The Price of Anarchy in Auctions

Part II: The Smoothness Framework

Jason Hartline
Northwestern University

Vasilis Syrgkanis
Cornell University

Part II: High-level goals

- Po in auctions (as games of incomplete information):
" Single-Item First Price, All-Pay, Second Price Auctions
- Simultaneous Single Item Auctions
- Position Auctions: GSP, GFP
- Combinatorial auctions

General Approach

- Reduce analysis of complex setting to simple setting.
- Conclusion for simple setting X , proved under restriction P , extends to complex setting Y
- X: complete information PNE to Y: incomplete information BNE
- X: single auction to Y: composition of auctions

Best-Response Analysis

- Objective in X is good because each player doesn't want to deviate to strategy b_{i}^{\prime}
- Extension from setting X to setting Y : if best response argument satisfies condition P then conclusion extends to Y

First Extension Theorem

Complete info PNE to BNE with correlated values

- Target setting. First Price Bayes-Nash Equilibrium with asymmetric correlated values
- Simple setting. Complete information Pure Nash Equilibrium
- Thm. If proof of PNE PoA based on ownvalue based deviation argument then PoA of BNE also good

First Extension
 Theorem

Complete info PNE
to BNE with
correlated values

References:

Roughgarden STOC'09
Lucier, Paes Leme EC'11
Roughgarden EC'12
Syrgkanis '12
Syrgkanis, Tardos STOC'13

First-Price Auction Refresher

- Highest bidder wins:

$$
x_{i}(\mathbf{b})=\{\text { indicator that } i \text { wins }\}
$$

- Pays his bid: $P_{i}(\mathbf{b})=b_{i} \cdot x_{i}(\mathbf{b})$
- Quasi-Linear preferences:

$$
\begin{aligned}
\text { UTILITY } & =\text { VALUE }- \text { PAYMENT } \\
u_{i}(\mathbf{b}) & =\left(v_{i}-b_{i}\right) \cdot x_{i}(\mathbf{b})
\end{aligned}
$$

- Objective:

WELFARE $=$ UTILITIES + PAYMENTS

$$
\begin{aligned}
S W(\mathbf{b}) & =\sum_{i} u_{i}(\mathbf{b})+\sum_{i} P_{i}(\mathbf{b}) \\
& =\sum_{i}\left(u_{i}(\mathbf{b})+b_{i} \cdot x_{i}(\mathbf{b})\right)=\sum_{i} v_{i} \cdot x_{i}(\mathbf{b})
\end{aligned}
$$

First-Price Auction Target: BNE with correlated values

- $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \sim F$: correlated distribution
- Conditional on value, maximizes utility:

$$
E\left[u_{i}(\mathbf{b}(\mathrm{v})) \mid v_{i}\right] \geq E\left[u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\left(v_{-\mathbf{i}}\right)\right) \mid v_{i}\right]
$$

- Equilibrium Welfare:

$$
E[S W(\mathbf{b}(\mathrm{v}))]=E\left[\sum_{i} v_{i} \cdot x_{i}(\mathbf{b}(\mathrm{v}))\right]
$$

- Optimal Welfare: highest value bidder

$$
E[O P T(\mathrm{v})]=E\left[\sum_{i} v_{i} \cdot x_{i}^{*}(\mathrm{v})\right]
$$

First-Price Auction Target: BNE with correlated values

$$
P o A=\frac{E[O P T(\mathrm{v})]}{E[S W(\mathbf{b}(\mathrm{v}))]}
$$

First-Price Auction Simpler: PNE and complete Information

- $v=\left(v_{1}, \ldots, v_{n}\right)$: common knowledge
- b_{i} maximizes utility:

$$
u_{i}(b) \geq u_{i}\left(b_{i}^{\prime}, b_{-i}\right)
$$

- Equilibrium Welfare:

$$
S W(b)=\sum_{i} v_{i} \cdot x_{i}(\mathbf{b})
$$

- Optimal Welfare:

$$
O P T(v)=\sum_{i} v_{i} \cdot x_{i}^{*}(\mathbf{v})
$$

First-Price Auction Simpler: PNE and complete Information

$$
P o A=\frac{O P T(\mathbf{v})}{S W(\mathbf{b})}
$$

First-Price Auction Simpler: PNE and complete Information

Theorem. $P o A=1$

Proof. Highest value player can deviate to $p(\mathbf{b})^{+}$

$$
\left.\begin{array}{rl}
u_{1}\left(p(\mathbf{b})^{+}, \mathbf{b}_{-\mathbf{i}}\right) & =v_{1}-p(\mathbf{b})^{+} \\
u_{i}\left(0, \mathbf{b}_{-\mathbf{i}}\right) & =0 \\
\sum_{i} u_{i}(\mathbf{b}) \geq \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right) & =v_{1}-p(\mathbf{b})
\end{array}\right\}
$$

First-Price Auction Simpler: PNE and complete Information

Theorem. $P o A=1$

Proof. Highest value player can deviate to $p(\mathbf{b})^{+}$

$$
\begin{align*}
u_{1}\left(p(\mathbf{b})^{+}, \mathbf{b}_{-\mathbf{i}}\right) & =v_{1}-p(\mathbf{b})^{+} \\
u_{i}\left(0, \mathbf{b}_{-\mathbf{i}}\right) & =0 \\
\operatorname{UTIL}(b) \geq \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right) & =v_{1}-\operatorname{REV}(b) \\
\operatorname{UTIL}(b)+\operatorname{REV}(b) & \geq v_{1} \\
S W(b) & \geq v_{1} \tag{13}
\end{align*}
$$

Direct extensions

- What if conclusions for PNE of complete information directly extended to:
- incomplete information BNE
- simultaneous composition of single-item auctions
- Obviously: PoA = 1 doesn't carry over
- Possible, but we need to restrict the type of analysis

Problem in previous PNE proof

- Recall. $P o A=1$ because highest value player doesn't want to deviate to p^{+}
- Challenge. Don't know p or $\mathbf{v}_{\mathbf{- i}}$ in incomplete information
- Idea. Restrict deviation to not depend on these parameters

First-Price Auction

 Simpler: PNE of
Recall PoA=1 Proof

Proof. Highest value player can deviate to $p(\mathbf{b})^{+}$

Can we find b_{i}^{\prime} that depend only on v_{i} ?

$$
\begin{aligned}
u_{1}\left(p(\mathbf{b})^{+}, \mathbf{b}_{-\mathbf{i}}\right) & =v_{1}-p(\mathbf{b})^{+} \\
u_{i}\left(0, \mathbf{b}_{-\mathbf{i}}\right) & =0
\end{aligned}
$$

$$
\begin{gather*}
U(b) \geq \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)=v_{1}-\operatorname{REV}(b) \\
U(b)+R E V(b) \geq v_{1} \\
S W(b) \geq v_{1} \tag{16}
\end{gather*}
$$

Own-value deviations (price and other values oblivious)

Own-value deviations (price and other values oblivious)

Own-value deviations (price and other values oblivious)

New Theorem. $P o A \leq \mathbf{2}$

Proof. Each player can deviate to $b_{i}^{\prime}=\frac{v_{i}}{2}$

$$
u_{i}\left(\frac{v_{i}}{2}, \mathbf{b}_{-\mathbf{i}}\right)+p(\mathbf{b}) \geq \frac{v_{i}}{2}
$$

Own-value deviations
 (price and other values oblivious)

New Theorem. Po A ≤ 2

Proof. Each player can deviate to $b_{i}^{\prime}=\frac{v_{i}}{2}$

$$
\begin{aligned}
u_{i}\left(\frac{v_{i}}{2}, \mathbf{b}_{-\mathbf{i}}\right)+p(\mathbf{b}) \cdot x_{i}^{*}(\mathbf{v}) & \geq \frac{v_{i}}{2} \cdot x_{i}^{*}(\mathbf{v}) \\
U T I L(\mathbf{b}) \geq \sum_{i} u_{i}\left(\frac{v_{i}}{2}, \mathbf{b}_{-\mathbf{i}}\right)+p(\mathbf{b}) & \geq \frac{1}{2} O P T(\mathbf{v}) \\
U T I L(\mathbf{b})+R E V(\mathbf{b}) & \geq \frac{1}{2} O P T(\mathbf{v}) \\
S W(\mathbf{b}) & \geq \frac{1}{2} O P T(\mathbf{v})
\end{aligned}
$$

Own-value deviations

(pric

Smoothness Property

Exists b_{i}^{\prime} depending only on own value

(λ, μ)-Smoothness via own-value deviations

Exists b_{i}^{\prime} depending only on own value

For any bid vector $\mathbf{b} \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot \operatorname{OPT}(\mathbf{v})$

(λ, μ)-Smoothness via own-value deviations

Exists b_{i}^{\prime} depending only on own value

For any bid vector $\mathbf{b} \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot O P T(\mathbf{v})$

Note. Smoothness is property of auction not equilibrium

(λ, μ)-Smoothness via own-value deviations

Exists b_{i}^{\prime} depending only on own value

For any bid vector $\mathbf{b} \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathrm{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot O P T(\mathbf{v})$

Applies to any auction: Not First-Price Auction specific

(λ, μ)-Smoothness implies BoA $\leq \mu / \lambda$

Proof. If b PNE then

$$
\operatorname{UTIL}(\mathbf{b})+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathrm{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot \text { OPT }(\mathrm{v})
$$

Note. $\operatorname{UTIL}(\mathbf{b})=S W(\mathbf{b})-R E V(\mathbf{b}) \quad U T I L(\mathbf{b})+\mu \cdot R E V(\mathbf{b}) \geq \lambda \cdot O P T(\mathbf{v})$
Note. $\operatorname{SW}(\mathbf{b}) \geq R E V(b)$

$$
S W(\mathbf{b})+(\mu-1) \cdot R E V(\mathbf{b}) \geq \lambda \cdot O P T(\mathbf{v})
$$

$$
\begin{aligned}
S W(\mathbf{b})+(\mu-1) \cdot S W(\mathbf{b}) & \geq \lambda \cdot O P T(\mathbf{v}) \\
\mu \cdot S W(\mathbf{b}) & \geq \lambda \cdot O P T(\mathbf{v})
\end{aligned}
$$

Finally

First Extension Theorem. If PNE PoA proved by showing (λ, μ)-smoothness property via own-value deviations, then PoA bound extends to BNE with correlated values

Note. Not specific to First-Price Auction

(λ, μ) -Smoothness implies BNE BoA $\leq \mu / \lambda$

Proof. If $\boldsymbol{b}(\cdot)$ BNE then $E\left[u_{i}(\mathbf{b}(\mathrm{v}))\right] \geq E\left[u_{i}\left(\frac{v_{i}}{2}, \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)\right]$
$\boldsymbol{E}_{\boldsymbol{v}}\left[U T I L(b)+\mu \cdot \operatorname{REV}(b) \geq \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathrm{b}_{-\mathrm{i}}\right)+\mu \cdot \operatorname{REV}(\mathrm{b}) \geq \lambda \cdot \operatorname{OPT}(\mathrm{v})\right]$

Just redo PNE proof in expectation over values.

Optimizing over (λ, μ)

$$
b_{n}^{\prime} \sim H\left(v_{n}\right)
$$

- Is half value best own-value deviation?
- Bid $b_{i}^{\prime} \sim H\left(v_{i}\right)$ with support $\left[0,\left(1-\frac{1}{e}\right) v_{i}\right]$ and

$$
h\left(b_{i}^{\prime}\right)=\frac{1}{v_{i}-b_{i}^{\prime}}
$$

Optimizing over (λ, μ)

- Bid $b_{i}^{\prime} \sim H\left(v_{i}\right)$ with support $\left[0,\left(1-\frac{1}{e}\right) v_{i}\right]$ and $h\left(b_{i}^{\prime}\right)=\frac{1}{v_{i}-b_{i}^{\prime}}$

Optimizing over (λ, μ)

- Bid $b_{i}^{\prime} \sim H\left(v_{i}\right)$ with support $\left[0,\left(1-\frac{1}{e}\right) v_{i}\right]$ and $h\left(b_{i}^{\prime}\right)=\frac{1}{v_{i}-b_{i}^{\prime}}$

Optimizing over (λ, μ)

- Bid $b_{i}^{\prime} \sim H\left(v_{i}\right)$ with support $\left[0,\left(1-\frac{1}{e}\right) v_{i}\right]$ and $h\left(b_{i}^{\prime}\right)=\frac{1}{v_{i}-b_{i}^{\prime}}$

- So in fact: $\left(1-\frac{1}{e}, 1\right)$-smooth. $P o A \leq \frac{e}{e-1} \approx 1.58$

RECAP

- First Extension Thm. If proof of PNE PoA based on (λ, μ)-smoothness via ownvalue based deviations then PoA of BNE with correlated values also μ / λ

QUESTIONS?

First Extension
 Theorem

Complete info PNE to BNE with correlated values
33) Second Extension Theorem

Single auction to simultaneous auctions
PNE complete information

- Target setting. Simultaneous single-item first price auctions with unit-demand bidders (complete information PNE).
- Simple setting. Single-item first price auction (complete information PNE).
- Thm. If proof of PNE PoA of single-item based on proving (λ, μ)-smoothness via own-value deviation then PNE PoA of simultaneous auctions also μ / λ.

Second

 Extension TheoremSingle auction to
simultaneous
auctions
PNE complete
information

References:

Roughgarden STOC'09
Roughgarden EC'12
Syrgkanis '12
Syrgkanis, Tardos STOC'13

Simultaneous First-Price Auctions Unit-demand bidders

Simultaneous First-Price Auctions Unit-demand bidders

Simultaneous First-Price Auctions

Can we derive global efficiency guarantees from local $\left(\frac{1}{2}, 1\right)$-smoothness of each first price auction?

APPROACH: Prove smoothness of the global mechanism

GOAL: Construct global deviation
IDEA: Pick your item in the optimal allocation and perform the smoothness deviation for your local value v_{i}^{j}, i.e. $\frac{v_{i}^{j}}{2}$

Simultaneous First-Price Auctions

Smoothness locally:

$$
u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+p_{j_{i}^{*}}(\mathbf{b}) \geq \frac{v_{i}^{j_{i}^{*}}}{2}
$$

Summing over players:

$$
\sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathrm{i}}\right)+\operatorname{REV}(\mathbf{b}) \geq \frac{1}{2} \cdot O P T(\mathrm{v})
$$

Implying $\left(\frac{1}{2}, 1\right)$-smoothness property globally.

Second Extension Theorem. If proof of PNE PoA of single-item auction based on proving (λ, μ)-smoothness smoothness via ownvalue deviation then PNE PoA of simultaneous auctions also \leq μ / λ.

BNE PoA?

- BNE PoA of simultaneous single-item auctions with correlated unit-demand values $\leq 1 / 2$?
- Not really: deviation not oblivious to opponent valuations
- Item in the optimal matching depends on values of opponents

But Half-way there

"What we showed:

Exists b_{i}^{\prime} depending only on valuation profile \mathbf{v} (not \mathbf{b}_{-i})

For any bid vector $\mathbf{b} \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot O P T(\mathbf{v})$

RECAP

Second Extension Theorem. If proof of PNE PoA of single-item auction based on proving (λ, μ)-smoothness then PNE PoA of simultaneous auctions also $\leq \mu / \lambda$.

Next we will extend above to BNE

Second

 Extension TheoremSingle auction to simultaneous auctions

PNE complete information

QUESTIONS?

Third Extension Theorem

Complete info PNE to BNE with independent values

- Target setting. First Price Bayes-Nash Equilibrium with asymmetric independent values
- Simple setting. Complete information Pure Nash Equilibrium
- Thm. If proof of PNE PoA based on (λ, μ) smoothness via valuation profile dependent deviation then PoA of BNE with independent values also μ / λ

Third Extension Theorem

Complete info PNE to BNE with independent values

References:

Christodoulou et al. ICALP'08
Roughgarden EC'12
Syrgkanis '12
Syrgkanis, Tardos STOC'13

Does this extend to BNE BoA?

(λ, μ)-Smoothness via valuation profile deviations

Exists b_{i}^{\prime} depending only on valuation profile \mathbf{v} (not \mathbf{b}_{-i})

For any bid vector $\mathbf{b} \sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathrm{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot \operatorname{OPT}(\mathrm{v})$

Recall First Extension Theorem.

If PNE PoA proved by showing (λ, μ)-smoothness property via own-value deviations, then PoA bound extends to BNE with correlated values

- Relax First Extension Theorem to allow for dependence on opponents values
"To counterbalance: assume independent values

BNE (independent valuations)

- Need to construct feasible BNE deviations
- Each player random samples the others values and deviates as if that was the true values of his opponents
- Above works out, due to independence of value distributions

BNE (independent valuations)

$$
E\left[u_{i}^{v_{i}}\left(b_{i}^{\prime}\left(v_{i}, \mathbf{w}_{-\mathbf{i}}\right), \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)\right]=E\left[u_{i}^{W_{i}}\left(b_{i}^{\prime}(\mathbf{w}), \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)\right]
$$

Utility of deviation of player i In expectation over his own value too.

Utility of deviation from a random sample of player i who knows the values of all other players.
But where players play non equilibrium strategies.

BNE (independent valuations)

$E\left[u_{i}^{v_{i}}\left(b_{i}^{\prime}\left(v_{i}, \mathbf{w}_{-\mathbf{i}}\right), \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)\right]=E\left[u_{i}^{w_{i}}\left(b_{i}^{\prime}(\mathbf{w}), \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)\right]$

Utility of deviation of player i In expectation over his own value too.
 players. strategies.

Utility of deviation from a random sample of player i who knows the values of all other

But where players play non equilibrium

BNE (independent valuations)

$$
\sum_{i} E\left[u_{i}^{v_{i}}\left(b_{i}^{\prime}\left(v_{i}, \mathbf{w}_{-\mathbf{i}}\right), \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)\right]=E\left[\sum_{i}^{\sum_{i} u_{i}^{w_{i}}\left(b_{i}^{\prime}(\mathbf{w}), \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)}\right]
$$

Sum of deviating utilities
Sum of complete information setting deviating utilities

Recall. Exists b_{i}^{\prime} depending int valuations)

 only on valuation profile $\mathbf{v}$$$
\left(\text { not }_{\mathbf{b}_{-i}}\right)
$$

For any bid vector b

$$
\text { prayer } i \geq E[\lambda \cdot \operatorname{OPT}(\mathrm{w})-\mu \cdot \operatorname{REV}(\mathbf{b}(\mathrm{v}))]
$$

$\sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot \operatorname{OPT}(\mathbf{v})$
By smoothness on the left

BNE (independent valuations)

$$
\begin{aligned}
\sum_{i} E\left[u_{i}^{v_{i}}\left(b_{i}^{\prime}\left(v_{i}, \mathbf{w}_{-\mathbf{i}}\right), \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)\right] & =E\left[\sum_{i} u_{i}^{w_{i}}\left(b_{i}^{\prime}(\mathbf{w}), \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathbf{i}}\right)\right)\right] \\
& \geq E[\lambda \cdot O P T(\mathbf{w})-\mu \cdot R E V(\mathbf{b}(\mathbf{v}))]
\end{aligned}
$$

Found b_{i}^{\prime} that depend only on v_{i} such that:

$\sum E\left[u_{i}\left(b_{i}^{\prime}\left(v_{i}\right), \mathrm{b}_{-\mathrm{i}}\left(\mathrm{V}_{-\mathrm{i}}\right)\right)\right]+\mu \cdot E[\operatorname{REV}(\mathrm{~b}(\mathrm{v}))] \geq \lambda \cdot E[O P T(\mathrm{v})]$

Rest is easy

Third Extension Theorem. If PNE PoA proved by showing (λ, μ)-smoothness property via valuation profile dependent deviations, then PoA bound extends to BNE with independent values

RECAP

- Thm. If proof of PNE PoA based on (λ, μ) smoothness via valuation profile dependent deviation then PoA of BNE with independent values also μ / λ
- Corollary. If PNE PoA of single-item auction proved via (λ, μ)-smoothness via valuation profile dependent deviation, then BNE of simultaneous auctions with unit-demand and independent also μ / λ

RECAP

- Thm. If proof of PNE PoA based on (λ, μ) smoothness via valuation profile dependent deviation then PoA of BNE with independent values also μ / λ
- Corollary. If PNE PoA of single-item auction proved via (λ, μ)-smoothness via valuation profile dependent deviation, then BNE of simultaneous auctions with submodular and independent also μ / λ
- Corollary. BNE PoA of simultaneous first price auctions with submodular bidders $\leq \frac{e}{e-1}$
QUESTIONS?

Third Extension Theorem

Complete info PNE to BNE with
independent values

Direct approach: Arguing about distributions

- Focusing on complete info PNE, might be restrictive in some settings

Direct approach
 Arguing about distributions

- Working with the distributions directly can potentially yield better bounds

References:
Feldman et al. STOC'13

Single-item auction BNE

- Price of the item follows a distribution D
- What if a player deviates to bidding a random sample from price distribution
- The probability that he wins is $1 / 2$ by symmetry of the two distributions
- He pays at most $E[p]$

$$
E\left[u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\left(\mathbf{v}_{-\mathrm{i}}\right)\right)\right] \geq \frac{v_{i}}{2}-E[p]
$$

Single-item auction BNE

- Same spirit: exists deviations that depend on price distribution such that
$\sum_{i} E\left[u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\left(\mathrm{v}_{-\mathrm{i}}\right)\right)\right]+E[\operatorname{REV}(\mathbf{b}(\mathrm{v}))] \geq \frac{E[O P T(\mathrm{v})]}{2}$
- BNE PoA ≤ 2

What does it buy us

- Correlated deviating strategies across multiple auctions
- Decomposition of deviation analysis to separate deviations imposes independent randomness

What does it buy us

- Correlation can achieve higher deviating utility

What does it buy us

- Correlation can achieve higher deviating utility

Sub-additive valuations

$$
v_{i}(S)+v_{i}(T) \geq v_{i}(S \cup T)
$$

- Draw bid from price distribution
- $\mathrm{X}(b, p)$: set of won items with bid vector b and price vector p
- Either I win or price wins:

$$
X(b, p)+X(p, b)=S
$$

- By symmetry:

$$
E\left[v\left(X\left(b^{\prime}, p\right)\right)\right]=E\left[v\left(X\left(p, b^{\prime}\right)\right)\right]
$$

- Value collected: $E\left[v\left(X\left(b^{\prime}, p\right)\right)\right]=\frac{1}{2} E\left[v\left(X\left(b^{\prime}, p\right)\right)+v\left(X\left(p, b^{\prime}\right)\right)\right] \geq \frac{1}{2} E[v(S)]$
- Drawing deviation from price distribution!

Direct approach
Arguing about distributions

- Buys correlation across auctions
- Better bounds beyond submodular

Second Price Payment Rules

Second price

Vickrey Auction - Truthful, efficient, simple (second price)

Assume bid \leq value (no overbidding)
Theorem. All Nash equilibria efficient. highest value wins

Second Price and Overbidding

"Same approach but replace Payments with "Winning Bids" and use no-overbidding

$$
\sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\mu \cdot \operatorname{BIDS}(\mathbf{b}) \geq \lambda \cdot \operatorname{OPT}(\mathbf{v})
$$

- No overbidding assumption:

$$
B I D S \leq W E L F A R E
$$

Then BoA $\leq \frac{1+\mu}{\lambda}$

Smoothness of Vickrey Auction

- Deviate to bidding your value: $b_{i}^{\prime}\left(v_{i}\right)=v_{i}$
- $B(\mathbf{b})$: winning bid
- Either winning bid $\mathrm{B}(\mathbf{b}) \geq v_{i}$ or $u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)=v_{i}-B_{i}(\mathbf{b})$

$$
\begin{gathered}
u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+B_{i}(\mathbf{b}) \geq v_{i} \Rightarrow u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+B_{i}(\mathbf{b}) \cdot x_{i}^{*}(\mathbf{v}) \geq v_{i} \cdot x_{i}^{*}(\mathbf{v}) \\
\sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\operatorname{BIDS}(\mathbf{b}) \geq O P T(\mathbf{v})
\end{gathered}
$$

Smoothness of Vickrey Auction

- Vickrey auction (1,1)-smooth using bids
- $P o A \leq 2$: under no-overbidding
- Vickrey is efficient?
- $P o A \leq 2$: extends to simultaneous Vickrey auctions even under BNE with independent values

Sneak Peek of Examples

Generalized First-Price Auction

Advertisers

Slots

- Allocate slots by bid
- Charge bid per-click
- Utility:

$$
u_{i}(b)=a_{\sigma(i)}\left(v_{i}-b_{i}\right)
$$

Matching Markets - Greedy Mechanism

Unit-Demand Bidders
Items

- Allocated items greedily to highest remaining bid
- If allocated item $j(b)$, charge $b_{i}^{j(b)}$
- Utility:

$$
u_{i}(b)=v_{i}^{j(b)}-b_{i}^{j(b)}
$$

Single-Minded Combinatorial Auction

Single-Minded Bidders Items

- Each bidder submits b_{i} and T_{i}
- Run some algorithm (optimal or greedy $O(\sqrt{m})$-approx.) over reported single-minded values
- Charge bid b_{i} if allocated

Examples

GPP

- Allocate slots by bid
- Charge bid per-click
- Utility:

$$
u_{i}(b)=a_{\sigma(i)}\left(v_{i}-b_{i}\right)
$$

Matching

 Markets-Greedy Allocation- Allocated items greedily to highest remaining bid
- If allocated item $j(b)$, charge $b_{i}^{j(b)}$
- Utility:

$$
u_{i}(b)=v_{i}^{j(b)}-b_{i}^{j(b)}
$$

Single-Minded Combinatorial Auctions

- Each bidder submits b_{i} and T_{i}
- Run some algorithm (optimal or greedy $O(\sqrt{m})$-approx.) over reported single-minded values
- Charge bid b_{i} if allocated
(20) Examples

Generalized First-Price Auction

Slots

- Allocate slots by bid
- Charge bid per-click
- Utility:

$$
u_{i}(b)=a_{\sigma(i)}\left(v_{i}-b_{i}\right)
$$

Smoothness of GFP

Advertisers

Slots

$$
\sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot \sum_{i} a_{o p t(i)} v_{i}
$$

$$
-b_{i}^{\prime}=\frac{v_{i}}{2}
$$

- Either bid of player at slot $\operatorname{opt}(i) \geq \frac{v_{i}}{2}$
- Or utility $\geq \frac{a_{\text {opt }(i)} v_{i}}{2}$

$$
u_{i}\left(\frac{v_{i}}{2}, b_{-i}\right)^{2}+a_{o p t(i)} \cdot b_{\pi(o p t(i))} \geq \frac{a_{o p t}(i) v_{i}}{2}
$$

$$
\sum_{i} u_{i}\left(\frac{v_{i}}{2}, b_{-i}\right)+\sum_{i} a_{o p t(i)} \cdot b_{\pi(o p t(i))} \geq \sum_{i} \frac{a_{o p t(i)} v_{i}}{2}
$$

$$
\sum_{i} u_{i}\left(\frac{v_{i}}{2}, b_{-i}^{i}\right)+R E V(b) \geq \frac{1}{2} \cdot O P T(v)
$$

Smoothness of GFP

Advertisers
Slots

$$
\sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\mu \cdot \operatorname{REV}(\mathbf{b}) \geq \lambda \cdot \sum_{i} a_{o p t}(i) v_{i}
$$

$$
\sum_{i} u_{i}\left(\frac{v_{i}}{2}, b_{-i}\right)+\operatorname{REV}(b) \geq \frac{1}{2} \cdot O P T(v)
$$

Thy. Po $A \leq 2$
Proof.

$$
\begin{gathered}
\sum_{i} u_{i}(b) \geq \sum_{i} u_{i}\left(\frac{v_{i}}{2}, b_{-i}\right) \\
\operatorname{UTIL}(b)+R E V(b) \geq \frac{1}{2} \cdot O P T(v) \\
S W(v) \geq \frac{1}{2} \cdot O P T(v)
\end{gathered}
$$

Smoothness of GFP

Advertisers
Slots

$$
\sum_{i} u_{i}\left(b_{i}^{\prime}, \mathbf{b}_{-\mathbf{i}}\right)+\mu \cdot R E V(\mathbf{b}) \geq \lambda \cdot \sum_{i} a_{o p t}(i) v_{i}
$$

$$
\sum_{i} u_{i}\left(\frac{v_{i}}{2}, b_{-i}\right)+R E V(b) \geq \frac{1}{2} \cdot O P T(v)
$$

Thm. Bayes-Nash PoA ≤ 2
Proof.

$$
\begin{gathered}
\sum_{i} E\left[u_{i}(b(\mathrm{v}))\right] \geq \sum_{i} E\left[u_{i}\left(\frac{v_{i}}{2}, b_{-i}\left(v_{-i}\right)\right)\right] \\
E[\operatorname{UTIL}(b(\mathrm{v}))]+E[\operatorname{REV}(b(\mathrm{v}))] \geq \frac{1}{2} \cdot E[O P T(\mathrm{v})] \\
E[\operatorname{SW}(\mathrm{~b}(\mathrm{v}))] \geq \frac{1}{2} \cdot E[O P T(\mathrm{v})]
\end{gathered}
$$

Matching Markets - Greedy Mechanism

Unit-Demand Bidders
Items

- Allocated items greedily to highest remaining bid
- If allocated item $j(b)$, charge $b_{i}^{j(b)}$
- Utility:

$$
u_{i}(b)=v_{i}^{j(b)}-b_{i}^{j(b)}
$$

Matching Markets - Greedy Mechanism

Unit-Demand Bidders

- Deviation

$$
b_{i}^{j}=\frac{v_{i}^{j}}{2}
$$

- Only for $j=$ item in optimal matching
- If $p_{j}(b)$ is price of item j

$$
u_{i}\left(b_{i}^{\prime}, b_{-i}\right) \geq \frac{v_{i}^{j}}{2}-p_{j}(b)
$$

- Thus $\left(\frac{1}{2}, 1\right)$-smooth via valuation profile dependent deviations

Matching Markets - Greedy Mechanism

Unit-Demand Bidders
Items

Unit-Demand $v_{i}(S)=\max _{j \in S} v_{i}^{j}$

- In fact

$$
b_{i}^{j} \sim H\left(v_{i}^{j}\right)
$$

- Only for $j=$ item in optimal matching

$$
u_{i}\left(b_{i}^{\prime}, b_{-i}\right) \geq\left(1-\frac{1}{e}\right) v_{i}^{j}-p_{j}(b)
$$

- Thus $\left(1-\frac{1}{e}, 1\right)$-smooth
- Greedy on true values: 2-approx.
- Greedy on reported values: 1.58-approx.!

Incentives improve algorithmic approximation

- Greedy on true values: 2-approx.

Unit-Demand Bidders

Items

- At equilibrium:
- Player 2 never goes for first item
- Too expensive
- So allocation is efficient

Single-Minded Combinatorial Auction

Single-Minded Bidders
Items

- Each bidder submits b_{i} and T_{i}
- Run some algorithm over reported single-minded values
- Charge bid b_{i} if allocated

Optimal Algorithm

Single-Minded Bidders
Items

- Each bidder submits b_{i} and T_{i}
- Run optimal algorithm over reported single-minded values
- Charge bid b_{i} if allocated

Linear inefficiency!

\sqrt{m}-Approximation Algorithm

Single-Minded Bidders
Items

- Each bidder submits b_{i} and T_{i}
- Run \sqrt{m}-Approximation Algorithm over reported single-minded values
- Charge bid b_{i} if allocated

\sqrt{m}-Approximation Algorithm

Single-Minded Bidders

Single-minded: v_{i} for whole set S_{i}

Items

\sqrt{m}-Approximation Algorithm

- Reweight bids as: $\widehat{\boldsymbol{b}}_{\boldsymbol{i}}=\frac{b_{i}}{\sqrt{\left|T_{i}\right|}}$
- Allocate in decreasing order of $\widehat{\boldsymbol{b}}_{\boldsymbol{i}}$
- Charge bid b_{i} if allocated
- Idea: A player can block at most \sqrt{m} other players of same value from being allocated

Bad Example Corrected

Smoothness of Approximation Algorithm

Single-Minded Bidders

Single-minded:
v_{i} for whole set S_{i}

能

Items

- Let $\tau_{i}(\mathrm{~b})$: Threshold bid for being allocated S_{i} (including bid of player)
- By similar analysis:

$$
u_{i}\left(b_{i}^{\prime}, b_{-i}\right)+\tau_{i}(b) \geq \frac{v_{i}}{2}
$$

- Need to show: $\sum_{i} \tau_{i}(b) \leq c \cdot R E V$

Smoothness of Approximation Algorithm

- Fact: Algorithm is \sqrt{m}-approximation
- Think of hypothetical situation where each bidder is duplicated
- Duplicate bidder bids: $b_{i}=\tau_{i}(b)-\epsilon$ for set S_{i}
- By definition of $\tau_{i}(b)$: algorithm doesn't allocate to them
- Allocating to duplicate bidders yields welfare

$$
\sum_{i} \tau_{i}(b)
$$

- Since algorithm is \sqrt{m}-approximation: $R E V=\sum_{i} b_{i} X_{i}(b) \geq \frac{1}{\sqrt{m}} \sum_{i} \tau_{i}(b)$

Approximation improves efficiency

- Approximate mechanism: $\left(\frac{1}{2}, \sqrt{m}\right)$-smooth
- Welfare at equilibrium $O(\sqrt{m})$-approximate NOT $O(m)$-approximate

Some References

- Smoothness

Roughgarden STOC'09, Lucier, Paes Leme EC'11, Roughgarden EC'12, Syrgkanis '12,
Syrgkanis, Tardos STOC'13

- Simultaneous First-Second Price Single-Item Auctions

Bikhchandani GEB'96, Christodoulou, Kovacs, Schapira ICALP'08, Bhawalkar, Roughgarden SODA'11, Hassidim, Kaplan, Mansour, Nisan EC'11, Feldman, Fu, Gravin, Lucier STOC'13

- Auctions based on Greedy Allocation Algorithms

Lucier, Borodin SODA'10

- AdAuctions (GSP, GFP)

Paes-Leme Tardos FOCS'10, Lucier, Paes-Leme + CKKK EC'11

- Sequential First/Second Price Auctions

Paes Leme, Syrgkanis, Tardos SODA'12, Syrgkanis, Tardos EC'12

- Multi-Unit Auctions

Bart de Keijzer et al. ESA'13
All above can be thought as smoothness proofs and some are compositions of auctions

This conference

Price of Anarchy in Auctions and Mechanisms

- Dutting, Henzinger, Stanberger. Valuation Compressions in VCG-Based Combinatorial Auctions
- Jose R. Correa, Andreas S. Schulz and Nicolas E. Stier-Moses. The Price of Anarchy of the Proportional Allocation Mechanism Revisited
- Jason Hartline, Darrell Hoy and Sam Taggart. Interim Smoothness for Auction Welfare and Revenue. (poster)
- Michal Feldman, Vasilis Syrgkanis and Brendan Lucier. Limits of Efficiency in Sequential Auctions
- Brendan Lucier, Yaron Singer, Vasilis Syrgkanis and Eva Tardos. Equilibrium in Combinatorial Public Projects

Price of Anarchy in Games

- Xinran He and David Kempe. Price of Anarchy for the N-player Competitive Cascade Game with Submodular Activation Functions
" Mona Rahn and Guido Schäfer. Bounding the Inefficiency of Altruism Through Social Contribution Games
- Yoram Bachrach, Vasilis Syrgkanis and Milan Vojnovic. Incentives and Efficiency in Uncertain Collaborative Environments

