The Price of Anarchy in Auctions Part II: The Smoothness Framework

Jason Hartline Northwestern University Vasilis Syrgkanis Cornell University

December 11, 2013

Part II: High-level goals

• PoA in auctions (as games of incomplete information):

Single-Item First Price, All-Pay, Second Price Auctions

Simultaneous Single Item Auctions

Position Auctions: GSP, GFP

Combinatorial auctions

General Approach

• Reduce analysis of complex setting to simple setting.

- Conclusion for simple setting X, proved under restriction P, extends to complex setting Y
 - X: complete information PNE to Y: incomplete information BNE
 - X: single auction to Y: composition of auctions

Best-Response Analysis

• Objective in X is good because each player doesn't want to deviate to strategy b'_i

 Extension from setting X to setting Y: if best response argument satisfies condition P then conclusion extends to Y

First Extension Theorem

Complete info PNE to BNE with correlated values

- Target setting. First Price Bayes-Nash Equilibrium with asymmetric correlated values
- Simple setting. Complete information Pure Nash Equilibrium
- Thm. If proof of PNE PoA based on ownvalue based deviation argument then PoA of BNE also good

First Extension Theorem Complete info PNE to BNE with correlated values

References:

Roughgarden STOC'09 **Lucier, Paes Leme EC'11** Roughgarden EC'12 Syrgkanis '12 Syrgkanis, Tardos STOC'13

First-Price Auction Refresher

- Highest bidder wins:
 - $x_i(\mathbf{b}) = \{indicator \ that \ i \ wins\}$
- Pays his bid: $P_i(\mathbf{b}) = b_i \cdot x_i(\mathbf{b})$
 - Quasi-Linear preferences: UTILITY = VALUE - PAYMENT $u_i(\mathbf{b}) = (v_i - b_i) \cdot x_i(\mathbf{b})$
- Objective: WELFARE = UTILITIES + PAYMENTS $SW(\mathbf{b}) = \sum_{i} u_{i}(\mathbf{b}) + \sum_{i} P_{i}(\mathbf{b})$ $= \sum_{i} (u_{i}(\mathbf{b}) + b_{i} \cdot x_{i}(\mathbf{b})) = \sum_{i} v_{i} \cdot x_{i}(\mathbf{b})$ 7

First-Price Auction Target: BNE with correlated values

• $\mathbf{v} = (v_1, \dots, v_n) \sim F$: correlated distribution

- Conditional on value, maximizes utility: $E[u_i(\mathbf{b}(\mathbf{v}))|v_i] \ge E[u_i(b'_i, \mathbf{b}_{-i}(\mathbf{v}_{-i}))|v_i]$
- Equilibrium Welfare:

$$E[SW(\mathbf{b}(\mathbf{v}))] = E\left[\sum_{i} \boldsymbol{v}_{i} \cdot x_{i}(\mathbf{b}(\mathbf{v}))\right]$$

• Optimal Welfare: highest value bidder $E[OPT(\mathbf{v})] = E\left[\sum_{i} v_{i} \cdot x_{i}^{*}(\mathbf{v})\right]$

First-Price Auction Target: BNE with correlated values

$$PoA = \frac{E[OPT(\mathbf{v})]}{E[SW(\mathbf{b}(\mathbf{v}))]}$$

- $v = (v_1, ..., v_n)$: common knowledge
- b_i maximizes utility: $u_i(b) \ge u_i(b'_i, b_{-i})$
 - Equilibrium Welfare: $SW(b) = \sum_{i} v_i \cdot x_i(\mathbf{b})$
- Optimal Welfare:

$$OPT(v) = \sum_{i} v_i \cdot x_i^*(\mathbf{v})$$

$$PoA = \frac{OPT(\mathbf{v})}{SW(\mathbf{b})}$$

Theorem. PoA = 1

Proof. Highest value player can deviate to $p(\mathbf{b})^+$

$$u_1(p(\mathbf{b})^+, \mathbf{b}_{-\mathbf{i}}) = v_1 - p(\mathbf{b})^+$$

 $u_i(0, \mathbf{b}_{-\mathbf{i}}) = 0$

$$\sum_{i} u_{i}(\mathbf{b}) \geq \sum_{i} u_{i}(b'_{i}, \mathbf{b}_{-i}) = v_{1} - p(\mathbf{b})$$

By PNE condition

Theorem. PoA = 1

Proof. Highest value player can deviate to $p(\mathbf{b})^+$

$$u_1(p(\mathbf{b})^+, \mathbf{b}_{-\mathbf{i}}) = v_1 - p(\mathbf{b})^+$$
$$u_i(0, \mathbf{b}_{-\mathbf{i}}) = 0$$

$$UTIL(b) \ge \sum_{i} u_{i}(b'_{i}, \mathbf{b}_{-i}) = v_{1} - REV(b)$$
$$UTIL(b) + REV(b) \ge v_{1}$$

 $SW(b) \ge v_1$

Direct extensions

- What if conclusions for PNE of complete information directly extended to:
 - incomplete information BNE
 - simultaneous composition of single-item auctions
- Obviously: *PoA* = 1 doesn't carry over
- Possible, but we need to restrict the type of analysis

Problem in previous PNE proof

- Recall. PoA = 1 because highest value player doesn't want to deviate to p^+
- Challenge. Don't know p or v_{-i} in incomplete information
- Idea. Restrict deviation to not depend on these parameters

First-Price Auction Simpler: PNE o

Recall PoA=1 Proof

Proof. Highest value player can deviate to $p(\mathbf{b})^+$

Can we find b'_i that depend only on v_i ? $U(b) \ge$

 b_1

 D_n

 $u_1(p(\mathbf{b})^+, \mathbf{b}_{-\mathbf{i}}) = v_1 - p(\mathbf{b})^+$ $u_i(0, \mathbf{b}_{-\mathbf{i}}) = 0$

$$\sum_{i} u_i(b'_i, \mathbf{b}_{-i}) = v_1 - REV(b)$$

 $U(b) + REV(b) \ge v_1$

 $SW(b) \ge v_1$

 v_1

New Theorem. $PoA \leq 2$

 v_1

New Theorem. $PoA \leq 2$

New Theorem. $PoA \leq 2$

Proof. Each player can deviate to $b'_i = \frac{v_i}{2}$

$$u_i\left(\frac{v_i}{2}, \mathbf{b}_{-\mathbf{i}}\right) + p(\mathbf{b}) \ge \frac{v_i}{2}$$

 v_1

IV

 v_i

IV

 v_n

New Theorem. $PoA \leq 2$

Proof. Each player can deviate to
$$b'_{i} = \frac{v_{i}}{2}$$

 b_{i}
 $p(\mathbf{b}) = \max_{i} b_{i}$
 $UTIL(\mathbf{b}) \ge \sum_{i} u_{i} \left(\frac{v_{i}}{2}, \mathbf{b}_{-i}\right) + p(\mathbf{b}) \ge \frac{1}{2} OPT(\mathbf{v})$
 b_{n}
 $UTIL(\mathbf{b}) + REV(\mathbf{b}) \ge \frac{1}{2} OPT(\mathbf{v})$
 $SW(\mathbf{b}) \ge \frac{1}{2} OPT(\mathbf{v})$

(λ, μ) –Smoothness via own-value deviations

Exists b'_i depending only on own value

For any bid vector **b**

$$\sum u_i(b'_i, \mathbf{b}_{-i}) + \boldsymbol{\mu} \cdot REV(\mathbf{b}) \ge \boldsymbol{\lambda} \cdot OPT(\mathbf{v})$$

(λ, μ) –Smoothness via own-value deviations

Exists b'_i depending only on own value

For any bid vector **b**

$$\sum_{i} u_i(b'_i, \mathbf{b}_{-i}) + \boldsymbol{\mu} \cdot REV(\mathbf{b}) \ge \boldsymbol{\lambda} \cdot OPT(\mathbf{v})$$

Note. Smoothness is property of auction not equilibrium

(λ, μ) –Smoothness via own-value deviations

Exists b'_i depending only on own value

For any bid vector **b**

$$\sum_{i} u_i(b'_i, \mathbf{b}_{-i}) + \boldsymbol{\mu} \cdot REV(\mathbf{b}) \ge \boldsymbol{\lambda} \cdot OPT(\mathbf{v})$$

Applies to any auction: Not First-Price Auction specific

(λ, μ) –Smoothness implies PoA $\leq \mu/\lambda$

Proof. If **b** PNE then

Note. $SW(\mathbf{b}) \ge REV(\mathbf{b})$

$$UTIL(\mathbf{b}) + \mu \cdot REV(\mathbf{b}) \geq \sum_{i} u_{i}(b'_{i}, \mathbf{b}_{-i}) + \mu \cdot REV(\mathbf{b}) \geq \mathbf{\lambda} \cdot OPT(\mathbf{v})$$

Note. UTIL(**b**) = $SW(\mathbf{b}) - REV(\mathbf{b})$ UTIL(**b**) + $\mu \cdot REV(\mathbf{b}) \ge \lambda \cdot OPT(\mathbf{v})$

 $SW(\mathbf{b}) + (\mu - 1) \cdot REV(\mathbf{b}) \ge \lambda \cdot OPT(\mathbf{v})$

 $SW(\mathbf{b}) + (\mu - 1) \cdot SW(\mathbf{b}) \ge \lambda \cdot OPT(\mathbf{v})$

 $\mu \cdot SW(\mathbf{b}) \geq \lambda \cdot OPT(\mathbf{v})$

Finally

First Extension Theorem. If PNE PoA proved by showing (λ, μ) –smoothness property via own-value deviations, then PoA bound extends to BNE with correlated values

Note. Not specific to First-Price Auction

$(\lambda, \mu) - \text{Smoothness implies BNE PoA} \leq \mu/\lambda$ Proof. If $b(\cdot)$ BNE then $E[u_i(\mathbf{b}(\mathbf{v}))] \geq E\left[u_i\left(\frac{v_i}{2}, \mathbf{b}_{-i}(\mathbf{v}_{-i})\right)\right]$ $E_{12}\left[UTIL(b) + \mu \cdot REV(b) \geq \sum_i u_i(b'_i, \mathbf{b}_{-i}) + \mu \cdot REV(\mathbf{b}) \geq \lambda \cdot OPT(\mathbf{v})\right]$

Just redo PNE proof in expectation over values.

Optimizing over (λ, μ)

- Is half value best own-value deviation?
- Bid $b'_i \sim H(v_i)$ with support $\left[0, \left(1 \frac{1}{e}\right)v_i\right]$ and $h(b'_i) = \frac{1}{v_i - b'_i}$

RECAP

First Extension Thm. If proof of PNE PoA based on (λ, μ) –smoothness via own-value based deviations then PoA of BNE with correlated values also μ/λ

QUESTIONS?

First Extension Theorem Complete info PNE to BNE with correlated values

Second Extension Theorem

Single auction to simultaneous auctions PNE complete information

- Target setting. Simultaneous single-item first price auctions with unit-demand bidders (complete information PNE).
- Simple setting. Single-item first price auction (complete information PNE).
- **Thm.** If proof of PNE PoA of single-item based on proving (λ, μ) -smoothness via own-value deviation then PNE PoA of simultaneous auctions also μ/λ .

Second Extension Extension Theorem Single auction to simultaneous auctions PNE complete information

References:

Roughgarden STOC'09 Roughgarden EC'12 Syrgkanis '12 **Syrgkanis, Tardos STOC'13**

Simultaneous First-Price Auctions Unit-demand bidders

n

Simultaneous First-Price Auctions Unit-demand bidders

n

Simultaneous First-Price Auctions

Can we derive global efficiency guarantees from local $\left(\frac{1}{2}, 1\right)$ –smoothness of each first price auction?

APPROACH: Prove smoothness of the global mechanism

GOAL: Construct global deviation

IDEA: Pick your item in the optimal allocation and perform the smoothness deviation for your local value v_i^j , i.e. $\frac{v_i^j}{2}$

Simultaneous First-Price Auctions

Smoothness locally:

$$u_i(b'_i, \mathbf{b_{-i}}) + p_{j_i^*}(\mathbf{b}) \ge \frac{v_i^{j_i^*}}{2}$$

Summing over players:

$$\sum_{i} u_{i}(b'_{i}, \mathbf{b}_{-i}) + REV(\mathbf{b}) \ge \frac{1}{2} \cdot OPT(\mathbf{v})$$

Implying
$$\left(\frac{1}{2}, 1\right)$$
 – smoothness property globally.

Second Extension Theorem. If proof of PNE PoA of single-item auction based on proving (λ, μ) -smoothness smoothness via own-value deviation then PNE PoA of simultaneous auctions also $\leq \mu/\lambda$.

BNE PoA?

- BNE PoA of simultaneous single-item auctions with correlated unit-demand values ≤ 1/2?
- Not really: deviation not oblivious to opponent valuations
- Item in the optimal matching depends on values of opponents

But Half-way there

•What we showed:

Exists b'_i depending only on valuation profile **v** (not \mathbf{b}_{-i})

For any bid vector **b**

RECAP

Second Extension Theorem. If proof of PNE PoA of single-item auction based on proving (λ, μ) -smoothness then PNE PoA of simultaneous auctions also $\leq \mu/\lambda$.

Next we will extend above to BNE

QUESTIONS?

Second Extension Theorem Single auction to simultaneous auctions PNE complete information

Third Extension Theorem

Complete info PNE to BNE with independent values

 Target setting. First Price Bayes-Nash Equilibrium with asymmetric independent values

 Simple setting. Complete information Pure Nash Equilibrium

• **Thm.** If proof of PNE PoA based on (λ, μ) -smoothness via valuation profile dependent deviation then PoA of BNE with independent values also μ/λ

Third Extension Theorem

Complete info PNE to BNE with independent values

References:

Christodoulou et al. ICALP'08 Roughgarden EC'12 Syrgkanis '12 Syrgkanis, Tardos STOC'13

Does this extend to BNE PoA?

 (λ, μ) – Smoothness via valuation profile deviations

Exists b'_i depending only on valuation profile v (not **b**_i)

Recall First Extension Theorem.

If PNE PoA proved by showing (λ, μ) –smoothness property via own-value deviations, then PoA bound extends to BNE with correlated values

 Relax First Extension Theorem to allow for dependence on opponents values

• To counterbalance: assume independent values

BNE (independent valuations)

- Need to construct feasible BNE deviations
- Each player random samples the others values and deviates as if that was the true values of his opponents
- Above works out, due to independence of value distributions

BNE (independent valuations)

 $E\left[u_i^{\boldsymbol{v}_i}\left(b_i'(\boldsymbol{v}_i, \mathbf{w}_{-i}), \mathbf{b}_{-i}(\mathbf{v}_{-i})\right)\right] = E\left[u_i^{\boldsymbol{w}_i}\left(b_i'(\mathbf{w}), \mathbf{b}_{-i}(\mathbf{v}_{-i})\right)\right]$

Utility of deviation of player *i* In expectation over his own value too. Utility of deviation from a random sample of player *i* who knows the values of all other players.

But where players play non equilibrium strategies.

BNE (independent valuations)

 $E\left[u_i^{\boldsymbol{v}_i}\left(b_i'(\boldsymbol{v}_i, \mathbf{w}_{-i}), \mathbf{b}_{-i}(\mathbf{v}_{-i})\right)\right] = E\left[u_i^{\boldsymbol{w}_i}\left(b_i'(\mathbf{w}), \mathbf{b}_{-i}(\mathbf{v}_{-i})\right)\right]$

Utility of deviation of player *i* In expectation over his own value too. Utility of deviation from a random sample of player *i* who knows the values of all other players.

But where players play non equilibrium strategies.

BNE (independent valuations) $\sum_{i} E[u_{i}^{v_{i}}(b_{i}'(v_{i}, \mathbf{w}_{-i}), \mathbf{b}_{-i}(\mathbf{v}_{-i}))] = E\left[\sum_{i} u_{i}^{w_{i}}(b_{i}'(\mathbf{w}), \mathbf{b}_{-i}(\mathbf{v}_{-i}))\right]$ Sum of deviating utilities Sum of complete information

setting deviating utilities

Recall. Exists
$$b'_i$$
 depending
only on valuation profile v
 $(not \mathbf{b}_{-i})$
 $\sum_{i=1}^{n} \mathbf{v}_i (\mathbf{v}, \mathbf{v}_{-i}))] = E\left[\sum_i u_i^{w_i} (b'_i(\mathbf{w}), \mathbf{b}_{-i}(\mathbf{v}_{-i}))\right]$
For any bid vector b
 $\sum_i u_i(b'_i, \mathbf{b}_{-i}) + \mathbf{p} \cdot REV(\mathbf{b}) \ge \mathbf{a} \cdot OPT(\mathbf{v})$
 $F_i \sim v_i$
 $u_i(b'_i(\mathbf{w}), \mathbf{b}_{-i}(\mathbf{v}_{-i})) \ge \frac{1}{2} \cdot v_i^{j_i^*(\mathbf{w})} - p_{j_i^*(\mathbf{w})}(\mathbf{b}(\mathbf{v}))$ with $v_i \sim F_i$
 $u_i(b'_i(\mathbf{w}), \mathbf{b}_{-i}(\mathbf{v}_{-i})) \ge \frac{1}{2} \cdot v_i^{j_i^*(\mathbf{w})} - p_{j_i^*(\mathbf{w})}(\mathbf{b}(\mathbf{v}))$ with $v_i \sim F_i$

BNE (independent valuations) $\sum_{i} E[u_{i}^{v_{i}}(b_{i}'(v_{i}, \mathbf{w}_{-i}), \mathbf{b}_{-i}(\mathbf{v}_{-i}))] = E\left[\sum_{i} u_{i}^{w_{i}}(b_{i}'(\mathbf{w}), \mathbf{b}_{-i}(\mathbf{v}_{-i}))\right]$ $\geq E[\lambda \cdot OPT(\mathbf{w}) - \mu \cdot REV(\mathbf{b}(\mathbf{v}))]$

Found b'_i that depend only on v_i such that:

 $\sum E[u_i(b'_i(v_i), \mathbf{b}_{-i}(\mathbf{v}_{-i}))] + \boldsymbol{\mu} \cdot E[REV(\mathbf{b}(\mathbf{v}))] \ge \boldsymbol{\lambda} \cdot E[OPT(\mathbf{v})]$

Rest is easy

Third Extension Theorem. If PNE PoA proved by showing (λ, μ) –smoothness property via valuation profile dependent deviations, then PoA bound extends to BNE with independent values

RECAP

- **Thm.** If proof of PNE PoA based on (λ, μ) -smoothness via valuation profile dependent deviation then PoA of BNE with independent values also μ/λ
- **Corollary.** If PNE PoA of single-item auction proved via (λ, μ) -smoothness via valuation profile dependent deviation, then BNE of simultaneous auctions with unit-demand and independent also μ/λ

Third ExtensionTheoremComplete info PNEto BNE withindependent values

RECAP

- **Thm.** If proof of PNE PoA based on (λ, μ) -smoothness via valuation profile dependent deviation then PoA of BNE with independent values also μ/λ
- **Corollary.** If PNE PoA of single-item auction proved via (λ, μ) -smoothness via valuation profile dependent deviation, then BNE of simultaneous auctions with **submodular** and independent also μ/λ
- Corollary. BNE PoA of simultaneous first price auctions with submodular bidders ≤ ^e/_{e-1}

 OUESTIONS?

Third ExtensionTheoremComplete info PNEto BNE withindependent values

Direct approach: Arguing about distributions

- Focusing on complete info PNE, might be restrictive in some settings
- Working with the distributions directly can potentially yield better bounds

Direct approach

Arguing about distributions

References: Feldman et al. STOC'13

Single-item auction BNE

Price of the item follows a distribution D

 What if a player deviates to bidding a random sample from price distribution

 The probability that he wins is ½ by symmetry of the two distributions

• He pays at most E[p] $E[u_i(b'_i, \mathbf{b}_{-i}(\mathbf{v}_{-i}))] \ge \frac{v_i}{2} - E[p]$

Single-item auction BNE

• Same spirit: exists deviations that depend on price distribution such that $\sum_{i} E[u_i(b'_i, \mathbf{b}_{-i}(\mathbf{v}_{-i}))] + E[REV(\mathbf{b}(\mathbf{v}))] \ge \frac{E[OPT(\mathbf{v})]}{2}$

■ BNE PoA≤ 2

What does it buy us

- Correlated deviating strategies across multiple auctions
- Decomposition of deviation analysis to separate deviations imposes independent randomness

What does it buy us

Correlation can achieve higher deviating utility

What does it buy us

- Draw bid from price distribution
- X(*b*, *p*): set of won items with bid vector b and price vector p
- ^{*D*}• Either I win or price wins: X(b,p) + X(p,b) = S
 - By symmetry: E[v(X(b',p))] = E[v(X(p,b'))]

• Value collected: $E[v(X(b',p))] = \frac{1}{2}E[v(X(b',p)) + v(X(p,b'))] \ge \frac{1}{2}E[v(S)]$

 Drawing deviation from price distribution!

- Buys correlation across auctions
- Better bounds beyond submodular

Direct approach Arguing about distributions

Second Price Payment Rules

Second price

Vickrey Auction - Truthful, efficient, simple (second price)

but has many bad Nash equilibria

Assume bid ≤ value (no overbidding) Theorem. All Nash equilibria efficient. highest value wins

Second Price and Overbidding

 Same approach but replace Payments with "Winning Bids" and use no-overbidding

For any bid vector **b**

$$\sum_{i} u_{i}(b'_{i}, \mathbf{b}_{-i}) + \boldsymbol{\mu} \cdot BIDS(\mathbf{b}) \geq \boldsymbol{\lambda} \cdot OPT(\mathbf{v})$$

• No overbidding assumption: $BIDS \le WELFARE$ Then $PoA \le \frac{1+\mu}{\lambda}$

Smoothness of Vickrey Auction

• Deviate to bidding your value: $b'_i(v_i) = v_i$

B(b): winning bid

• Either winning bid $B(\mathbf{b}) \ge v_i$ or $u_i(b'_i, \mathbf{b}_{-i}) = v_i - B_i(\mathbf{b})$

 $u_i(b'_i, \mathbf{b}_{-\mathbf{i}}) + B_i(\mathbf{b}) \ge v_i \Rightarrow u_i(b'_i, \mathbf{b}_{-\mathbf{i}}) + B_i(\mathbf{b}) \cdot x^*_i(\mathbf{v}) \ge v_i \cdot x^*_i(\mathbf{v})$

$$\sum_{i} u_i(b'_i, \mathbf{b}_{-i}) + BIDS(\mathbf{b}) \ge OPT(\mathbf{v})$$

Smoothness of Vickrey Auction

- Vickrey auction (1,1)-smooth using bids
- $PoA \leq 2$: under no-overbidding
- Vickrey is efficient?
- *PoA* ≤ 2: extends to simultaneous Vickrey auctions even under BNE with independent values

Sneak Peek of Examples

Generalized First-Price Auction

- Allocate slots by bid
- Charge bid per-click
- Utility: $u_i(b) = a_{\sigma(i)}(v_i - b_i)$

Matching Markets - Greedy Mechanism

 Allocated items greedily to highest remaining bid

• If allocated item j(b), charge $b_i^{j(b)}$

• Utility:
$$u_i(b) = v_i^{j(b)} - b_i^{j(b)}$$

Single-Minded Combinatorial Auction

2 Single-minded: v_i for whole set S_i 3 S_3 3

Single-Minded Bidders

Items

- Each bidder submits b_i and T_i
- Run some algorithm (optimal or greedy $O(\sqrt{m})$ -approx.) over reported single-minded values
- Charge bid b_i if allocated

Examples

GFP

Allocate slots by bid

Charge bid per-click

Utility: $u_i(b) = a_{\sigma(i)}(v_i - b_i)$

Matching Markets-Greedy Allocation

 Allocated items greedily to highest remaining bid

If allocated item j(b), charge $b_i^{j(b)}$

Utility: $u_i(b) = v_i^{j(b)} - b_i^{j(b)}$

Single-Minded Combinatorial Auctions

- Each bidder submits b_i and T_i
- Run some algorithm (optimal or greedy O(\sqrt{m})-approx.) over reported single-minded values
- Charge bid b_i if allocated

(2) Examples

Generalized First-Price Auction

CTRs

- Allocate slots by bid
- Charge bid per-click
- Utility: $u_i(b) = a_{\sigma(i)}(v_i - b_i)$

Smoothness of GFP

$$\sum_{i} u_{i}(b'_{i}, \mathbf{b}_{-i}) + \boldsymbol{\mu} \cdot REV(\mathbf{b}) \geq \boldsymbol{\lambda} \cdot \sum_{i} a_{opt(i)} v_{i}$$

•
$$b'_i = \frac{v_i}{2}$$

• Either bid of player at slot $opt(i) \ge \frac{v_i}{2}$

• Or utility
$$\geq \frac{a_{opt(i)}v_i}{2}$$

 $u_i\left(\frac{v_i}{2}, b_{-i}\right) + a_{opt(i)} \cdot b_{\pi(opt(i))} \geq \frac{a_{opt(i)}v_i}{2}$

$$\sum_{i} u_{i} \left(\frac{v_{i}}{2}, b_{-i}\right) + \sum_{i} a_{opt(i)} \cdot b_{\pi(opt(i))} \ge \sum_{i} \frac{a_{opt(i)}v_{i}}{2}$$
$$\sum_{i} u_{i} \left(\frac{v_{i}}{2}, b_{-i}\right) + REV(b) \ge \frac{1}{2} \cdot OPT(v)$$

Smoothness of GFP

$$\sum_{i} u_{i}(b'_{i}, \mathbf{b}_{-i}) + \boldsymbol{\mu} \cdot REV(\mathbf{b}) \geq \boldsymbol{\lambda} \cdot \sum_{i} a_{opt(i)} v_{i}$$

$$\sum_{i} u_{i}\left(\frac{v_{i}}{2}, b_{-i}\right) + REV(b) \geq \frac{1}{2} \cdot OPT(v)$$

Thm. $PoA \leq 2$

Proof.

$$\sum_{i} u_{i}(b) \geq \sum_{i} u_{i}\left(\frac{v_{i}}{2}, b_{-i}\right)$$
$$UTIL(b) + REV(b) \geq \frac{1}{2} \cdot OPT(v)$$
$$SW(v) \geq \frac{1}{2} \cdot OPT(v)$$

Smoothness of GFP

$$\sum_{i} u_{i}(b'_{i}, \mathbf{b}_{-i}) + \boldsymbol{\mu} \cdot REV(\mathbf{b}) \geq \boldsymbol{\lambda} \cdot \sum_{i} a_{opt(i)} v_{i}$$

$$\sum_{i} u_i\left(\frac{v_i}{2}, b_{-i}\right) + REV(b) \ge \frac{1}{2} \cdot OPT(v)$$

Thm. Bayes-Nash $PoA \leq 2$

Proof. $\sum_{i} E[u_i(b(\mathbf{v}))] \ge \sum_{i} E\left[u_i\left(\frac{v_i}{2}, b_{-i}(v_{-i})\right)\right]$ $E[UTIL(b(\mathbf{v}))] + E[REV(b(\mathbf{v}))] \ge \frac{1}{2} \cdot E[OPT(\mathbf{v})]$ $E[SW(b(\mathbf{v}))] \ge \frac{1}{2} \cdot E[OPT(\mathbf{v})]$

Matching Markets - Greedy Mechanism

 Allocated items greedily to highest remaining bid

• If allocated item j(b), charge $b_i^{j(b)}$

• Utility:
$$u_i(b) = v_i^{j(b)} - b_i^{j(b)}$$

Matching Markets – Greedy Mechanism

Deviation

Items

Unit-Demand Bidders

- $b_i^j = \frac{v_i^j}{2}$
- Only for *j* =item in optimal matching
- If $p_j(b)$ is price of item j $u_i(b'_i, b_{-i}) \ge \frac{v_i^j}{2} - p_j(b)$
- Thus $\left(\frac{1}{2}, 1\right)$ -smooth via valuation profile dependent deviations

Matching Markets – Greedy Mechanism

In fact

• Only for <i>j</i> =item in optimal matching
$u_i(b'_i, b_{-i}) \ge \left(1 - \frac{1}{e}\right)v_i^j - p_j(b)$
• Thus $\left(1-\frac{1}{e},1\right)$ -smooth

 $b_i^j \sim H(v_i^j)$

- Greedy on true values: 2-approx.
- Greedy on reported values: 1.58-approx.!

Incentives improve algorithmic approximation

Greedy on true values: 2-approx.

Unit-Demand Bidders

Items

•At equilibrium:

- Player 2 never goes for first item
- Too expensive
- So allocation is efficient

Single-Minded Combinatorial Auction

 S_2

Items

Single-Minded Bidders S_1 2 Single-minded: v_i for whole set S_i 3 S_3 3

- Each bidder submits b_i and T_i
- Run some algorithm over reported single-minded values
- Charge bid b_i if allocated

Optimal Algorithm

- Each bidder submits b_i and T_i
- Run optimal algorithm over reported single-minded values
- Charge bid b_i if allocated

Linear inefficiency!

m Items

At equilibrium:
• 1 and 2 bid
$$b = 1$$
, $T = [m]$
• Other players bid 0
• $v = 1 - \epsilon$
• $SW = 1$ but $OPT = m$
• $v = 1 - \epsilon$

\sqrt{m} – Approximation Algorithm

- Each bidder submits b_i and T_i
- Run \sqrt{m} Approximation
 Algorithm over reported
 single-minded values
- Charge bid b_i if allocated

\sqrt{m} – Approximation Algorithm

 \sqrt{m} – Approximation Algorithm

- Reweight bids as: $\hat{b}_i = \frac{b_i}{\sqrt{|T_i|}}$
- Allocate in decreasing order of \widehat{b}_i
- Charge bid b_i if allocated
- Idea: A player can block at most \sqrt{m} other players of same value from being allocated

Bad Example Corrected

m Items

Smoothness of Approximation Algorithm

- Deviation b'_i : bid $\frac{v_i}{2}$ for S_i
- Let *τ_i*(b): Threshold bid for being allocated *S_i* (including bid of player)
- By similar analysis: $u_i(b_i', b_{-i}) + \tau_i(b) \ge \frac{v_i}{2}$
- Need to show: $\sum_i \tau_i(b) \leq c \cdot REV$

Smoothness of Approximation Algorithm

- Fact: Algorithm is \sqrt{m} –approximation
- Think of hypothetical situation where each bidder is duplicated
- Duplicate bidder bids: $b_i = \tau_i(b) \epsilon$ for set S_i
- By definition of $\tau_i(b)$: algorithm doesn't allocate to them
- Allocating to duplicate bidders yields welfare

• Since algorithm is \sqrt{m} –approximation: $REV = \sum_i b_i X_i(b) \ge \frac{1}{\sqrt{m}} \sum_i \tau_i(b)$

 $\sum \tau_i(b)$

Approximation improves efficiency

• Approximate mechanism: $\left(\frac{1}{2}, \sqrt{m}\right)$ – smooth

• Welfare at equilibrium $O(\sqrt{m})$ -approximate NOT O(m) –approximate

Some References

Smoothness

Roughgarden STOC'09, Lucier, Paes Leme EC'11, Roughgarden EC'12, Syrgkanis '12,

Syrgkanis, Tardos STOC'13

Simultaneous First-Second Price Single-Item Auctions

Bikhchandani GEB'96, Christodoulou, Kovacs, Schapira ICALP'08, Bhawalkar, Roughgarden SODA'11, Hassidim, Kaplan, Mansour, Nisan EC'11, Feldman, Fu, Gravin, Lucier STOC'13

Auctions based on Greedy Allocation Algorithms

Lucier, Borodin SODA'10

AdAuctions (GSP, GFP)

Paes-Leme Tardos FOCS'10, Lucier, Paes-Leme + CKKK EC'11

Sequential First/Second Price Auctions

Paes Leme, Syrgkanis, Tardos SODA'12, Syrgkanis, Tardos EC'12

Multi-Unit Auctions

Bart de Keijzer et al. ESA'13

All above can be thought as smoothness proofs and some are compositions of auctions

This conference

Price of Anarchy in Auctions and Mechanisms

- Dutting, Henzinger, Stanberger. Valuation Compressions in VCG-Based Combinatorial Auctions
- Jose R. Correa, Andreas S. Schulz and Nicolas E. Stier-Moses. The Price of Anarchy of the Proportional Allocation Mechanism Revisited
- Jason Hartline, Darrell Hoy and Sam Taggart. Interim Smoothness for Auction Welfare and Revenue. (poster)
- Michal Feldman, Vasilis Syrgkanis and Brendan Lucier. Limits of Efficiency in Sequential Auctions
- Brendan Lucier, Yaron Singer, Vasilis Syrgkanis and Eva Tardos. Equilibrium in Combinatorial Public Projects

Price of Anarchy in Games

- Xinran He and David Kempe. Price of Anarchy for the N-player Competitive Cascade Game with Submodular Activation Functions
- Mona Rahn and Guido Schäfer. Bounding the Inefficiency of Altruism Through Social Contribution Games
- Yoram Bachrach, Vasilis Syrgkanis and Milan Vojnovic. Incentives and Efficiency in Uncertain Collaborative Environments

