reasonable question. First of all the problem of
finding a Nash Equilibrium is a search or function problem and not a decision so we
would have to prove that it is FNP-complete. Second, the existence version of the
r-Nash is trivial to answer since it is always yes. Thus it cannot be FNP-complete.

So how do we characterize and analyze problems where the decision version
gives trivially a yes answer but the task of finding that answer is not trivial. There
exists a bunch of such problems where existence is proved based on some non
constructive property. Such problems are for example computing fixed points of
brower functions, computing equilibria in exchange economies or finding a trichro-
matic triangle in the computational version of the sperner problem.

As correctly understood the common characteristic of the above problems is
that they are search problems where a solution is guaranteed to exist. This fact
led Megiddo and Papadimitriou to introduce in [MY89] the class TFNP. However,
the problem about the class TFNP is that it is a semantic class, which means that
the property that defines inclusion of a problem in the class is a function of all
instances of the problem and not of a single computation like the one that defines P
or NP. The difficulty with semantic classes is that they tend not to have complete
problems. Thus in order to find complete problems Papadimitriou introduced in
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[Pap94] the method of categorizing the problems in TFNP according to the non
constructive property on which the proof of existence of a solution is based. Some
of the classes of this sort are PLS (which will be revisited in the second chapter),
PPP, PPA and PPAD.

Under this perspective PPAD is the class that is based on the fact:

(parity argument for directed graphs) In every directed graph where
all edges have indegree and outdegree at most one if there exists a
source there must exist a sink.

A problem in PPAD is defined in terms of a polynomial algorithm A that
takes as input nodes of a graph and outputs its predecessor and its successor if
they exist. Node 0 is a source with node 1 as its successor. The problem asks to
find a sink or a source in the graph other than 0.

The current status on the PPAD class is FP ⊆ PPAD ⊆ TFNP ⊆ FNP
but whether the above inclusions are tight still remains open. For example it is
a really interesting problem whether TFNP = FP , in other words whether it is
computationally easy to find a solution when we know that one exists.

In the initial work of Papadimitriou [Pap94] many interesting problems were
proved to be complete in the PPAD class. However, the r-Nash problem remained
open until the recent results.

Another important point on the results of PPAD-completeness is that adding
to the r-Nash problem some other desired property about the NE (e.g. finding
the best or worse NE under some social function, finding all the NEs) makes the
problem most of the times NP-complete.

Now the last question that comes to mind concerning the above line of research
is why is it important to find how hard it is to compute a Nash Equilibrium. The
answer is in the moto: If your laptop cant find it then neither can the market. In
other words for a game in practice to converge to a NE it has to perform certain
tasks. Those tasks would essentially constitute an algorithm for finding a NE.
Thus the convergence time for a game to reach a NE is greater or equal to its
computation time.

Another interesting direction concerning the complexity of NE is finding a
polynomial approximation scheme. Recent results such as [DP08] prove that there
exists a PTAS with running time poly(n) (1/ε)O(log2(1/ε)) for solving r-Nash in
anonymous games (games where players utilities depend only on the ch osen strat-
egy and the number of players playing each strategy). However, for this line of
research to have a practical meaning there must be some proof that there exist
natural game dynamics that lead to approximate equilibria. The reason for this is
that the goal for proving that approximation is easy is to imply that it is also easy
for the “market” to approximate. But then we also need to see if it is also natural
to approximate under specific dynamics otherwise the above statement would not
hold.

In conclusion, how do we explain the gist of the above results say when we
try to explain it to an economist or an AI folk. Well, we could briefly state that
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Nash Equilibrium for 2-player games has the same complexity as r-player Nash
and finding fixed points and we have some evidence that no efficient solutions exist
for such problems.

Algorithmic Mechanism Design

So far we have looked at games with a specific structure where we studied the
outcomes of several solution concepts. A large part of the game theory literature
is concerned with the opposite direction: Does there exist a game where if players
play according to some solution concept then the outcome of the game imple-
ments some goal function; This part of game theory is called mechanism design or
implementation theory.

More formally in mechanism design we have to define a modification of the
strategic form games as follows. A strategic form game with consequences in C is
a game 〈N, (Ai), o〉 where o : A → C is an outcome function. This game together
with a preference relation for each player ºi on the set of outcomes is equivalent
to a strategic form game G = 〈N, (Ai),º′i where a º′i b iff o(a) ºi o(b). Given a
solution concept S and a goal function f : U → C from the set of utility profiles
to the set of possible outcomes, we want to ask if there exists some function o such
that o(S(G,º)) ∈ f(º). I.e. the outcome of the game when players play under
solution concept S is the same as that defined by function f . When we restrict the
above concept to the case where the set of actions is the set of preference profiles,
then we say that a function o truthfully implements f if º= S(G,º) (the true
preference profile of the players is a solution to the game), i.e. players dont gain
by lying about their preference relation º.

Mechanism design has been mostly applied to resource allocation situations.
In such situations the outcome of the game is most of the times an allocation of the
goods to the players plus a price for each player. Thus a mechanism constitutes
of two functions. According to the goal function and to the solution concept used
we have different results.

For example when the goal function is total welfare (i.e. the sum of the utilities
of the players) and the solution concept is dominant strategies then the only mech-
anism proved to implement the above function is the VCG mechanism. The VCG
mechanism takes as input the valuation of all players for each possible allocation
and outputs an allocation and the payments for each player.

What Computer Science has to offer in the above field is the study of the
complexity characteristics of the mechanisms. For example how efficient is it to
implement a VCG mechanism in a specific environment? Moreover, is it efficient
to approximate a goal function and is it efficient to approximate it truthfully?
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Chapter 2

Congestion Games

2.1 Introduction

Congestion Games where introduced by Rosenthal as a class of games possesing
Pure Nash Equilibria. They have gained a lot of attention recently both because of
their interesting theoretic characteristics and because they have found application
to several real world environments such as communication networks. In this part
of the thesis we will present most aspects of the recent congestion games literature
and give details of significant findings.

2.1.1 Model and Notation

Consider the following game theoretic situation:

Example 5. n firms are engaged in production. Each firm has available different
sets of production resources that it could use to carry out its work. All resources
have a set up cost that is a function of the firms that will use the resource. The
cost for each firm to produce the final product is the sum of the set up costs for
each resource it uses.

It is possible to represent the above game in normal form. However, it is easy to
see that games of such nature constitute a subclass of normal form games, mainly
because of the dependence of the facility cost only on the number of firms using it
and not on the specific subset of firms. So we expect to be able to derive specific
characteristics for such types of games and thus we need to introduce a new model.

Definition 17. A congestion game G is a tuple G = 〈N, F, (Ai)i∈[N ], (df )f∈F 〉where
[N ] denotes the set of players, F denotes the set of resources, Ai ⊆ 2F denotes
the strategy space of player i and df : N → Z a cost function associated with re-
source f . a = (a1, . . . , aN ) is an outcome of the game in which player i chooses
strategy ai ∈ Ai. For an outcome a we define the congestion nf (a) on resource f
by nf (a) = |{i ∈ [N ]|f ∈ ai}|. The cost for each player is the sum of the costs on
the facilities of his strategy, ci(a) =

∑
f∈ai

df (nf (a)).
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Figure 2.1: Example of a congestion game in a network. Three players
want to route traffic from s to t. The delay of each edge for every possible
congestion is given explicitly separated by a /.

A similar situation where the congestion game model could be directly applied
is the following:

Example 6. A network of roads is given. Each of n people wants to travel on
this network from a source to a destination. The amount it takes for a person to
traverse a road on the network is a increasing function of the people that use it.
All players want to minimize the total time it takes to reach their destination. An
example of such a network is depicted in figure 2.1.

Thus, congestion games constitute a very large class of simultaneous move
games and could be used to model many different real world environments.

Except for the applicability of the model, in order for it to be worth studying,
it should have special characteristics not possesed by general normal form games.
This is indeed true. The most important attribute of congestion games that was
pointed out in the initial work of Rosenthal is the following:

Theorem 6. All congestion games possess at least one pure Nash Equilibrium.

Proof. We define the following potential function φ : ×iAi → Z ([Ros73]):

φ(a) =
∑

f∈F

nf (a)∑

i=1

df (i) (2.1)
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Let a′ = (a′i, a−i).

φ(a)− φ(a′) =

∑

f∈ai/a′i

nf (a)∑

i=1

df (i) +
∑

f∈ai/a′i

nf (a)∑

i=1

df (i)−
∑

f∈ai/a′i

nf (a′)∑

i=1

df (i)−
∑

f∈a′i/ai

nf (a′)∑

i=1

df (i)

=
∑

f∈ai/a′i




nf (a)∑

i=1

df (i)−
nf (a)−1∑

i=1

df (i)


 +

∑

f∈a′i/ai




nf (a)∑

i=1

df (i)−
nf (a)+1∑

i=1

df (i)




=
∑

f∈ai/a′i

df (nf (a))−
∑

f∈a′i/ai

df (nf (a) + 1)

= ci(a)− ci(a′)
(2.2)

Thus every improvement move of a player decreases the potential by at least
one. Since the potential is upper and lower bounded by some finite amount,
every sequence of improvement steps must be finite and end up at a pure Nash
Equilibrium.

The intuition behind the potential function of Rosenthal can be more clearly
seen by another representation of the same potential, proposed by Vocking [Vöc06]:

Let n
(i)
f (a) denote the number of players whose index is ≤ i and use facility

f and let c′i(a) =
∑

f∈ai
df (n(i)

f (a)) i.e. c′i(a) is the cost of player i if players
i+1, . . . , N don’t exist. It can be observed after exchanging the order of summation
in Rosenthal’s potential that we can write:

φ(a) =
N∑

i=1

∑

f∈ai

df (ni
f (a)) =

N∑

i=1

c′i(a) (2.3)

This leads as to the following interpretation of Rosenthal’s potential: Users are
added one after the other into the game, and the potential acounts for the cost of
the users at their insertion time. Such a calculation of the potential of an outcome
of the game of figure 2.1 is depicted in figure 2.2.

From this interpretation it can be easily seen that the potential accounts for
the real cost of the last user inserted. Thus if the last user makes an improvement
move then the potential drops by the same factor as the cost of the user. However,
since the order of the insertion in the game is irrelevant for the overall value of the
potential (remember the initial formulation), the last claim can be made for any
player.

Rosenthal’s proof, gave rise to the use of potential functions in games that was
later widely studied in bibliography. In brief, Rosenthal defined a real valued func-
tion on the strategy profiles of the game that exaclty tracked the difference of the
utility of a single player when he changed strategy unilateraly. Due to the finiteness
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Figure 2.2: Example of calculation of the potential of an arbitrary outcome
of a network congestion game. The potential accounts for the true cost of
the last player inserted

of the strategy profile space, such a function must have a maximum/minimum. All
strategy profiles in the argmin/argmax of this potential inevitably constitute a
pure Nash Equilibrium, since any improvement move of a player from a strategy
profile in that set would lead to a contradiction.

In a way potential functions have the role of a Lyapunov function if you think
of the game as a dynamic system described by the Nash Dynamics.

2.2 Superclasses, Subclasses and Alternatives

Despite the interesting attributes and the generality of the basic model of
congestion games, it doesn’t capture well all types of game theoretic situations
where players choose among shared resources.

In some situations the generality of the model makes it difficult to study and
better attributes emerge if we restrict ourselves to smaller subclasses of games.
This is the reason why many subclasses of congestion games have been largely
studied in bibliography. The two main subclasses that we will study in this section
are Network Congestion Games and Load Balancing Games.

Moreover, despite the generality of the model it still fails to capture some
intuition behind what kind of games it consists of and what is the essense of the
class of congestion games. In order to study congestion games under another
perspective Monderer and Shapley introduced Potential Games [MS96] which is a
class of games isomorphic to congestion games, but defined in a totally different
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way.
Furthermore, the basic model doesn’t capture situations where players are not

homogeneous, i.e. some of them are more “important” than others (weighted
congestion games), some of them are affected by facility congestion in different
ways than others (congestion games with player specific paoyoffs) or some of them
may cooperate (Coalitional Congestion Games). This three generalizations will be
studied in brief in the next chapters.

Last but not least, several alternative models that deal with situations similar
to those of congestion games have been proposed and cannot be cast as generaliza-
tions or subclasses of them. In particular nonatomic congestion games is a model
almost identical to congestion games where the players are infinite and the affect
of an individual player on the cost of a facility is negligible. Another, alternative
model is Bottleneck Games. The only difference between Bottleneck and Conges-
tion Games is the function that aggregates the costs of the facilities that players
use to give the total cost of a player. While in congestion games this function is
the sum, in Bottleneck Games it is the max. Both classes of games can be viewed
as a subclass of Generalised Congestion Games, which is the class of games with
arbitrary aggregation function and are introduced in [Kuk04].

Last but not least, a model that was first proposed during the process of the
thesis is Colored Resource Allocation Games. This class of games are Generalised
Congestion Games where players have their strategies in several copies. Colored
Congestion Games and Colored Bottleneck Games are subclasses of Colored Re-
source Allocation Games where the aggregation function is the max and sum
accordingly.

The definition and most important characteristics of all the aforementioned
models will be discussed in the next chapters and most of them will be revisited
in the next sections under the perspective of some specific attribute.

2.2.1 Potential Games

Potential Games where introduced by Monderer and Shapley [MS96]. They
introduced several notions of potentials in strategic form games. The most general
potential model is the following:

Definition 18. (Ordinal Potential Games) Let G = 〈N, (Si) , (ui)〉 be a game in
strategic form. A function P : ×iSi → R is called an ordinal potential for G, if
for every i ∈ [N ] and for every y−i ∈ S−i:

ui(x, y−i)− ui(z, y−i) > 0 iff P (x, y−i)− P (z, y−i) > 0 (2.4)

for every x, z ∈ Si. G is called an Ordinal Potential Game if it admits an
ordinal potential.

Intuitively an ordinal potential is a function that follows the sign of change
of any players utility when he changes unilateraly. An even more relaxed type of
potential is the generalized ordinal potential:
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Definition 19. (Generalized Ordinal Potential) Let G = 〈N, (Si) , (ui)〉 be a game
in strategic form. A function P : ×iSi → R is called a generalized ordinal potential
for G, if for every i ∈ [N ] and for every y−i ∈ S−i:

ui(x, y−i)− ui(z, y−i) > 0 ⇒ P (x, y−i)− P (z, y−i) > 0 (2.5)

for every x, z ∈ Si.

The admitance of the above type of potential is the necessary and sufficient
condition for a game to have the Finite Improvement Property, i.e. every best
response sequence is finite.

A more strong kind of potential is the one encountered so far in congestion
games where a function tracks not only the sign but also the amount of the
change.Inspired possibly by Rosenthal’s potential Monderer and Shapley intro-
duced a more strong potential game model.

Definition 20. Let G = 〈N, (Si) , (ui)〉 be a game in strategic form. A function
P : ×iSi → R is called an exact potential (or just potential) for G, if for every
i ∈ [N ] and for every y−i ∈ S−i:

ui(x, y−i)− ui(z, y−i) = P (x, y−i)− P (z, y−i) (2.6)

for every x, z ∈ Si. G is called a Potential Game if it admits a potential.

With arguments similar to those used in the proof of theorem 2.1.1 we can
prove that any improvement path in a potential game is finite (Finite Improvement
Property) and consequently all potential games pocess at least one PNE.

An exact potential game may have many potentials but all differ with each
other by some constant (as is usual with the use of potentials in physics). The set
of local minima of the potential is exactly the set of PNE of the initial game. More-
over, the total minima of the potential could be used as an equilibrium refinement
tool.

An interesting question is whether there exists an easy way to check if a game
in normal form is a potential game. This is answered by the following theorem:

Theorem 7. G is a potential game iff for every i, j ∈ [N ], for every a ∈ S−{i,j}
and for every xi, yi ∈ Si and xj , yj ∈ Sj:

ui(yi, xj , a)− ui(xi, xj , a) + uj(yi, yj , a)− uj(yi, xj , a)+
ui(xi, yj , a)− ui(yi, yj , a) + uj(xi, xj , a)− uj(xi, yj , a) = 0

(2.7)

The intuition of the above condition is that the total improvement incured to
the players during a closed path on strategy profiles (as shown in figure 2.3) is
zero.

Example 7. Consider the Prisoner’s Dilemma game: Two prisoners are held
separately in custody. They have no means of communication and have the options
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(xi, xj, a) (xi, yj, a)

(yi, yj, a)(yi, xj, a)

γ =

Figure 2.3: The simple closed path of player responses. If the total gain of
the players on any such path is zero then the game admits a potential

of either to Confess (C) or Defect (D). The police tries to convince them to confess.
They tell them that if they confess and the other defects then they will be set free for
cooperating and the other person will go to prison for 4 years. If they both confess
they will both get a 3 year imprisonement for cooperating. If they both defect then
they will be be imprisoned for 1 year for minor offenses. The Prisoner’s Dilemma
game is an exact potential game. The game in matrix form and its potential are
depicted in figure 2.1.

P1

P2

C2 D2

C1 3, 3 0, 4
D1 4, 0 1, 1

c1, c2

P1

P2

C2 D2

C1 3 4
D1 4 5

P

Table 2.1: Prisoner’s Dilemma game and one of its exact potential

Now that we have seen some of the basic facts and examples of potential games
the major issue is what is their connection with congestion games. From Rosental’s
potential we know that all congestion games are potential games, but is there a
stronger connection.

Let G1 = 〈N, (S1
i ), (u1

i )〉, G2 = 〈N, (S2
i ), (u2

i ) be strategic form games. We say
that G1 is isomorphic to G2 if there exists bijections gi : S1

i → S2
i , i ∈ [N ] such

that:
∀(s1, . . . , sN ) ∈ S1 : u1

i (s1, . . . , sN ) = u2
i (g1(s1), . . . , gN (sN )) (2.8)

Under the perspective of this type of isomorphism Monderer and Shapley proved
the following amazing connection between the two class:

Theorem 8. Every Potential Game is isomorphic to a Congestion Game
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Thus we see that the two classes talk about the same type of games but in a
totally different way. The proof of theorem 8 provided in [MS96] is quite technical.
We will provide here a more intuitive proof given by Voorneveld et al. [VBM99].

Definition 21. A game G = 〈N, (Si) , (ui)〉 is a:

• coordination game if there exists a function u : S → R such that ui = u for
all i ∈ [N ].

• dummy game if for all i ∈ [N ] and for all xi, yi ∈ Si : ui(xi, x−i) = ui(yi, y−i)

The following theorem states that a strategic game is a potential game iff the
utility of each player i can be broken into a part that is identical for all players
and a part that is dependent only on the strategies of the players except i.

Theorem 9. Let G = 〈N, (Si) , (ui)〉 be a strategic game. G is a potential game
iff there exist functions ci and di such that:

• ∀i ∈ [N ] : ui = ci + di

• 〈N, (Si), (ci)〉 is a coordination game

• 〈N, (Si), (di)〉 is a dummy game

Proof. The opposite direction is obvious since ci is a potential for the game. To
prove the forward direction we just write the utilities in the form: ui(s) = P (s) +
(ui(s) − P (s)) and observe that ∀s′i ∈ Si : ui(si, s−i) − P (si, s−i) = ui(s′i, s−i) −
P (s′i, s−i). Thus, if we set ci = P and di = ui − P we get the desired result.

To prove the final isomorphism result we first prove two intermediate results.

Theorem 10. Every coordination game 〈N, (Si), (ci = P )〉 is isomorphic to a
Congestion Game.

Proof. For every strategy profile s in the potential game introduce a facility f(s)
in the congestion game. The cost function of the facility is the following:

df(s)(i) =

{
P (s) i = N

0 otherwise
(2.9)

The strategy space of player i in the congestion game is defined by the bijection
hi(si) : Si 7→ Ai:

hi(si) = {f(si, s−i)|s−i ∈ S−i} (2.10)

It can be observed that for every strategy profile (s1, . . . , sN ) of the potential game
the only facility that is used by N players in the strategy profile (h1(s1), . . . , hN (sN ))
of the congestion game is facility f(s). Thus the cost of all players in the congestion
game is df(s)(N) = P (s) = ci(s) since all other facilities incur zero cost.

Theorem 11. Every dummy game 〈N, (Si), (ui)〉 is isomorphic to a Congestion
Game.
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Proof. For every player i ∈ [N ] in the potential game we define a facility f(s−i) for
every s−i ∈ S−i in the congestion game. The cost of each such facility is defined
as:

df(s−i)(i) =

{
ui(s−i) i = 1
0 otherwise

(2.11)

The strategy of player i in the congestion game is defined by the bijection
gi(si) : Si 7→ Ai:

gi(si) ={f(s−i)|s−i ∈ S−i}∪
{f(x−j)|j ∈ N/i, x−j ∈ S−j , xi 6= si}

(2.12)

Let s = (s1, . . . , sN ) be a strategy profile of the potential game and g(s) =
(g1(s1), . . . , gN (sN )) the corresponding strategy profile in the congestion game.
The only player that uses facility f(s−i) in g(s) is player i while all other facilities
are used by more than one player. Thus the cost of each player in the congestion
game is df(s−i)(1) = ui(s−i).

From the above two results it is trivial to prove theorem 8 by using as bijection
the function hi(si) ∪ gi(si).

To make the above proof clearer we will now provide an example of how to
make the Prisoners Dilemma game a congestion game, going through all the steps
described in the proofs.

Example 8. We first break the Prisoners Dilemma game in a coordination and a
dummy game as follows:

C2 D2

C1 3, 3 0, 4
D1 4, 0 1, 1

c1, c2

C2 D2

C1 3, 3 4, 4
D1 4, 4 5, 5

ccoord
1 , ccoord

2

C2 D2

C1 0, 0 −4, 0
D1 0,−4 −4,−4

cdum
1 , cdum

2

Table 2.2: Break up of the Prisoner’s Dilemma game into a coordination and
a dummy game

Then we present the bijection from the strategy space of the coordination/dummy
game to that of the congestion game:

C2 D2

C1 X = f(C1, C2) Y = f(C1, D2)
D1 Z = f(D1, C2) W = f(D1, D2)

facilities

{X,Z} {Y,W}
{X,Y } 3, 3 4, 4
{Z, W} 4, 4 5, 5

ci-congestion game

Table 2.3: Bijection hi from coordination game to congestion game
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C2 D2

C1 a = f(C2), x b, x = f(C1)
D1 a, y = f(D1) b = f(D2), y

facilities

{b, x, y} {a, x, y}
{a, b, y} 0, 0 −4, 0
{a, b, x} 0,−4 −4,−4

ci-congestion game

Table 2.4: Bijection hi from dummy game to congestion game

And at last the final congestion game that is isomorphic to the prisoner’s
dilemma game is constructed by the union of the two bijections:

C2 D2

C1 3, 3 0, 4
D1 4, 0 1, 1

c1, c2

{X,Z} ∪ {b, x, y} {Y, W} ∪ {a, x, y}
{X, Y } ∪ {a, b, y} 3, 3 0, 4
{Z,W} ∪ {a, b, x} 4, 0 1, 1

ci-congestion game

Table 2.5: Prisoner’s Dilemma Game and its isomorphic congestion game

2.2.2 Subclasses

From the definition of congestion games we identify two ways to constraint
them to a subclass. First by adding some limitation on the strategy space of the
players (e.g. network congestion games, load balancing games) and second by
adding some limitation on the type of facility cost function df (e.g. polynomials,
linear, M/M/1).

In the next paragraphs we will present three very well studied subclasses of
congestion games. All of these subclasses are derived by restricting the strategy
space of the players to some intuitively interesting subset.

Definition 22. A Symmetric Congestion Game is a Congestion Game 〈N,F,
(Ai)i∈[N ], (df )f∈F 〉 where Ai = M ⊂ 2F , i.e. where all players have the same
strategy space.

Definition 23. A Network Congestion Game 〈Γ, ((si, ti))i∈[N ], (de)e∈E〉 is a
Congestion Game 〈N, F, (Ai)i∈[N ], (df )f∈F 〉 where Γ = (V,E) is a graph, F = E,
Ai = {si− ti paths}. I.e. a Network Congestion Game is a congestion game where
facilities are edges in a graph G, players are pairs of nodes in the graph and the
strategy space of each player is the set of possible paths between the pair of nodes
of the player.

Definition 24. A Load Balancing Game is a Congestion Game 〈N,F, (Ai)i∈[N ],
(df )f∈F 〉 where the strategy space of each player is exactly the set F .

Load Balancing Games can also be described as Symmetric Network Conges-
tion Games on a graph of parallel links, or as scheduling games, where tasks want
to be assigned at machines.
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2.2.3 Generalizations

In the basic model of congestion games studied so far, all players account for
a congestion of 1 when they use a facility. The case not addressed so far is what
happens when each player controlls more than a unit quantity of congestion or
generally players don’t affect congestion homogeneously.

Definition 25. A Weighted Congestion Game is a tuple 〈N, F, (Ai)i∈[N ],
(df )f∈F , (wi)i∈[N ]〉. [N ], F,Ai, df are defined exactly as in congestion games and
wi ∈ N is a weight for player i. Given a strategy profile a = (a1, . . . , aN ) ∈ A
the congestion of facility is nf (a) =

∑
i∈[N ],f∈ai

wi. The utility of each player is
ui(a) =

∑
f∈ai

df (nf (a)).

Weighted congestion games are certainly a generalization and many important
attributes of congestion games such as the existence of PNE dont continue to hold.

Another, generalization proposed initialy by Miltaich ([Mil96]) and studied
recently under the perspective of the equilibrium existence problem is the following:

Definition 26. A Congestion Game with Player Specific Payoffs is a tu-
ple 〈N, F, (Ai)i∈[N ], (di

f )f∈F,i∈[N ]〉. [N ], F, Ai are defined exactly as in conges-
tion games and di

f : N 7→ Z is the facility cost that player i suffers from facil-
ity f . The utility of each player in a strategy profile a is accordingly defined as
ui(a) =

∑
f∈ai

di
f (nf (a)).

One important fact concerning Player-Specific Congestion Games that was
observed and proved by Monderer [Mon07] is that they are as strong as general
strategic form games. In a sense they have the same equivalence that Congestion
Games have with Potential Games. To reach this result Monderer introduces
the notion of q-potential games. A q-potential game is a game where we can
group the players in q groups and define a potential for each group of players,
that exactly follows their utility. These types of games are isomorphic to Player-
Specific q-Congestion Games which are again games where we can define q groups
of delay function vectors of size |F |, and players can be grouped into q groups
where each players player specific delays on the facilities are exactly the delay
functions of some vector. The isomorphism is proved with a slight modification of
the Potential-Congestion Games isomorphism presented previously.

In the extreme case where q = N Player-Specific q-Congestion Games coincide
with general Player-Specific Congestion Games and q-Potential Games coincide
with general strategic form games since the utility of each player is the potential
for each of the N groups.

The last generalization that will be studied in this thesis captures the situations
where users dont act on their own but in coalitions. They aim not at minimizing
their own cost but some aggregate cost of the coalition they belong to. They were
first introduced by Harapetyan et al [HTW06] and are defined as follows:

Definition 27. A Coalitional Congestion Game is a tuple 〈N, F, (Ai)i∈[N ],
(df )f∈F , (Pj)j∈[k]〉. [N ], F, Ai, df are defined exactly as in congestion games and
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P = (P1, . . . , Pk) is a partition of the player set [N ] in k subsets (coalitions).
Each coalition Pi constitutes a coalitional player in the Coalitional Congestion
Game that chooses a strategy for each of the players in the coalition. The utility
of each coalitional player Pj in a strategy profile a ∈ A is defined as uPj (a) =∑

i∈Pj

∑
f∈ai

df (nf (a)).

An alternative model for coalitional congestion games inspired by the KP-
model was introduced by Fotakis et al. [FKS08].

Definition 28. A Coalitional Max-Congestion Game is a tuple 〈N, F, (Ai)i∈[N ],
(df )f∈F , (Pj)j∈[k]〉. [N ], F,Ai, df , Pj are defined exactly as in the Coalitional Con-
gestion Game model. Each coalition Pi constitutes a coalitional player in the Coali-
tional Max-Congestion Game that chooses a strategy for each of the players in the
coalition. The utility of each coalitional player Pj in a strategy profile a ∈ A is
defined as uPj (a) = maxi∈Pj

∑
f∈ai

df (nf (a)).

Fotakis et al. [FKS08] are mainly interested in the case of parallel links for the
above model and their results that will be discussed in later sections concern only
this case that we will refer to as the Coalitional KP-model.

2.2.4 Alternatives

Nonatomic Network Games aka Selfish Routing

In the models studied so far we assumed that there exist a small number of
players in the game. There exist an alternative model based on the assumption
that players are infinite and control a the affect of a single player on the congestion
of a facility is negligible. This model has been extensively studied in the case of
Network Congestion Games and thus we are going to present the model only in
that case since it becomes more intuitive.

In Network Congestion Games players want to sent traffic from a source to a
destination node on a graph. If we assume that the number of users in the Network
is very large and each player controlls a negligible amount of traffic then we are
led to the following quite different formulation

Definition 29. A Nonatomic Network Congestion Game or Nonatomic Selfish
Routing Game is a tuple 〈Γ, r, c〉. Γ is a directed graph (V, E). r is a set of
requests ri : i ∈ [k] for traffic between pairs of nodes (si, ti) called commodities. c
is a set of cost functions of the edges of the network. We assume that the players
of the game are hidden in the requests and each game controlls an infitesimal
amount of each request ri. Let Pi denote the set of paths between nodes (si, ti) and
P = ∪i∈[k]Pi. A flow f is feasible for the game if all traffic requests are routed:
i.e. ∀i ∈ [k],

∑
P∈Pi

fP = ri, where fP is the amount of traffic of commodity i that
chooses path P to travel from si to ti. The possible outcomes of the game are the
all feasible flows. The congestion of an edge in the network is the amount of traffic
routed through that edge fe =

∑
P∈P,e∈P fP . The cost of an edge incurred on the

commodities that use it is ce(fe) and the total cost suffered by an amount of traffic
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routed through a path P is cP (f) =
∑

e∈P ce(fe). Implicitly this is the cost of the
infinite users that participate in creating traffic fP .

Although, an implicit reference to the players of a Nonatomic Network Con-
gestion Game was made in the previous definition, most of the time such games
are studied just in terms of flows. This is reasonable given that the identity of
players is not important in such games.

Given the above special characteristic of the nonatomic model it is not trivial
to state what is a Nash Equilibrium of the game. Such equilibria where first pro-
posed in transporation bibliography and specifically where introduced by Wardrop
[War52], who defined the conditions of equilibrium.

Definition 30. A feasible flow f of a Nonatomic Network Congestion Game
〈Γ, r, c〉 is at Nash Equilibrium or equivalently is a nash flow iff for all commodities
i, si − ti paths P1, P2 ∈ Pi with fP1 > 0:

cP1(f) ≤ cP2(f) (2.13)

Equivalently, in a Nash Equilibrium all flows travel through minimum-cost paths.

The basic characteristic of existence of PNE in the atomic case carries over to
the nonatomic model in the following slightly modified theorem:

Theorem 12. Every Nonatomic Network Congestion Game admits a Nash flow.

General Aggregation Function and Bottleneck Games

To present the bottleneck games we will first examine the structure of the
utility of players in the basic congestion game model. Recall that in a congestion
game the cost of player i in a strategy profile a is ci(a) =

∑
f∈ai

df (nf (a)). This
cost consists of calculating the local cost of a player at a facility (df (nf (a))) and
then aggregating the local costs into a total cost through some aggregation function
(sum).

The basic model of Congestion Games is quite general as far as the local cost
part is concerned, and allows the freedom to choose among all types of local cost
functions df . However, the aggregation function is specific and not general. More-
over, most of the characteristics of Congestion Games presented so far are based
on the fact that the aggregation function is the sum. Thus by using some other
function we are led in a totally different class of games that need to be exam-
ined separately. The most well studied case of such a model based on situations
observed in communication networks is Bottleneck Games.

Definition 31. A Bottleneck Game is a tuple 〈N,F, (Ai)i∈[N ], (df )f∈F 〉 where
[N ], F, Ai and df are defined as in Congestion Games. The cost of a player in a
strategy profile a is ci(a) = maxf∈ai df (nf (a)).
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Through the use of potential functions it can be proved that Bottleneck Games
always admit a PNE and the proof will be given in section 2.3.

Inspired by the proof of the isomorphism of Potential and Congestion Games
we will present a class of games that can be similarly proved to be isomorphic to
bottleneck games. The overall goal of this approach is to prove that Bottleneck
Games are also isomorphic to this class of games and hence prove an equivalence
between the two classes.

Definition 32. A game G = 〈N, (Si) , (ui)〉 in normal form is a Max-Potential
Game if and only if there exist functions ci and di such that:

• ∀i ∈ [N ] : ui = max(ci, di)

• 〈N, (Si), (ci)〉 is a coordination game

• 〈N, (Si), (di)〉 is a dummy game

By using the same bijection of the strategy space of players between the two
types of games as the one used for the Potential-Congestion Game isomorphism
we can conclude the following theorem:

Theorem 13. Every Max-Potential Game is isomorphic to a Bottleneck Game.

Proving the opposite direction will lead to equivalence of the two classes and
this will give rise to new ways of examining the characteristics of Bottleneck Games.

Colored Resource Allocation Games

Colored Resourced Allocation Games is an enriched model of Congestion Games
with general aggregate functions, proposed during the process of the thesis [BPPS09].
The motivation of Colored Resource Allocation Games is to model non-cooperative
versions of routing and wavelength assignment problems in multifiber all-optical
networks. They can be viewed as an extension of congestion games where each
player has his strategies in multiple copies (colors). When restricted to (optical)
network games, facilities correspond to edges of the network and colors to wave-
lengths. The number of players using an edge in the same color represents a lower
bound on the number of fibers needed to implement the corresponding physical
link.

Definition 33. A Colored Resource Allocation Game is a tuple 〈N, F, (Ai),
(df ), W 〉 where [N ], F,Ai and df is defined as in congestion games and [W ] is a
set of colors. The strategy of each player is a pair si = (ai, ci) where ai ∈ Ai and
ci ∈ [W ]. Let s be a strategy profile. The colored congestion of a facility is defined
as nf,c(s) = |{i ∈ [N ] : f ∈ ai, ci = c}|. According to the aggregation function used
we have the following two subclasses:

• Colored Congestion Games (CCG), with player cost ci(s) =
∑

f∈Ai

df (nf,ci(s))

• Colored Bottleneck Games (CBG), with player cost ci(s) = max
f∈Ai

df (nf,ci(s))
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2.3 Existence of Nash Equilibrium

As is proved in the previous section Congestion Games always admit a PNE and
this also trivially holds for all their subclasses. However, it is not trivial to deduce
the above result to some assertion on the existence of PNE in the superclasses and
alternatives of Congestion Games. We will present the latest results on existence
of PNE in the classes of Weighted Congestion Games, Congestion Games with
Player-specific Payoffs, Coalitional Congestion Games and Bottleneck Games.

2.3.1 Existence in Weighted and Player Specific

When Milchtaich [Mil96] introduced the classes of weighted congestion games
and games with player-specific payoffs he showed that in the general case for both
classes, there exist instances that don’t admit a PNE. Therefore the only hope for
existence of PNE is constraining these two classes in smaller subsets and examining
the PNE-existence problem there.

There exist two types of constraining the general case in smaller subsets: (1)
Examining restricted player strategy spaces, (2) Examining restricted subclasses
of delay functions.

In the first direction the most general result was proved by Ackermann et al.
[ARV06b]. In order to define the maximal property of the strategy space of the
players that consitutes a class of games that always admit a PNE, we first give a
brief definition of matroids.

Definition 34. A tuple M = (F, l)is a matroid if F is a finite set of resources
and l is a non-empty family of subsets of F such that, if I ∈ l and J ⊆ I then
J ∈ l, and if I, J ∈ l and |J | < |I| then there exists an i ∈ I \ J with J ∪ {i} ∈ l.

Some of the most useful notations and properties of matroids are the following:

• All sets in l are called independent sets

• We call the independent sets of maximal cardinality the bases of the matroid

• From the second property of matroids all the bases have equal cardinality
which we call the rank of the matroid

• If we assign weights to each resource in F then the weight of an independent
set is the sum of the weights of the resources it includes

• The base of the matroid with the minimum weight can be found by the
greedy algorithm and only problems that can be defined as a minimiza-
tion/maximization problem on a matroid can be solved by a greedy algo-
rithm

Some intuitive examples of matroids are the following:
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Example 9. (Graphic Matroid) Given a graph G = (V, E), the tuple M = (E, l)
where l is the set of forests of the graph is a matroid. If the graph is connected
then the bases of the matroid are the spanning trees of the graph. In addition, if we
assign a weight to each edge of the graph then the problem of finding the minimum
weight base of the matroid is exactly the problem of finding a minimum spanning
tree, which is known to be solved by the greedy algorithms of Prim and Kruskal.

Example 10. (Linear Matroid) Given a R × C matrix A the tuple M = ([R], l)
where x ∈ 2[R] belongs to l if and only if the rows in x are linearly independent, is
a matroid.

Based on the definition of matroids we define the following subclass of Con-
gestion Games:

Definition 35. A Congestion Game G = 〈N, F, (Ai)i∈[N ], (df )f∈F 〉is called a Ma-
troid Congestion Game if and only if for every player i ∈ [N ], Ai is the set of bases
of a matroid Mi = (F, li). Additionally we denote by rk(G) = maxi∈[N ]rk(Mi)
the rank of the game G. The classes of Matroid Weighted Congestion Games and
Matroid Player-specific Congestion Games are defined accordingly.

From the examples of matroids given so far, an intuitively usefull case of Ma-
troid Congestion Games is for example when the strategies of a players are spanning
trees on a subgraph of a given graph G (figure 2.4). Another, well studied case is
where the strategies of the players are singleton facilities.

3

8/9

4 7

6

Nodes of player 1

Nodes of player 2

Figure 2.4: Example of a matroid congestion game. Players want to buy a
spanning tree on their subgraph.

The basic result of [ARV06b] is the following:
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Theorem 14. Matroid Weighted Congestion Games and Matroid Player-specific
Congestion Games admit a PNE when the delay functions are non-decreasing.
Moreover, for the player-specific case the best responce dynamics of a game G
converge to a PNE in at most 2N2|F |rk2(G).

The matroid characteristic of the strategy space of the players is somehow max-
imal since any game with non-matroid strategy spaces doesn’t necessarily admit a
PNE.

In the second direction of defining subclasses that admit a PNE, the result for
the weighted case that we present here is a combination of the results of three
works [FKS05a, PS05, HKM09]:

Theorem 15. For each game G in the class of Weighted Congestion Games where
the delay functions are linear (∀f ∈ F : df (x) = afx + bf , ae, be ≥ 0) the following
function:

Φ(s)
1
2


∑

f∈F

df (nf (s))nf (s) +
∑

i∈[N ]

∑

f∈si

df (wi)wi


 (2.14)

is a w-potential for G and thus G admits a PNE.
For each game G in the class of Weighted Congestion Games where the delay

functions are exponential (df (x) = exp(x)), the following function:

Φ(s) =
∑

f∈F

exp(nf (s)) (2.15)

is a w-potential for G and thus G admits a PNE.
Moreover, Weighted Congestion Games admit a w-potential if and only if the

delay functions are either only linear or only exponential.

For Player-Specific Congestion Games Gairing et al. [GMT06] prove the fol-
lowing theorem:

Theorem 16. Player-specific Congestion Games on parallel links where the delay
functions are linear without a constant term (di,f (x) = ai,fx), admit the following
exact potential:

Φ(s) =
∏

i∈[N ]

ai,si

∏

f∈F

nf (s) (2.16)

and thus always pocess a PNE.

The most interesting part about the above potential is that it includes only
products and no summation and it is the first such potential function. This charac-
teristic is interesting since the above method could give rise to potential functions
of similar form for cases where summation style functions have not proven useful.

To our knowledge the above results are the best known so far for the two
generalisations of congestion games examined. In this thesis we provide a novel
proof for the existence of PNE for matroid weighted congestion games when the
delays are non-increasing.
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Theorem 17. Any Matroid Weighted Congestion Game with non-increasing delay
functions admits a PNE.

Proof. Given a strategy profile s, we call a best response si∗ of player i lazy if
it can be decomposed into a sequence of strategies si = s0

i , s
1
i , . . . , s

k
i = si∗ with

|sj+1
i \ sj

i | = 1 and ci(s
j+1
i , s−i) < ci(s

j
i , s−i) for 0 ≤ j < k.

From the properties of matroids we know that given a matroid M = (F, l) with
weights F 7→ N, a basis B ∈ l is a minimum weight basis of M if and only if there
exists no basis B∗ ∈ l with |B \B∗| = 1 and w(B∗) < w(B).

This property leads to the fact at every strategy profile which is not a PNE
there exists at least one player i who can descrease her cost by playing a lazy best
response s∗i . Since s∗i is a lazy best response there exists a sequence of strategies
si = s0

i , s
1
i , . . . , s

k
i = s∗i such that for every 0 ≤ j < k, |sj+1

i \ sj
i | = 1 and

ci(s) = ci(s0
i , s−i) > ci(s1

i , s−i) > . . . > ci(sk
i , s−i) = ci(sk

i , s−i) (2.17)

Since from the properties of matroids we know that all the basis have equal
cardinality. Therefore, sj+1

i is deduced from sj
i by exchanging some resource. Let

rj the unique resource that is contained in sj
i but not in sj+1

i and let r∗j the unique
resource that is contained in sj+1

i but not in sj
i .

Lets denote with nf (s) the congestion of a facility which is the sum of the
weights of players using facility f in strategy profile s. Moreover, we denote with
zf (s) = (df (nf (s)), nf (s)). We define an ordering on zf as follows: zf (s) ≤ zf (s′)
if and only if df (nf (s)) < df (nf (s′)) or df (nf (s)) = df (nf (s′)) and nf (s) > nf (s′).
Moreover, zf (s) < zf (s′) if and only if zf (s) ≤ zf (s′) and zf (s) 6= zf (s′). Consider
the vector of size |F | that contains the pairs zf (s) of each resource sorted in
increasing order.

Since player i is switching facility rj for r∗j we know that:

nr∗j (sj+1
i , s−i) = nr∗j (sj

i , s−i) + wi > nr∗j (sj
i , s−i) (2.18)

Moreover, from the monotonicity of the delay functions we know that:

dr∗j (nr∗j (sj+1
i , s−i)) ≤ dr∗j (nr∗j (sj+1

i , s−i)) (2.19)

In addition since each step of the sequence is an improving move:

dr∗j (nr∗j (sj+1
i , s−i)) < drj (nrj (s

j
i , s−i)) (2.20)

The above inequalities yield:

min(zr∗j (sj+1
i , s−i), zrj (s

j+1
i , s−i)) < min(zrj (s

j
i , s−i), zr∗j (sj

i , s−i)) (2.21)

The last inequality states that whenever an improvement move is made during
the sequence si = s0

i , s
1
i , . . . , s

k
i = s∗i the vector of zf (s) strictly decreases lexico-

graphically, hence a PNE is guarranteed to exist and a lazy best response sequence
of moves is guarranteed to end at a PNE.
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2.3.2 Existence in Coalitional Congestion Games

We now move on to the problem of PNE existence in the class of Coalitional
Congestion games, as defined by Hayrapetyan et al. [HTW06].

In [HTW06] it is proved that for the case of parallel links we can conclude the
following theorem:

Theorem 18. Coalitional Congestion Games in a parallel links network with con-
vex latencies always admit a PNE.

The above theorem is proved in a way very similar to the proof of existence of
PNE in player specific congestion games. We will give here a sketch of the proof:

Proof. (Proof Sketch). We prove existence through induction on the number of
players in the game. When a new player is added to the game the best strategy for
the coalition, which the new player belongs to, is to put him on a new link without
changing the rest of its strategy. The above holds only in the case of convex delay
functions. After, a coalition places a player on a link, say s, then only a coalition
from link s might have an improving move. Let j be such a coalition. After j
removes a player from s then the resulting strategy profile is an equilibrium. So,
now coalition j has to place the player it removed to some other link t and only
some coalition on that link might have an improving move. This best response
can be proved to be finite. The basic fact is that whenever a coalition places a
player to a link s during the above best response process then it never removes
this player from that link.

A stronger result is proved in [FKS08] for the case of linear edge delays. When
the players in the underlying congestion game are weighted then a coalitions cost
is a weighted sum of the costs of its players. Fot this case Fotakis et al. [FKS08]
give the following result:

Theorem 19. Every weighted congestion game with coalitions and linear facility
delays is an exact potential game with the following potential:

Φ(s) =
1
2


∑

f∈F

nf (s)df (nf (s)) +
∑

f∈F

k∑

j=1

nf (sj)df (nf (sj))


 (2.22)

where nf (s) is the total weight on facility f and nf (sj) is the weight on facility f
caused only by coalition j.

For the case of Max-Coalitional Congestion Games presented in [FKS08], it is
easy to prove that there always exist a PNE in the case of parallel links (even with
dynamic coalitions) and identical delays with the following lexicographic argument:
Whenever a coalition C wants to make an improvement move and take its players
from resource r(t) to resource r(t + 1) then it must hold:

L ≡ max
j∈C

{nrj(t)(s(t))} > max
j∈C

{nrj(t+1)(s(t + 1))} (2.23)
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Therefore if we construct a vector of size equal to the sum of the weights and at
each position i we put the number of players that suffer a delay of i then this
vector strictly decreases at each step.

2.3.3 Existence in Bottleneck Games

The PNE existence problem in bottleneck games is tuckled with a similar lexi-
cographic argument to that in Max-Coalitional Congesiton Games. The following
theorem can be found in [BO06], but we provide the proof here under our notation
since it is succinct and quite usefull.

Theorem 20. Bottleneck Games always admit a PNE.

Proof. Consider the vector B(s) that contains all the elements of {ci(s)|i ∈ [N ]}
sorted in non-increasing order. Let Bi(s) denote the ith element of B(s). Define
with B ⊆ RN the set of all vectors B(s) that correspond to a strategy profile:
B = {B(s)|s is a strategy profile}.

We define the lexicographic ordering on that finite set of vectors: B(x) < B(y)
iff there exists an i ∈ [N ] such that Bj(x) = Bj(y) for all j ∈ [1, i − 1] and
Bi(x) < Bi(y). Moreover, we say that B(x) = minB if there is no B(y) ∈ B such
that B(y) < B(x). Since B is finite we know that such a minimum exists.

Let B(s) = minB. We argue that s is a PNE for the bottleneck game. By
definition of B(s) we know that for each i ∈ [N ] their cost is minimized with
respect to all vectors B(x) ∈ B that satisfy Bj(x) = Bj(s) for j ∈ [1, i− 1]. Thus,
a player can make an improvement move only if he modifies a player with larger
cost. Suppose that player i increases the cost of some player with already larger
cost. For this to happen player’s i cost must also increase to that amount, so it
cannot be an improvement move. So the only possibility is that player i decreases
the cost of players with larger cost. But since we are talking about an improvement
move for player i, such a modification will lead to a vector B(x) < B(s) which
contradicts the initial assumption that B(s) = minB. Therefore, no player can
make an improvement move.

The vector defined in the last proof can also be viewed as a generalized ordinal
potential of bottleneck games. Consider an arbitrary initial strategy profile s
and the corresponding vector B(s). Let player i make an improvement move. The
only elements of the vector that could potentially become affected are the elements
with cost equal to the cost of player i (if i had a common resource with them)
and the ones with smaller bottleneck (player i moved on the resources of a player
with smaller bottleneck or left from resources of a player with smaller cost). The
last ones strictly decrease. So, the smaller ones that become even smaller can
only decrease lexicographically the vector. The only ones that might increase the
vector are those whose cost increases. But those costs cannot become larger than
the new cost of player i which is strictly smaller than the old one. Thus, the new
vector is definitely lexicographically smaller than the old one.
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2.3.4 Discussion on Methods of PNE Existence

Based on the proofs studied in previous paragraphs we can identify three major
methods that can be used to prove PNE existence in congestion-like games.

First we have the potential method. In this technique we try to prove that a
function P : ×iSi 7→ R is either an exact or a weighted potential for the game. This
automatically leads to PNE existence and gives immediately a lower bound on the
convergence time of best response paths to a PNE. However, the class of games that
admit such potentials is quite small and we cannot hope to achieve many results
with this technique. On the other hand it might be our first attempt whenever we
tuckle with a PNE existence problem since proving such a characteristic for our
class of games tells us a lot about the nature of our game.

Second we have the lexicographic method. In this technique we try to define
an ordered finite space and a mapping from the strategy space to that space. Then
we try to prove that whenever a player makes an improvement move the element
in our ordered space that corresponds to the new strategy profile is strictly smaller
than that in our initial strategy profile.

Third we have the inductive method. In this technique we try to prove
the equilibrium existence by using induction on some parameter of the game. For
example it could be players of a coalition used in coalitional congestion games or
tokens of a strategy used in matroid player specific congestion games. In order to
prove the induction step, most of the times, we use some of the previous techinques
so as to show that when a new element is added there exist some best response
sequence that leads the game again to a PNE.

Whenever we want to solve an equilibrium existence problem in some new
model it is interesting to see what could be derived using the above techniques
and then move on to some ad hoc argument. Of course the small number of
results so far leads us to think that there might exist some other more general
method that would enable new results on the problem.

2.4 Complexity of Computing Pure Nash Equi-

libria

In this section we investigate the complexity of computing a PNE in a conges-
tion game-like representation of a game. It is trivial to notice that in a normal
form representation of a game, finding a PNE requires just to check every entry
of the payoff matrices, which is polynomial for that input. But when a strategic
game is given in the succinct form of a congestion game or its alternatives then
the complexity of computing a PNE arises as a major issue.

2.4.1 The Class PLS

The fundamendal results in the complexity of the basic model of Congestion
Games where given by Fabrikant et al. in [FPT04], where they prove among others
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that finding a PNE in the class of Congestion Games is PLS-complete. So we will
first give the basics of the complexity class PLS (Polynomial Local Search).

PLS is a class consisting of search problems, similar to FNP, FP, PPAD and
other classes described in the introduction chapter. A problem L in PLS can be
either a maximization or a minimization problem and is specified as follows: L
has a set DL of instances, which are a polynomial-time recognizable subset of
{0, 1}∗. For each instance x we have a finite set FL(x) of solutions, which can
also be considered as {0, 1}∗ strings of polynomially bounded length p(|x|). For
each solution s ∈ FL(x) we have a non-negative integer cost cL(s, x) and a subset
N(s, x) ⊆ FL(x) called the neighborhood of s. What remains for L to be in PLS is
the existence of three polynomial-time algorithms AL, BL and CL. Algorithm AL,
given x ∈ DL produces a particular standard solution AL(x) ∈ FL(x). Algorithm
BL, given an instance x and a string s, determines whether s ∈ FL(x) and if so
computes cL(s, x). Algorithm CL, given an instance x and a solution s ∈ FL(x),
has two possible types of outputs: If there is any solutions s′ ∈ N(s, x) with better
cost than that for s, CL outputs such a solution. Otherwise it reports that no such
solutions exist and hence s is locally optimal.

Example 11. A problem that will be proved usefull in proving PLS completeness
of finding a PNE is MAX CUT: Given a weighted graph, find a partition of its
vertices, into two possibly unequal parts, so that the weight of the cut cannot be
increased by moving a vertex from one side to the other. To illustrate better the
definition of a PLS problem lets make the correspondence with MAX CUT: The
set of instances x are the set of binary representations of the adjacency matrix
of a graph. The set of solutions is the set of binary representations of partitions
of nodes of the graph. A neighborhood of solution is all the solutions that can be
derived by moving a node from one partition to the other. The cost of a solution is
the sum of the weights of the cut of the partition. Algorithm AL outputs an initial
partition of the graph. Algorithm BL given a graph and a partition, determines if
the partition is valid and if so returns the cost of the cut. Algorithm CL given a
graph and a partition checks if a partition produced by moving a node from one
partition to the other, has a better cost and if so retuns such a partition. Otherwise
returns false.

The definition of a PLS problem gives immediately a trivial algorithm for
finding a solution that we call the standard algorithm:

1. Given x, use AL to produce a starting solution s

2. Until current solution is not locally optimal: Apply CL to current solution
s. If CL gives a better cost neighbour s′ set s = s′.

Since the solutions of the instance are finite the above algorithm must halt at
a local optimum. However, for several problems the above trivial algorithm takes
exponential time to halt.

Generally, the class PLS is a subclass of TFNP. Any problem in PLS is a
search problem where a solution is guarranteed to exist. Moreover, the existence
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of a solution is guarranteed because of the fact that a local optimum always exist
in a finite totally ordered space. Equivalently, the existence of a solution is based
on the following non-constructive theorem:

Every DAG has a sink.

The graph constructed by the moves made by the standard algorithm form
a DAG and therefore we know that an endpoint in that sequence of moves will
sometime halt.

As a subclass of TFNP based on a non-constructive proof it is an open and
important problem of how difficult are the problems it includes. In other words
how difficult is local search. It certainly holds that FP ⊆ PLS ⊆ FNP , but
two major questions are FP =?PLS =?FNP . We know that PLS6=FNP unless
NP = co−NP . On the other side proving that FP = PLS would mean that there
exists an algorithm that doesn’t need to follow the whole path produced by the
standard algorithm but finds a way to shortcut in order to reach a local optimum.
A similar success story was that of linear programming. In linear programming the
simplex method is very similar to the standard algorithm following an improvement
path on nodes of a polytope until it finds an optimum, which can be exponential.
However, the ellipsoid method makes a shortcut visiting only the optimum node of
the polytope in polynomial time. Intrigued by linear programming one could try
to find a shortcut algorithm to solve the standard algorithm problem: Find the
local optimum that the standard algorithm produces. But the standard algorithm
problem is NP-hard for several PLS problems and this is the reason why in the
definition of PLS we seek an arbitrary local optimum.

Generally, when trying to identify how difficult are the problems of a class we
want to find complete problems. Therefore, we now move on to defining what is a
PLS reduction.

We say that a problem L in PLS is PLS-reducible to another, K, if there are
polynomial-time computable functions f and g such that: (a) f maps instances x
of L to instances f(x) of K, (b) g maps (solution of f(x),x) pairs to solutions of
x and (c) for all instances x of L, if s is a local optimum for instance f(x) of K,
then g(s, x) is a local optimum for x.

The above definition of PLS reduction has the two desirable properties of
reductions:

• If K is PLS-reducible to L and L is PLS-reducible to J then K is PLS-
reducible to J .

• if K is PLS-reducible to L and we can find locally optimal solutions to L
in polynomial time, then we can also find locally optimal solutions for K in
polynomial time.

Having defined the notion of PLS-reduction, PLS-completeness can be defined
accordingly.

The above PLS-reduction although keeps the two desirable properties of com-
mon reductions it doesn’t preserve any properties of the efficiency of the standard
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algorithm. An important concept related to the standard algorithm is the transi-
tion graph. The transition graph is the subgraph of the neighborhood graph such
that every edge goes from a node with worse to a node with better cost. This
graph is a DAG and the costs of the nodes are a topological order of the graph.
Moreover, the sinks of the transition graph correspond to local optima of the ini-
tial problem. The standard algorithm chooses an initial vertex in the transition
graph and follows a path to a sink. The shortest path from a vertex v to a sink
is called the height of v and corresponds to a lower bound of the standard algo-
rithm. Moreover, the largest height of the transition graph (called the height of
the graph) corresponds to the worst case running time of the standard algorithm.
Thus if the height of the graph is exponential then so is the complexity of the
standard algorithm.

Under the previous perspective it would be helpful to have a PLS-reduction
from a problem I to problem J such that the height of the transition graph of J
would be at least as large as that of I and if the standard algorithm problem is
NP-hard for I then it is also for J . This type of PLS-reduction is called tight and
was defined by Schaffer et al. [SY91].

Definition 36. Let P, Q be PLS problems and let (f,g) be a PLS-reduction from
P to Q. We say that the reduction is tight if for any instance I of P we can choose
a subset R of feasible solutions for the image instance J = f(I) of Q such that the
following properties are satisfied:

• R contains all local optima of J

• For every feasible solution p of I, we can construct in polynomial time a
solution q ∈ R of J such that g(q, I) = p

• Suppose that the transition graph of J , contains a directed path q → q′,
such that q, q′ ∈ R, but all internal path vertices are outside of R and let
p = g(q, I) and p′ = g(q′, I) be the corresponding feasible solutions of I.
Then either p = p′ or the transition graph of I contains an edge from p to
p′.

In the initial works in PLS [JPY88, SY91, PSY90] many interesting problems
where proved to be PLS-complete and most of them through tight PLS-reductions.
The MAX CUT problem defined previously is PLS-complete. Some other PLS-
complete problems are the following:

• FLIP: Given a boolean circuit with n input and n output bits, find an input
such that now greater/smaller output can be produced by flipping one bit
of the input.

• WEIGHTED SAT: The input is a boolean formula in CNF and weights for
each clause. Given an assignment of the variables the cost of the assignment
is the sum of the weights of the satisfied clauses. Find an assingment to the
variables such that no greater assignment can be produced by flipping the
value of a variable
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• WEIGHTED kSAT (even WEIGHTED 2SAT): Similar to the WEIGHTED
SAT but where each clause contains at most k literals

• WEIGHTED NAE kSAT: The cost and the neighborhood of an assignment
are defined as in WEIGHTED kSAT. A clause consists of at most k literals
and is satisfied if its literals dont all have the same value.

• POS NAE kSAT (even POS NAE 3SAT): Similar to the WEIGHTED NAE
kSAT but with the restriction that all literals in the clauses are positive

• SWAP GRAPH PARTITIONING: You are given a weighted undirected
graph with even number of vertices. A feasible solution is a partition of
its nodes into two sets V1, V2 of equal size and the cost of the solution
is the weight of the cut of the partition. Find a partition such that no
greater/smaller solution can be achieved by swapping one node from parti-
tion V1 with a node from partition V2.

From the abundane of problems in PLS it is well claimed that it is a quite
extensive class with very interesting problems.

2.4.2 Complexity of basic model

From the definition of PLS it could be observed that the problem of finding a
PNE in any class of games that admit a polynomial-time computable generalized
potential function is in PLS.

If a class of games admits a generalized potential function then the Nash Dy-
namics graph where the cost of each node is the generalized potential of the corre-
sponding strategy profile, is the transition graph of the PLS problem of finding a
PNE. We can also accordingly define the standard algorithm of the PNE problem
which is just following a Best Response path in the Nash Dynamics graph. In fact
as proved by Fabrikant et al. [FPT04] all PLS problems can be cast as games with
a polynomially computable generalized potential and thus computing a PNE in the
broad class of games that admit a polynomially computable generalized potential
is PLS-complete.

We will now give a PLS-completeness result for two major classes of congestion
games. The following theorem is part of the results presented by Fabrikant et al.
[FPT04]:

Theorem 21. It is PLS-complete to find a PNE in the following classes of games:

i. Congestion Games

ii. Symmetric Congestion Games

Proof. For (i) we will present a PLS-reduction from MAX CUT to finding a PNE in
a Congestion Game. Given an instance of MAX CUT we construct a congestion
game as follows. For each edge e of weight w, we have two facilities f

(A)
e and

f
(B)
e , with cost 0 if used but only one player and cost w if used by more players.
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The players correspond to the nodes of the Graph. Player v has two strategies:
one strategy contains all f

(A)
e for edges e incident to v, and another contains all

f
(B)
e ’s for the same edges. The first strategy corresponds to assigning v to the

set A and the latter strategy corresponds to assigning v to B. This one-to-one
correspondence between the assignments of the nodes in the MAX CUT instance
and the strategies of the players in the congestion game has the property that the
local optima of the MAX CUT instance coincide with the PNE of the congestion
game. Hence, our construction is a PLS-reduction from MAX CUT to finding a
PNE in congestion games. In fact it is trivial to observe that the reduction is tight
and hence the standard algorithm problem for finding a PNE in congestion games
is NP-hard (find the PNE that the standard algorithm computes when it starts
from a specific initial strategy profile).

For (ii) we will present a PLS-reduction from the general to the symmetric case.
Suppose we are given a general congestion game with strategy spaces S1, . . . , SN ⊆
2F . We extend the facility set F with additional facilities f1, . . . , fN with cost 0
if used by one player and cost M , otherwise (where M is a large number). For
i ∈ [N ], let S′i = {s∪{fi}|s ∈ Si}. The symmetric game has the common strategy
space S = S′1 ∪ . . . ∪ S′N . If M is chosen sufficiently large then any equilibrium
of this game has one player using a strategy from S′i. This property yields an
obvious correspondence between the PNEs of the symmetric and the assymetric
game, and, hence, gives a PLS-reduction.

We will now move on to proving PLS-completeness for the class of Asymmetric
Network Congestion Games. The methodology that we will use was proposed
by Ackermann et al. [ARV06a] as an alternative of the proof first presented in
[FPT04].

First we will prove PLS-completeness of the following subclass of Congestion
Games called Threshold Congestion Games:

Definition 37. In a Threshold Congestion Game facilities F are divided into two
disjoint subsets Fin and Fout with |Fout| = N . Each player has two strategies,
namely sout

i = {fi} for a unique facility fi ∈ Fout and a strategy sin
i ⊆ Fin. Each

fi ∈ Fout is used only by player i and no other player. From the above definition
in a given strategy profile s of the game, strategy sin

i is a best response for player
i if ci(sin

i , s−i) ≤ dfi
(1). Thus, the delay dfi

(1) is a threshold indicating whether
i plays strategy sin

i or not, in other words whether it interferes with other players
or not. We denote by Ti = dfi(1) the threshold of player i.

We can also define the class of k-threshold congestion games as threshold con-
gestion games where for each facility f ∈ Fin there are at most k players i with
f ∈ sin

i .

Theorem 22. The problem of finding a PNE of a 2-threshold congestion game Γ
is PLS-complete.

Proof. We will present a reduction from the MAX CUT problem on a weighted
graph G = (V, E,w). For each vertex v of the graph we will denote with wv =
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sin
1 sin

4sin
3sin

2

Figure 2.5: Example of a 2-threshold game with 4 players.

∑
e inc v we. From G we construct the following 2-threshold congestion game.

For every edge e ∈ E, there is a facility fe ∈ Fin with delay dfe(1) = 0 and
dfe(2) = we. For every vertex v ∈ V there is a facility fv ∈ Fout with delay
function dfv(1) = wv

2 . For each vertex v we have a player pv with strategies
sout
pv

= {fv} and sin
pv

= {fe|e inc v}.
Given a PNE s of the 2-threshold congestion game we can construct a local

optimum of the initial MAX CUT problem. For each vertex v if player pv chose
strategy sout

pv
then assign v to partition V1 else to partition V2. It is easy to observe

that the sum of the weights of the edges incident to a vertex v with the other
endpoint in V2 (w(v, V2)) is exactly cpv(sin

pv
, s−i). Moreover, since s is a PNE

if a player chose strategy sout
pv

then it must hold cpv(sout
pv

, s−i) ≤ cpv(sin
pv

, s−i) or
equivalently wv/2 ≤ w(v, V2). Therefore if vertex v of V1 was flipped to V2 it would
contribute less in the cut. In addition if a player chose strategy sin

pv
it must hold

cpv(sin
pv

, s−i) ≤ cpv(sout
pv

, s−i) or equivalently w(v, V2) ≤ wv/2. Therefore if a vertex
v of V2 was flipped to V1 it would again contribute less to the cut, which ends the
proof that the constructed partition is a local optimum of the initial MAX CUT
problem.

We will now use the PLS-completeness of 2-threshold congestion games to prove
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that finding a PNE in Asymmetric Network Congestion Games is PLS complete
even if we restrict to non-decreasing, linear delay functions.

Theorem 23. Computing a PNE for an Asymmetric Network Congestion Game
with non-decreasing, linear delay functions is PLS-complete.

Proof. We will present a reduction from 2-threshold congestion games to asymmet-
ric network congestion games. In fact w.l.o.g we will assume that in the 2-threshold
game there exists a unique resource fi,j ∈ Fin contained in sin

i and sin
j .

The directed graph of the asymmetric network congestion game is an NxN grid
in which edges are directed downwards and from left to right. The source nodes
of the players are the nodes in the first column, s1, . . . , sN from top to bottom.
The end nodes are the nodes in the last row t1, . . . , tN from left to right. For every
player i ∈ [N ] we add an additional edge from si to ti. Because of the direction of
the edges of the grid this additional edge can be used only by player i.

We now want to assign delays to the edges such that there exist only two
undominated strategies for player i: the shortcut edge (si, ti) or the row-column
path from si to ti (the path from si along edges in row i until column i and then
along the edges of column i to ti. All other paths will be assigned such high delays
that they will be certainly dominated by these two strategies.

We achieve the above goal by assigning delay 0 to all edges pointing downwards
and delay i ·D to all edges of row i, where D is a large integer. Furthermore, for
now the shortcut edge has a delay of D · i · (i − 1). The delays of the only two
undominated strategies of each player are so far identical.

Now we assign additional delay functions to the nodes of the grid. This can be
done by replacing nodes with gadgets such that whenever a path passes throught
that gadget is is incured an additional cost equal to the delay we will assign to
the nodes. For 1 ≤ i < j ≤ N the node in column i and row j is identified with
facility fi,j ∈ Fin from the 2-threshold game and we assume that the node has
the same delay function as that of fi,j . This way, the row-column path of player i
corresponds to sin

i of the threshold game. Furthermore, we increase the delay of
the shortcut edge (si, ti) from D · i · (i− 1) to D · i · (i− 1) + Ti and therefore the
shortcut edge corresponds to strategy sout

i of the 2-threshold game.
From the above construction, by choosing D to be sufficiently large we can

ignore all other (si, ti) paths except the shortcut and row-column paths. Moreover,
those two strategies and their delays are isomorphic to the strategies and cost
functions in the 2-threshold game in the sense that the PNEs of the two games
coincide. Therefore, the above function is a PLS-reduction. Moreover, since all
edges in the graph are used by at most two players their delays can be described
in terms of a linear function.

An sketch of the network congestion game that the 2-threshold game of figure
2.5 reduces to is depicted in figure 2.6.

With a slight modification of the above proof we can also prove that finding
a PNE in Asymmetric Network Congestion Games on undirected graphs is also
PLS-complete and the reader is redirected to [ARV06a] for the proof.
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s1

s2

s3

s4

t1 t2 t3 t4

dij

iD

0

Di(i− 1) + Ti

Figure 2.6: Example of a reduction from a 2-threshold game to a Network
Assymetric Congestion Game

The above PLS-completeness results state that as far as we don’t find a gen-
eral polynomial time algorithm for solving local search optimization problems, we
don’t have a chance of computing a PNE in polynomial time. Moreover, since
both reductions presented above are tight PLS-reductions the standard algorithm
problem for PNE is NP-hard and the worst case running time of the standard
algorithm is exponential.

Thus finding a PNE for the above general classes of congestion games is under
some perspective intractable and a best response sequence might take exponential
time to reach a PNE. However, we might hope that when restricting to smaller
subclasses of congestion games we could derive better complexity results, and this
will be the subject of the next section.

67



��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

4,6,7

2,3,6

1,2,8

2,3,5

2,3,5

Figure 2.7: Example of a reduction from finding a PNE in a Symmetric Net-
work Congestion Game (fig. 2.1) to a min-cost flow problem. The comma
separated values represent the costs of each edge. All edges have unit capac-
ity.

2.4.3 Tractable Subclasses

Theorem 24. There is a polynomial time algorithm for finding a PNE in Sym-
metric Network Congestion Games with non-decreasing delay functions.

Proof. We will reduce the problem to a min-cost flow problem as follows. Each
edge e is replaced by n parallel edges e1, . . . , eN between the same nodes. Edge
ei is assigned cost de(i), for 1 ≤ i ≤ N . All edges have capacity 1. Observe
that if a min-cost flow solution uses some of the edges e1, . . . , eN then it sends an
integral amount of flow along theses edges. If it sends k units of flow along these
edges, then it uses the k cheapest edges. W.l.o.g. these are edges e1, . . . , ek as the
delay functions are non-decreasing. Thus the cost for sending the flow along these
edges is de(1) + . . . + de(k), which corresponds to Rosenthal’s potential for edge
e if k players are using it. Consequently, we can translate the optimal solution
of the min-cost flow problem into a state of the congestion game whose potential
corresponds to the cost of the flow. Hence, the min-cost flow solution corresponds
to a PNE that globally minimizes Rosenthal’s potential function.

Despite the fact that computing a PNE in Symmetric Network Congestion
Games is in P there exist instances of games in that class that have strategy profiles
with an exponential distance to any PNE in the transition graph. Therefore the
standard algorithm for the class of Symmetric Network Congestion Games still
takes exponential time in the worst-case.
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Another way of identifying subclasses where finding a PNE is easy, is by ex-
amining the combinatorial structure of the strategy spaces of players as we did in
the PNE existence problem for weighted and player-specific congestion games. In
this direction a positive result came from Ackerman et al. [ARV06a].

Theorem 25. Let G be a matroid congestion game. Then players reach a PNE
after at most N2mrk(G) ≤ N2m2 best response improvement steps, where m =
|F |.

Proof. The proof is based on a property of matroids that was also used in theorem
17. Let L be a list of all values df (i) for i ∈ [N ] and f ∈ F sorted in a non-
decreasing order. For each facility f we define an alternative cost d̃f (i) which equals
the rank of df (i) in the sorted list L. Equal cost values receive the same rank. We
will now prove that whenever a player makes a best response move then his cost
with respect to the alternative cost functions d̃f also decreases. From the properties
of matroids we know that any best response move of a player can be decomposed
into a sequence of steps where at each step the player exchanges a facility f in his
strategy with another facility f ′, such that the cost of the player doesn’t increase.
Lets call sk the strategy profile at step k during this sequence of moves. We know
that at each step df (nf (sk)) ≥ df ′(nf ′(sk+1)). If df (nf (sk)) > df ′(nf ′(sk+1))
then it also holds that d̃f (nf (sk)) > d̃f ′(nf ′(sk+1)) since df (nf (sk)) occurs after
df ′(nf ′(sk+1)) in the sorted list L. Moreover, if df (nf (sk)) = df ′(nf ′(sk+1)) then
the same holds for the alternative costs too. Furthermore, since the cost of a
player strictly decreases after the whole sequence of steps there must exist a step
where the alternative cost strictly decreases. Hence whenever a player makes a best
response move his cost with respect to the alternative costs strictly decreases. Now
if we consider Rosenthal’s potential with respect to the alternative cost, we know
from the previous argument that whenever a player makes a best response the
potential decreases. Since there are at most Nm different cost values, d̃f (i) ≤ Nm
for all facilities f ∈ F and values i ∈ [N ]. Consequently:

Φ̃(s) =
∑

f∈F

nf (s)∑

i=1

d̃f (i) ≤
∑

f∈F

nf (s)∑

i=1

Nm ≤ N2mrk(G) (2.24)

where the last inequality holds since each player occupies at most rk(G) resources.
Since the above potential decreases with every best response step and it cannot
drop below zero, the theorem is proved.

The matroid characteristic of the strategy space of the players is again a max-
imal condition for efficient convergence of the best response dynamics. It is max-
imal under the perspective that if we are only examining the strategy spaces of
the players and we don’t impose another restriction on the game then if the strat-
egy spaces are allowed to be non-matroid the resulting class of games contains
instances of games where the best response dynamics can have an exponentially
long best response sequence.
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The essence of matroid strategy spaces that keep the best response sequences
polynomially long is the fact that any best response can be decomposed in a
sequence of steps where a facility of the current strategy is exchanged by another
facility. Ackerman et al. [ARV06a] prove that if a strategy space is non-matroid
then there exist three resources a, b, c used by a player such that keeping constant
the delays of the rest of the resources for any choice of delays of a, b and c either
a will be in the best response or b and c together. They call this property the
(1 − 2)-exchange property in the sense that a user is obliged sometime during
a best response sequence to exchange one facility of his current strategy by two
facilities or vice versa. Based on this property they devise, congestion games with
an exponentially long best response sequence.

Some, more ad hoc, polynomial-time algorithms for computing PNEs have
been proposed by Fotakis et al. [FKS05b] and Gairing et al. [GLMM04] for even
more restricted subclasses of Congestion Games.

In particular, Fotakis et al. prove that a very trivial algorithm called Greedy
Best Response (GBR) computes a PNE in time O(N |F | log |F |) in the case of sym-
metric series-parallel graphs. GBR inserts users one after the other into the game
placing them at their best response strategy at the time of insertion. This algo-
rithm also works for weighted instances (where it inserts players in non-increasing
weight) under the extra assumption that given an initial flow on the network all
players have the same set of Best Response strategies.

2.4.4 Approximate Solutions

Since the problem of finding a PNE in the general class of Congestion Games
seems hard to tuckle one could turn to some approximate solution.

We will first deal with the problem of finding an a-approximate PNE in the
sense of the ε-Nash presented in the introduction. An a approximate PNE is
a strategy profile where no player can decrease his cost by a factor of a when
changing his strategy unilateraly. The major result in settling the complexity of
computing an a-appproximate PNE was given by Skopalik and Vocking in [SV08]
and mainly comprises in the following theorem:

Theorem 26. Finding an a-approximate equilibrium in a congestion game with
positive and increasing delay functions is PLS-complete, for every polynomial-time
comptable a > 1.

The proof of theorem 26 is quite novel and possibly the first gap introducing
PLS-reduction in bibliography. The high level idea of the proof is to make a PLS-
reduction of a minimization instance of the FLIP problem to a congestion game
where the delays of the different strategies of each player at any strategy profile
differ by at least a factor of a. From the PLS-reduction we know that all PNEs
of the congestion game are locally optimal inputs of the initial FLIP problem and
since in the congestion game all PNEs are a-approximate PNEs, the same holds
for a-approximate PNEs.
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The basic block of the reduction from a FLIP problem to a congestion game
is constructing a game that somehow simulates the semantics of a cicuit S of 2-
input NAND gates that implements boolean function fS(u). We will refer to the
congestion game as CG(S). The construction is quite simple but ingenious. We
refer to the two inputs of the gates as a, b. Let k denote the number of gates in
S. Let g1, . . . , gk denote the gates of the circuit in reverse topological order (a
gate is connected only with gates of smaller index). Gate gi is associated with a
player Gi that has a zero- and a one-strategy. For 1 ≤ i ≤ k, the zero-strategy
of player Gi contains the resources Bit0ai and Bit0bi. Both of these resources
have delay 0 when allocated by one player and delay a2i if two or more players
are on that resource. The one-strategy of player Gi contains the resource Bit1i

with delay 0 when allocated by at most two players and delay a2i otherwise. Let
j ∈ {1, . . . , i−1} denote an index of a gate gj with gate gi as input. Then the one-
strategy of gi additionally contains Bit1j and the zero-strategy of gi additionally
contains the resource Bit0aj if gi corresponds to input a and the resource Bit0bj

if gi corresponds to input b. The inputs of the circuit also correspond to players
with a zero- and a one-strategy. The strategies of these players contain the bit
resources of the gates to which they are connected in the same way as the gate
players.

If we assume that the input players prefer some specific strategy over the other
for some input then we can state the following statement: Fix any input vector u
for S. The delay differences between the zero- and the one-strategy of any gate
player in any state of CG(S) is more than a. CG(S) has a unique equilibrium in
which the output player uses strategy fS(u).

An example of a construction of a congestion game that simulates a boolean
circuit can be seen in figure 2.8.

Thus we have seen how to contruct a congestion game that in equilibrium
simulates a boolean circuit computation. The major problem of the reduction
arises when we try to implement a feedback circuit. The above construction cannot
implement a feedback circuit because the delay difference of the strategies of the
output players is significantly smaller than that of the input player. Hence it
is impossible for the output player to affect the input players by sharing some
resources.

A first attempt to make the reduction would be to construct a circuit S′ that
when the input x is a local optimum in S then x is a fixed point in S′. Thus we
would have to construct a congestion game that in equilibrium, not only simulate
the circuit semantics but also the inputs correspond to fixed point of S′. With
this approach we are stuck at the feedback problem since there is no way for the
output to affect the input.

The reduction proposed by Skopalik and Voecking creates a congestion game
that simulates a whole processor system (circuits, controller, clock). Let n be
the size of the input and m the size of the output. The clock is represented by m
players Yi and the value of the clock val(y) is the binary number represented by the
strategies of the player. We have 2n·m circuits. Circuit (i, j, b) outputs 1 whenever:
(a) fS(b, x−i) < fS(1−b, x−i) and (b) the highest bit at which fS(b, x−i) is smaller
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Figure 2.8: An example of a congestion game that simulates a 2-input NAND
circuit. Sets with the same color and dashing consitute a common strategy.
The colors imply the correspondence between players and signals in the cir-
cuit.

than val(y) is greater than j or more formally
∑m

i=j+1 yi2i−1 + 2j > fS(b, x−i).
The controller is associated with a player C.

Moreover, we slightly modify the congestion games that simulate NAND cir-
cuits by adding Lock resources that exist in any strategy of all players of the circuit.
The lock facilities are available only to the controller player. Moreover, we deprive
the output players from their zero strategy so that the output players always play
their one-strategy. The delays of the lock resources are such that the controller
has incentive to lock them only when they don’t violate the NAND semantics (i.e.
only when the input of the circuits gives output 1). Moreover, whenever the con-
troller locks a circuit then the players of the circuit don’t have incentive to change
or otherwise they would incure a tremendous cost.

The logic of the congestion game is the following:

• With a circuit S0 we always have the guarrantee that val(y) ≥ fS(x). If this
condition is violated then player C has a best response of choosing a reset
strategy at which the clock is reset to the value 2m − 1 where the condition
stated definitely holds.

• Whenever the input players don’t correspond to a local minimum then there
exists a circuit S(i,j,b) whose output is 1 and such that Yj plays his one
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strategy and thus controller can lock it (if any of the above conditions doesn’t
hold then the controller would incur a very high cost for locking circuit
S(i,j,b).

• By locking that circuit player Yj has incentive to change to a strategy called
change(i,j,b) at which he triggers player Xi to move to his b strategy and all
players Yj′ with j′ < j to move to their one-strategy. If player Xi was not at
his b strategy then the above sequence triggers in some sense an improvement
flip.

• After the above triggers are finished player Yj has incentive to change to
a strategy we call check(i,j,b). This strategy has the semantics of a zero
boolean value. After the above changes the condition val(y) ≥ fS(x) still
holds since val(y) has become

∑m
i=j+1 yi2i−1 +2j after the Yj triggering and

thus we know that the above value is greater than or equal fS(b, x−i) which
is the boolean output of the current input vector. Thus the output of circuit
S0 is 1 and the controller can lock that circuit.

• By locking circuit S0 the controller unblocks the zero-strategy of player Yj

who now moves to each zero strategy.

Whenever the game is not in some of the above described states we can impose
a huge delay on the controller so that he has incentive to move to each reset
strategy and subsequently to locking circuit S0. Thus, we need to check only the
above states. From the sequance of steps one can see that the only states that we
allow the sequence to stop is at those where the controller locks S0, which we call
base states. At any other state some player has incentive to change regardless of
whether the X players correspond to a local minimum or not. Moreover we know
that for the sequence to stop at a base state then no circuit S(i,j,b) outputs 1. If
x was not a local mimimum of the FLIP problem then it holds that for some i
and b fS(b, x−i) < fS(x). Moreover, val(y) ≥ fS(x) > fS(b, x−i). The above two
conditions lead to the fact that some circuit S(i,j,b) must output 1 which leads to
a contradiction and thus x is definately a local minimum.

So on a high level we solve the feedback problem in the following way: we
put a clock that counts downwards. Whenever, the clock is higher than the value
of the circuit that corresponds to the current input or whenever there exists an
improvement flip in the current input the controller causes some or both of the
following actions to happen: the clock to drop down to a value closer to the current
fS(x), the input to make an improvement flip. This sequence will eventually lead
to a state where no improvement flips can be made and where the clock represents
the circuit output of the current input.

We now continue to some positive results in calculating approximate solutions
in Congestion Games.

One of the most important positive results corcerns the subclass of Symmetric
Congestion Games. Chien and Sinclair [CS07] prove that for symmetric congestion
games computing an a-approximate PNE is easy and the a-Nash dynamics (Nash
Dynamics where an edge exists iff some player can improve by a) converge to
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an equilibrium in polynomially many steps when the following bounded jump
condition holds: the delay function of each facility satisfies the inequality df (t +
1) ≤ adf (t). Both symmetry and bounded jump conditions are violated by the
construction of Skopalik and Voecking and this is why a positive result was possible
for this subclass of congestion games.

Another positive result is towards another direction of approximation, that of
approximating the social cost function.of the sum of player costs. Awerbuch et al.
[AAE+08] show that the convergence time of a-Nash Dynamics to a solution that
is arbitrarily close to the Price of Anarchy requires polynomially many steps when
the delay functions satisfy the bounded jump condition.

Another interesting result that we first present in this thesis is the observation
that the construction of Skopalik and Voecking works also for Bottleneck Games
since the facility that causes the dynamics of the congestion game constructed to
follow the semantics of a processor is always that of the maximum delay. Hence
we conclude to the following theorem:

Theorem 27. Computing an a-approximate PNE in the class of Bottleneck Games
is PLS-complete.

2.5 Quantifying the Inefficiency of Conges-

tion Games

In 1968 Garret Hardin wrote an infulential article that portrayed the deteriora-
tion caused to a resource when it is used freely by selfish users. This deterioration
was called the Tragedy of the Commons.

Consider for example the following game:

Example 12. (Pollution Game). Consider the game where n countries want to
decide whether to pass a law on controlling polution or not. Tha cost of pollution
controll is 3 for each country but a country that pollutes adds a cost of 1 to all
countries (health costs, etc.). Consider the case when k countries pollute. Then
those countries suffer k and the rest n − k countries suffer k + 3. Each country
that controlls polution has incentive to change and suffer k + 1. The only Nash
Equilibrium in this game is when all countries pollute and suffer n.

In this section we will present some basic definitions and results concerning
the deterioration caused by selfishness in the restricted case of Congestion Games,
under the perspective of some intuitive social cost functions.

Since computing a PNE of a Congestion Game is hard (PLS-complete) and
we cannot possibly do it in large games then the question is: does there exist a
way of mathematically bounding the deterioration caused by lack of coordination
without actually having to compute the PNEs of a game?

The answer is yes for several classes of games and this line of research has been
very fruitful the past decade and especially in the class of congestion games.
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2.5.1 Price of Anarchy

When trying to examine the inefficiency of the outcome of a game we have
to define what is the social cost that we want to minimize. So formally we need
to quantify the quality of any strategy profile using some social cost function
SC(s) : ×iSi → R.

Having defined a social cost function we need some measure that will tell us
how bad the outcome of a game can be when compared to the optimal strategy
profile (the one that minimizes social cost). To come up with some measure we first
want to say which outcome we want to examine. We have seen in the introduction
several notions of equilibria each claiming to be a possible outcome of a game.
The most well studied case is that of Nash Equilibria (mixed and pure). However,
even if we restrict to Nash Equilibria the outcome of a game is not unique.

The Price of Anarchy (PoA) [KP99], the most popular measure of the ineffi-
ciency of equilibria resolves the issue of multiple equilibria by adopting a worst-case
approach. Formally the price of anarchy is defined as the ratio of the worst social
cost of an equilibrium of a game to the social cost of an optimal outcome:

PoA = max
NE

SC(NE)
SC(OPT )

(2.25)

75



76



Chapter 3

Social Contexts

In this section we examine two newly proposed strategic game models closely
related to congestion games. Their similarity as well as their great expressiveness
as opposed to the already known models is what lead us to descriminate them and
to devote a separate chapter on describing them and on declaring their properties.

The two models that we will examine are Graphical Congestion Games and
Congestion Games with Social Contexts. Their similarity is that both these games
introduce a player graph in an underlying congestion game. In the first model the
player graph tries to capture the fact that in a congestion game players may not
be aware of all the players but only in their neighbours in a player graph. In the
second model the player graph models social contexts that might exist among the
players in a congestion game. The social graph tries to model relations and the
players cost is not the cost in the congestion game but some function of his and
his neighbours costs.

3.1 Graphical Congestion Games

The Graphical Congestion Game model is based on the general graphical game
model that has been well studied in game theory. It is generally motivated by
some information considerations discussed in the introduction and generally tries
to model situations where players are not aware of everyone who is participating
in the game.

Lets first give the definition of a graphical game:

Definition 38. A graphical game is defined in terms of:

• A directed graph G = (V, E) where the nodes represent the players of the
game and the edges represent dependencies between the players

• For each node v ∈ V :

– A set of available strategies Sv
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– A utility function uv : Sv × (×u∈N(v)Su) 7→ < where N(v) is the neigh-
bors of player v in graph G.

The major difference between graphical games and general strategic games is
the fact that a players utility depends on the strategy profile of only a subset of
the players in the game, whilst in general strategic games it depended on every
player. Moreover, graphical games are a very succinct representation of situations
where many players participate in the game with few dependencies (e.g. in the
internet).

Similar to the graphical game model we can define a more restricted model
where the underlying game is not a general strategic game but a congestion game:

Definition 39. A graphical congestion game is defined as a tuple H = 〈G =
([N ],M), F, (Si)i∈[N ], (df )f∈F where G = ([N ],M) is a directed graph, called the
social knowledge graph, [N ] is a set of players, F is a set of facilities, Si ⊆ 2F is
a set of pure strategies for player i, each consisting of a set of facilities, and df is
the latency function for the facility f depending on the number of players using f .

Given a strategy profile s we note with Gf (s) = (Nf (s),Mf (s)) the subgraph of
G induced by the set of players using facility f in s, i.e. Nf (s) = {i ∈ N : f ∈ si}
and Mf (s) = {(i, j) ∈ M : i, j ∈ Nf (s)}. Let nf (s) = |Nf (s)| and mf (s) = |Mf (s)|
be the number of nodes and edges in Gf (s) respectively, and δi

f (s) the degree of node
i in Gf (s). The cost of player i in the strategy profile s is ci(s) =

∑
f∈si

df (ni
f (s)),

where ni
f (s) is the number of nodes adjecent to i in Gf (s) together with i, that is

ni
f (s) = δi

f (s) + 1

3.1.1 Existence of PNE

Since Graphical Congestion Games are a generalization of Congestion Games
(when the social graph is a complete graph then the two models coincide) the first
question we need to ask is whether they always admit a PNE.

The question is negative for the general class of congestion games. We provide
here an instance of a graphical congestion game with linear latency functions where
no PNE exists:

Example 13. The social graph is defined as G = ({1, 2, 3}, {(1, 2), (2, 3), (3, 1)}).
All players have the same set of strategies {{f1}, {f2}} and the latency functions
are df1(x) = df2(x) = x. It is easy to observe that any strategy profile of the game
is not a PNE. In any possible state of the game, at least two players use the same
facility . Thus one of them has cost 1, while the other has cost 2 and can decrease
it to 1 by changing her strategy.

Thus we need to restrict to subclasses of graphical congestion game in order
to prove existence of PNE. The positive existence results we provide here where
first proved by Bilo et al. [BFFM08] and concern only the case of linear delay
functions.
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Theorem 28. Every graphical congestion game with linear delay funcions (df (x) =
afx + bf ) defined over an undirected social graph is an exact potential game with
potential function:

Φ(s) =
∑

f∈F

(af (mf (s) + nf (s)) + bfnf (s)) (3.1)

For directed social graphs we have a positive existence result when the graph
is a DAG and it is also easy to prove that there always exists a sequence of best
response dynamics that can be computed in polynomial time that end in a PNE.

3.1.2 Price of Anarchy Bounds

Another interesting question is what is the PoA of the model for the subclasses
that always admit a PNE. For the case of linear latency function Bilo et al. give
upper bounds for two intuitive social cost functions: the total presumed social cost
SCsum

PR (s) =
∑

i∈[N ] ci(s) =
∑

f∈F

∑
i:f∈si

df (ni
f (s)) and the total perceived social

cost SCsum
PE (s) =

∑
f∈F nf (s)df (nf (s)) (the toal cost due to the actual congestion

on facilities).
For the presumed social cost the current known upper bound on the PoA is

∆ + 1 where ∆ is the maximum degree of a node in the social graph. This bound
holds both for undirected and directed acyclic graphs. The lower bound for both
cases is again quite tight (2∆+1

3 and ∆+1
2 respectively).

For the perceived social cost the corresponding upper bound is N(∆+1) again
both for undirected and directed acyclic graphs. The lower bounds are N2

4 and
N(∆ + 1) respectively.

Despite the tighness of the results it can be claimed that better bounds are
still to be found due to the following fact: If the social graph is complete then the
model coincides with congestion games. For complete graphs ∆ = N and thus it
leads to a price of anarchy of N +1 while from [CK05] we know that in congestion
games with linear cost functions the PoA for the sum social cost is 5

2 . This leads to
a contradiction showing that the maximum degree of the graph is most probably
not the right parameter with which to express the PoA in graphical congestion
games.

3.2 Social Contexts in Congestion Games

Another very interesting extention to the basic congestion games model was
proposed very recently by Ashlagi et al. [AKT08]. In the models of the previous
chapter we almost all the times neglected the social connection between the players.
In most real life situations players in a congestion game (e.g. in a network routing
game) are not completely independent of each other and most of the times are
playing under some social context (e.g. friendship, collaboration, competition
etc.). This social context is not captured by the congestion games model were we
consider that a player’s cost is the delay of his strategy.
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A first attempt to capture such relations was coalitional congestion games but
the expressiveness there was quite restricted only to the case where players form
coalitions and take decisions together in collaboration. Moreover, it was implicit
that people where divided into groups and were related only with the players in
their group and with noone else. This is not so descriptive of real life situations
where the social dependencies between people is best described by a social network.

Under this very intuitive perspective we formally introduce the notion of social
context game that could be applied to any strategic game and then we study only
the case when it is applied to congestion games.

Definition 40. Given an underlying game H, a social context game is generated
by considering a neighborhood graph over the players and aggregation functions
that determine how a game is affected by the graph. A social context is a tuple
F = (G, (fi)i∈[N ]), where G = (N, E) is an undirected graph and for every i, fi :
G× RN → R is an aggregation function. The aggregation function maps a payoff
profile of the underlying game into a utility profile, as a function of the graph. The
aggregation function tries to capture a players social behaviour.

Given an underlying game H = 〈N, (Si)i∈[N ], (ci)i∈[N ]〉, and a social context
F = (G, (fi)i∈[N ]), a social context game S = 〈N, (Si)i∈[N ], (ti)i∈[N ]〉 is a strategic
game where N is the set of players Si is the set of strategies for player i and
ti : ×iSi → R satisfies that ti(s) = fi(G, c1(s), . . . , cN (s)). For convenience we will
write fi(G, s) to refer to fi(G, c1(s), . . . , cN (s)).

In the above definition it is improtant to notice that there exist to types of
costs. The costs of the underlying game H which are denoted as the immediate
costs and the final costs of the players in the social context game S.

The above model is quite general in that it allows for arbitrary social attitude
aggregation functions fi. Things become more clear when we constraint to special
types of aggregation functions that capture different social attitudes. A very im-
portant notion in defining intuitive aggregation functions is that of the group of a
player i which is defined as g(i) = i ∪ N(i), where N(i) are the neighbors of i in
the social graph.

Some types of the aggregation functions introduced in [AKT08] are the follow-
ing:

• Best-Member Collaboration: A palyer’s cost is the minimal immediate cost
in her group. fi(G, s) = minj∈g(i) cj(s).

• MinMax Collaboration: A player’s cost is the maximal immediate cost in
her group. fi(G, s) = maxj∈g(i) cj(s).

• Surplus Collaboration: a player’s cost is the average of the immediate costs
of her group. fi(G, s) = 1

|g(i)|
∑

j∈g(i) cj(s).

In the next section we will cope solely with surplus collaboration games when
the underlying game is a congestion game. The rest of the above definition where
given in order to demonstrate the expressiveness of the model.
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If we restrict to social graphs that consist of cliques of players then surplus
collaboration games is almost equivalent to coalitional congestion games with the
major difference that in this model the players remain the same and only unilateral
deviations are allowed at an equilibrium.

3.2.1 Existence of Pure Nash Equilibria

The current results in the existence of PNE in surplus collaboration games
with congestion games as the underlying game are very few.

The inexistence of PNE can be proved by a counter example even in the case
of parallel links.

Example 14. Consider a social context game with 4 players and 2 parallel links.
Each link has cost function (1, 5, 6, 6). The graph G has a 3-clique on the vertices
1, 2, 3 and vertex 4 is isolated. Any strategy profile of the above game is not a
PNE: We may assume that player 4 is assigned to resource 2. It is easy to verify
that for each partition of the rest of the players to the links the resulting strategy
profile is not an equilibrium.

An objection on the above example is that the social graph is disconnected.
However, the following example shows that even when the graph is a tree there
exists a congestion game that does not admit a PNE.

Example 15. Consider the following social context game: G is an undirected tree
with one root and 6 children, and let H have 2 identical links with cost function
(1, 1, 2.9, 5, 5, 5, 5). Any strategy profile in the above game doesn’t constitute a
PNE.

The above negative results show that Congestion Games with Social Contexts
is a much more general class of games and certainly doesn’t preserve some of the
most significant properties of congestion games.

The only positive result on the existence problem is the following:

Theorem 29. Let H be a congestion game on m identical parallel links and G be
a tree with maximal degree m− 2. Then, there exists a PNE in the corresponding
surplus collaboration social context game.
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Chapter 4

Colored Resource Allocation
Games

In this chapter we will present Colored Resource Allocation Games, a new
model of congestion games proposed during the process of the thesis. It is a joint
work of Evangelos Bampas, George Pierrakos, Aris Pagourtzis and the author.
The motivation for proposing this new model lies in the area of optical networks.

In optical networking it is highly desirable that all communication be carried
out transparently, that is, each signal should remain on the same wavelength from
source to destination. The need for efficient access to the optical bandwidth has
given rise to the study of several optimization problems in the past years. The
most well-studied among them is the problem of assigning a path and a color
(wavelength) to each communication request in such a way that paths of the same
color are edge-disjoint and the number of colors used is minimized. Nonetheless, it
has become clear that the number of wavelengths in commercially available fibers is
rather limited—and will probably remain such in the foreseeable future. Therefore,
the use of multiple fibers has become inevitable in large scale networks. In the
context of multifiber optical networks several optimization problems have been
defined and studied, the objective usually being to minimize either the maximum
fiber multiplicity per edge or the sum of these maximum multiplicities over all
edges of the graph.

There has been growing interest recently for studying the behaviour of optical
networks under lack of centralized control, that is, under the assumption that users
can choose the desired route and wavelength for their requests selfishly [BM04,
BFM05, GKS05, FFM+06, MPP07, BPPP08, FMM+08].

Colored Resource Allocation Games, is a class of games that can model non-
cooperative versions of routing and wavelength assignment problems in multifiber
all-optical networks. They can be viewed as an extension of congestion games
where each player has his strategies in multiple copies (colors). When restricted to
(optical) network games, facilities correspond to edges of the network and colors
to wavelengths. The number of players using an edge in the same color represents
a lower bound on the number of fibers needed to implement the corresponding
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physical link. Having this motivation in mind, we consider both egalitarian (max)
and utilitarian (sum) player costs. For our purposes it suffices to restrict our study
to identity latency functions.

We use the price of anarchy (PoA) introduced in [KP99] as a measure of the
deterioration caused by lack of coordination. We estimate the PoA of our games
under three different social cost functions. Two of them are standard in the litera-
ture (see e.g. [CK05]): the first (SC1) is equal to the maximum player cost and the
second (SC2) is equal to the sum of player costs (equivalently, the average player
cost). The third one is specially designed for the setting of multifiber all-optical
networks; it is equal to the sum over all facilities of the maximum color congestion
on each facility. Note that in the optical network setting this function represents
the total fiber cost needed to accommodate all players; hence, it captures the
objective of a well-studied optimization problem. Let us also note that the SC1

function under the egalitarian player cost captures the objective of another well
known problem, namely minimizing the maximum fiber multiplicity over all edges
of the network.

Colored Congestion Games Congestion Games

SC1(A) = max
i∈[N ]

Ci(A) Θ
(√

N
W

)
Θ

(√
N

)
[CK05]

SC2(A) =
∑

i∈[N ]

Ci(A) 5
2

5
2

[CK05]

SC3(A) =
∑

f∈F

max
a∈[W ]

nf,a(A) Θ
(√

W |F |
)

—

Table 4.1: The pure price of anarchy of Colored Congestion Games. Results
for classical congestion games are shown in the right column.

Colored Bottleneck Games Bottleneck Games
SC1(A) = max

i∈[N ]
Ci(A) Θ

(
N
W

)
Θ(N) [BMI06]

SC2(A) =
∑

i∈[N ]

Ci(A) Θ
(

N
W

)
Θ(N) [BMI06]

SC3(A) =
∑

f∈F

max
a∈[W ]

nf,a(A) F —

Table 4.2: The pure price of anarchy of Colored Bottleneck Games. Results
for classical bottleneck games are shown in the right column.
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Our main contribution is the derivation of tight bounds on the price of an-
archy for Colored Resource Allocation Games. These bounds are summarized in
Tables 4.1 and 4.2. It can be shown that the bounds for Colored Congestion Games
remain tight even for network games.

Observe that known bounds for classical congestion and bottleneck games can
be obtained from our results by simply setting W = 1. On the other hand one
might notice that our games can be casted as classical congestion or bottleneck
games with W |F | facilities. However we are able to derive better upper bounds
for most cases by exploiting the special structure of the players’ strategies.

4.1 Model Definition

Definition 41 (Colored Resource Allocation Games). A Colored Resource Allo-
cation Game is defined as a tuple 〈F, N,W, {Ei}i∈[N ]〉 such that:

1. F is a set of facilities fi

2. [W ] is a set of colors

3. [N ] is a set of players

4. Ei is a set of possible facility combinations for player i such that:

a. ∀ i ∈ [N ] : Ei ⊆ 2F

b. Si = Ei × [W ] is the set of possible strategies of player i

c. Ai = (Ei, ai) ∈ Si is the notation of a strategy for player i with Ei ∈ Ei

denoting the set of facilities used and ai ∈ [W ] the corresponding color

5. A = (A1, . . . , AN ) is a strategy profile for the game

6. For a strategy profile A, ∀f ∈ F , ∀c ∈ [W ], nf,c(A) is the number of players
that use facility f in color c in strategy profile A

Depending on the player cost function we define two subclasses of Colored Resource
Allocation Games:

• Colored Congestion Games (CCG), where the player cost is Ci(A) =
∑

e∈Ei

ne,ci(A)

• Colored Bottleneck Games (CBG), where the player cost is Ci(A) = max
e∈Ei

ne,ci(A)

For each of the above variations we will consider three different social cost
functions:

• SC1(A) = maxi∈[N ] Ci(A)

• SC2(A) =
∑

i∈[N ]

Ci(A) =
∑

f∈F

∑

a∈[W ]

n2
f,a(A)
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• SC3(A) =
∑

f∈F

max
a∈[W ]

nf,a(A)

From the definition of pure Nash Equilibrium we can derive the following two
facts that hold in Colored Congestion and Bottleneck Games respectively:

Fact 1. For a PNE strategy profile A of a CCG it holds:

∀E′
i ∈ Ei, ∀c′ ∈ [W ] : Ci(A) ≤

∑

e∈E′i

(ne,c′(A) + 1) (4.1)

Fact 2. For a PNE strategy profile A of CBG it holds:

∀E′
i ∈ Ei, ∀c′ ∈ [W ] : Ci(A) ≤ max

e∈E′i
(ne,c′(A) + 1) (4.2)

Equivalently:

∀Ei ∈ Ei, ∀c ∈ [W ], ∃e ∈ Ei : Ci(A) ≤ ne,c(A) + 1 (4.3)

4.2 Colored Congestion Games

In this section we compute the pure price of anarchy of colored congestion
games for three different social cost functions.

4.2.1 Pure PoA for Social Cost SC1

Figure 4.1: A worst-case instance that proves the tightness of the upper
bound, depicted as network game. A dashed line represents a path of length k
connecting its two endpoints.

Theorem 30. The price of anarchy of any Colored Congestion Game 〈F, N,W, {Ei}i∈[N ]〉
with social cost SC1 is O

(√
N
W

)
.
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Proof. Let A be a Nash Equilibrium and let OPT be an optimal strategy profile.
Without loss of generality we consider the first player to have the maximum cost,
SC1(A) = C1(A). Thus we need to bound C1(A) with respect to the optimum
social cost SC1(OPT) = max

j∈[N ]
Cj(OPT).

Since A is a Nash Equilibrium every player has no benefit of changing either
her color or her choice of facilities. We denote with OPT1 = (E?

1 , a?
1) the strategy

of player P1 in OPT. Since A is a N.E. it must hold:

∀a ∈ [W ] : C1(A) ≤
∑

e∈E?
1

(ne,a(A) + 1) ≤
∑

e∈E?
1

ne,a(A) + C1(OPT) (4.4)

The second inequality holds since any strategy profile cannot lead to a cost for a
player that is less than the size of her facility combination.

Let I ⊂ [N ] the set of players that, in A, use some facility e ∈ E?
1 . The sum of

their costs is:

∑

i∈I

Ci(A) ≥
∑

e∈E?
1

∑

a∈[W ]

n2
e,a(A) ≥

(
∑

e∈E?
1

∑
a∈[W ] ne,a(A))2

|E?
1 |W

≥

(W mina∈[W ]

∑
e∈E?

1
ne,a(A))2

|E?
1 |W

≥
W (mina∈[W ]

∑
e∈E?

1
ne,a(A))2

|E?
1 |

(4.5)

The first inequality holds since a player in I might use facilities (e, a) not in
E?

1 and the second inequality holds from the Cauchy-Schwarz inequality. Let
amin = arg min

a∈[W ]

∑

e∈E?
i

ne,a(A). Thus we have:


 ∑

e∈E?
1

ne,amin(A)




2

≤ |E?
1 |

W

∑

i∈I

Ci(A) (4.6)

From [CK05] we have:

∑

i∈[N ]

Ci(A) ≤ 5
2

∑

i∈[N ]

Ci(OPT) (4.7)

Combining the above two inequalities we have:

 ∑

e∈E?
1

ne,amin(A)




2

≤ |E?
1 |

W

∑

i∈I

Ci(A) ≤ |E?
1 |

W

∑

i∈[N ]

Ci(A) ≤ 5
2
|E?

1 |
W

∑

i∈[N ]

Ci(OPT)

(4.8)
Combining with (4.4) for amin, we get

C1(A) ≤ C1(OPT) +

√√√√5
2
|E?

1 |
W

∑

i∈[N ]

Ci(OPT) (4.9)
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Since |E?
1 | ≤ C1(OPT) and Ci(OPT) ≤ SC1(OPT), we get

C1(A) ≤
(

1 +

√
5
2

N

W

)
SC1(OPT) (4.10)

Theorem 31. There exists an infinite set of Colored Congestion Games 〈F, N, W, {Ei}i∈[N ]〉

with social cost SC1, that have pure price of anarchy Ω

(√
N

W

)
.

Proof. We will describe the lower bound instance as a network game. The under-
lying network is illustrated in Figure 4.1.

In that network W major players want to send traffic from n0 to nk. For
every i, 0 ≤ i ≤ k − 1, there are (k − 1)W minor players that want to send traffic
from node ni to node ni+1. In the worst-case equilibrium A all players choose
the short central edge, leading to social cost SC1(A) = k2. In the optimum the
minor players are equally divided on the dashed-line paths and the major players
choose the central edge. This leads to SC1(OPT) = k, and the price of anarchy is
therefore:

PoA = k = Θ

(√
N

W

)
(4.11)

4.2.2 Pure PoA for Social Cost SC2

The price of anarchy for Social Cost SC2 is upper-bounded by 5/2, as proved
in [CK05]. For the lower bound, we use a slight modification of the instance
described in [CK05]. We have NW players and 2N facilities. The facilities are
separated into two groups: {h1, . . . , hN} and {g1, . . . , gN}. Players are divided into
N groups of W players. Each group i has strategies {hi, gi} and {gi+1, hi−1, hi+1}.
The optimal allocation is for all players in the i-th group to select their first strategy
and be equally divided in the W colors, leading to SC2(OPT) = 2NW . In the
worst-case NE players choose their second strategy and are equally divided in the
W colors, leading to SC2(A) = 5NW . Thus, the PoA of this instance is 5/2 and
the upper bound remains tight in our model too.

4.2.3 Pure PoA for Social Cost SC3

Theorem 32. The price of anarchy of colored congestion games with social cost
SC3 is O

(√
W |F |

)
.

Proof. We denote by ne(S) the vector [ne,a1(S), . . . , ne,aW (S)]. In terms of the
above vector we can write:

SC3(S) =
∑

e∈F

max
a∈[W ]

ne,a(S) =
∑

e∈F

‖ne(S)‖∞ (4.12)
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From norm inequalities we have:

‖ne(S)‖2√
W

≤ ‖ne(S)‖∞ ≤ ‖ne(S)‖2 (4.13)

hence:

SC3(S) =
∑

e∈F

‖ne(S)‖∞ ≤
∑

e∈F

√∑
a

n2
e,a(S) ≤

√
|F |

√∑

e∈F

∑
a

n2
e,a(S) , (4.14)

where the last inequality is a manifestation of the norm inequality ‖~x‖1 ≤
√

n‖~x‖2,
where ~x is a vector of dimension n. Now, from the first inequality of (4.13) we
have:

SC3(S) ≥ 1√
W

∑

e∈F

√∑
a

n2
e,a(S) ≥ 1√

W

√∑

e∈F

∑
a

n2
e,a(S) (4.15)

Combining (4.15) and (4.14) gives:
1√
W

√
SC2(S) ≤ SC3(S) ≤

√
|F |

√
SC2(S) (4.16)

From [CK05] we know that the price of anarchy with social cost SC2(S) is 5/2.
Let A be a worst-case Nash Equilibrium in the case of SC3 and let OPT be an
optimal strategy profile. From (4.16) we know that SC3(A) ≤

√
|F |

√
SC2(A) and

SC3(OPT) ≥ 1√
W

√
SC2(OPT). Thus:

PoA =
SC3(A)

SC3(OPT)
≤

√
W |F |

√
SC2(A)

SC2(OPT)
≤

√
W |F |

√
5
2

(4.17)

Theorem 33. There exists an infinite set of Colored Congestion Games with social
cost SC3 that have PoA =

√
W |F |.

Proof. Consider a colored congestion game with N players, |F | = N facilities and
W = N colors. Each player has strategies the singleton sets consisting of one
facility. In other words Ei = {{f1}, {f2}, . . . , {fN}}.

The above instance has a worst-case equilibrium with social cost N when all
players choose a different facility in an arbitrary color. On the other hand in the
optimum strategy profile players fill all colors of the necessary facilities. This needs
N
W facilities with maximum capacity over their colors 1. Thus the optimum social
cost is N

W leading to a PoA =
√

W |F |.

4.3 Colored Bottleneck Games

4.3.1 Convergence to Equilibrium

Definition 42. (Player Congestion Vector). A player congestion vector for a
strategy profile A of a CBG is a vector [bN , . . . , b1] where

bi = |{Pk ∈ [N ] : ck(A) = i}| (4.18)
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Theorem 34. For a CBG 〈F, N, W, {Ei}i∈[N ]〉 any Nash dynamics converges to a
Nash Equilibrium in finitely many steps.

Proof. Consider an arbitrary initial strategy profile A0 and its corresponding
Player Congestion Vector CV0. At every step m of a Nash dynamics one player k
must make an improving move. Let Ck(Am) = j. Then, bj of CVm must decrease
at least by 1, since no other player’s cost can be increased to bj and no player with
higher cost is affected. Thus, the quantity

∑

i∈N

(bi(Am)N i) decreases at every step

and must converge to a PNE in a finite number of steps.

Corollary 1. For any CBG 〈F, N, W, {Ei}i∈[N ]〉 the price of stability is 1.

4.3.2 Pure PoA for Social Cost SC1

Theorem 35. The price of anarchy of any CBG game with social cost SC1(A) is
at most N

W .

Proof. It is obvious that SC1(OPT) ≥ 1. Let SC1(A) ≥ N
W + 1. From Fact 2

at least N
W players must play each of the other colors. This needs at least N+1

players.

Theorem 36. There exist instances of a CBG game with pure PoA = N
W .

Proof. Consider the following class of CBG games. We have N players and N
facilities. Each player Pi has two possible strategies: Ei = {{fi}, {f1, . . . , fN}}.
In a worst-case NE all players choose the second strategy and they are equally
divided in the W colors. This leads to player cost N

W for each player and thus to a
social cost N

W . In the optimal strategy all players would choose their first strategy
leading to player and social cost 1. Thus the PoA for this instance is N

W .

4.3.3 Pure PoA for Social Cost SC2

Theorem 37. The price of anarchy of any CBG game with social cost SC2(A) is
at most N

W .

Proof. By thm 4.3.2 we know that Ci(A) ≤ N
W . Moreover it is obvious that

SC2(OPT) ≥ N . Thus PoA = N ·Ci(A)
SC2(OPT) ≤ N

W .

The instance used in the previous section can also be used here to prove that
the above inequality is tight for a class of CBG games.
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4.3.4 Pure PoA for Social Cost SC3

To state the following thm we have to define a set.

Definition 43. We define ES to be the set of facilities used by at least one player
in the strategy profile S = (A1, . . . , AN ), i.e.

ES = E1 ∪ . . . ∪ EN (4.19)

Theorem 38. The price of anarchy of any CBG game with social cost SC3(A) is
at most F .

Proof. We exclude from the sum over the facilities, those facilities that are not
used by any player since they do not contribute to the social cost. Thus we focus
on facilities with maxa ne,a > 0. Let amax(e) denote the color with the maximum
multiplicity at facility e. Let Pi be a player that uses the facility copy (e, amax(e)).
Since Ci = maxe∈Ei ne,ai(A) it must hold that ne,amax(e)(A) ≤ Ci(A). In fact we
can state the following general property:

∀e ∈ F, ∃i ∈ [N ] : ne,amax(e) ≤ Ci(A) (4.20)

From the above sections we know that Ci(A) ≤ N
W . Moreover

SC3(OPT) ≥
∑

e∈E

∑
a∈[W ] ne,a(OPT)

W
=

∑

i∈[N ]

|OPTi|
W

≥ N

W
(4.21)

From the above we can conclude:

SC3(A)
SC3(OPT)

≤ |EA| ≤ F (4.22)

Theorem 39. There exists a class of CBGs with PoA = F − 1.

Proof. The lower bound is a Network Colored Bottleneck Game on a ring network.
We have a ring of size |F |. We have W players that want to route traffic between
two subsequent nodes of the ring. In the optimal allocation all players route
through the direct edge, which leads to a Social Cost 1. On the other hand it is
a PNE for players to route their traffic from the other side of the ring using all
F − 1 edges and divided in the W colors. In that case the Social Cost is F − 1
leading to the desired PoA.
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nash equilibria, STOC ’08: Proceedings of the 40th annual ACM sym-
posium on Theory of computing (New York, NY, USA), ACM, 2008,
pp. 355–364.
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