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PoA in auctions (as games of incomplete information):

 Single-Item First Price, All-Pay, Second Price Auctions

 Simultaneous Single Item Auctions

 Position Auctions: GSP, GFP 

 Combinatorial auctions
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 Reduce analysis of complex setting to simple setting.

 Conclusion for simple setting X, proved under restriction P, 
extends to complex setting Y

 X: complete information PNE to Y: incomplete information BNE

 X: single auction to Y: composition of auctions
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 Objective in X is good because each player doesn’t want to 
deviate to strategy 𝑏𝑖

′

 Extension from setting X to setting Y: if best response argument 
satisfies condition P then conclusion extends to Y
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Complete info PNE to BNE with correlated values
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 Target setting. First Price Bayes-Nash 
Equilibrium with asymmetric correlated 
values

 Simple setting. Complete information Pure 
Nash Equilibrium

 Thm. If proof of PNE PoA based on own-
value based deviation argument then PoA
of BNE also good

Complete info PNE 

to BNE with 

correlated values
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𝑏𝑖

𝑏1

𝑏𝑛

• Highest bidder wins:

𝑥𝑖 𝐛 = {𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑡ℎ𝑎𝑡 𝑖 𝑤𝑖𝑛𝑠}
• Pays his bid: 𝑃𝑖 𝐛 = 𝑏𝑖 ⋅ 𝑥𝑖 𝐛
• Quasi-Linear preferences: 

UTILITY = VALUE − PAYMENT
𝑢𝑖 𝐛 = (𝑣𝑖 − 𝑏𝑖) ⋅ 𝑥𝑖 𝐛

• Objective:

WELFARE = UTILITIES + PAYMENTS

𝑆𝑊 𝐛 =  

𝑖

𝑢𝑖 𝐛 + 

𝑖

𝑃𝑖 𝐛

= 

𝑖

𝑢𝑖 𝐛 + 𝑏𝑖 ⋅ 𝑥𝑖 𝐛 =  

𝑖

𝑣𝑖 ⋅ 𝑥𝑖 𝐛
7

𝑣1

𝑣𝑖

𝑣𝑛



Target: BNE with correlated values

𝑏𝑖 𝑣𝑖

𝑏1 𝑣1

𝑏𝑛 𝑣𝑛

𝑣1

𝑣𝑖

𝑣𝑛

• 𝐯 = 𝑣1, … , 𝑣𝑛 ∼ 𝐹: correlated distribution

• Conditional on value, maximizes utility:

𝐸 𝑢𝑖 𝐛 𝐯 | 𝑣𝑖 ≥ 𝐸 𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 𝐯−𝐢 | 𝑣𝑖

• Equilibrium Welfare:

𝐸 𝑆𝑊 𝐛 𝐯 = 𝐸  

𝑖

𝑣𝑖 ⋅ 𝑥𝑖 𝐛 𝐯

• Optimal Welfare: highest value bidder

𝐸 𝑂𝑃𝑇 𝐯 = 𝐸  

𝑖

𝑣𝑖 ⋅ 𝑥𝑖
∗ 𝐯

8

𝐹 ∼



Target: BNE with correlated values

𝑏𝑖 𝑣𝑖

𝑏1 𝑣1

𝑏𝑛 𝑣𝑛

𝑣1

𝑣𝑖

𝑣𝑛

𝑃𝑜𝐴 =
𝐸 𝑂𝑃𝑇 𝐯

𝐸 𝑆𝑊 𝐛 𝐯
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𝐹 ∼



Simpler: PNE and complete Information

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1
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𝑏𝑖

𝑏𝑛

• 𝑣 = (𝑣1, … , 𝑣𝑛): common knowledge

• 𝑏𝑖 maximizes utility:

𝑢𝑖 𝑏 ≥ 𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖

• Equilibrium Welfare:

𝑆𝑊 𝑏 =  

𝑖

𝑣𝑖 ⋅ 𝑥𝑖 𝐛

• Optimal Welfare:

𝑂𝑃𝑇 𝑣 = 

𝑖

𝑣𝑖 ⋅ 𝑥𝑖
∗ 𝐯



Simpler: PNE and complete Information
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𝑃𝑜𝐴 =
𝑂𝑃𝑇(𝐯)

𝑆𝑊(𝐛)

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖



Simpler: PNE and complete Information

Theorem. 𝑃𝑜𝐴 = 1

Proof. Highest value player can deviate to 𝑝 𝐛 +

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 =𝑣1 − 𝑝 𝐛

𝑢1 𝑝 𝐛 +, 𝐛−𝐢 = 𝑣1 − 𝑝 𝐛 +

𝑢𝑖 0, 𝐛−𝐢 = 0

12
By PNE condition

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖  

𝑖

𝑢𝑖 𝐛 ≥



 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 =𝑣1 − 𝑅𝐸𝑉(𝑏)

Simpler: PNE and complete Information

Theorem. 𝑃𝑜𝐴 = 1

Proof. Highest value player can deviate to 𝑝 𝐛 +

𝑢1 𝑝 𝐛 +, 𝐛−𝐢 = 𝑣1 − 𝑝 𝐛 +

𝑢𝑖 0, 𝐛−𝐢 = 0
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖 𝑈𝑇𝐼𝐿(𝑏) ≥

𝑈𝑇𝐼𝐿 𝑏 + 𝑅𝐸𝑉 𝑏 ≥ 𝑣1

𝑆𝑊(𝑏) ≥ 𝑣1



 What if conclusions for PNE of complete information directly 
extended to: 
 incomplete information BNE 

 simultaneous composition of single-item auctions

 Obviously: 𝑃𝑜𝐴 = 1 doesn’t carry over

 Possible, but we need to restrict the type of analysis
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑝 = max
𝑖

𝑏𝑖

𝑏1
′

• Recall. 𝑃𝑜𝐴 = 1 because highest value 

player doesn’t want to deviate to 𝑝+

• Challenge. Don’t know 𝑝 or 𝐯−𝐢 in 

incomplete information

• Idea. Restrict deviation to not depend on 

these parameters

𝑝+
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Simpler: PNE and complete Information

Theorem. 𝑃𝑜𝐴 = 1

Proof. Highest value player can deviate to 𝑝 𝐛 +

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 =𝑣1 − 𝑅𝐸𝑉(𝑏)

𝑢1 𝑝 𝐛 +, 𝐛−𝐢 = 𝑣1 − 𝑝 𝐛 +

𝑢𝑖 0, 𝐛−𝐢 = 0
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖 𝑈(𝑏) ≥

𝑈 𝑏 + 𝑅𝐸𝑉 𝑏 ≥ 𝑣1

𝑆𝑊(𝑏) ≥ 𝑣1

Recall PoA=1 Proof

Can we find 𝑏𝑖
′ that 

depend only on 𝑣𝑖?



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 𝟐

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖

𝑣𝑖
𝑣𝑖
2

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝑣𝑖
2

1

𝑣𝑖
𝑣𝑖
2

𝑝 𝐛

𝑝 𝑏 ≥
𝑣𝑖
2

1

OR

𝑏𝑖 𝑏𝑖

𝑥(𝑏𝑖 , 𝐛−𝐢)



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 𝟐

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖

𝑣𝑖
𝑣𝑖
2

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢

1

𝑏𝑖

𝑝 𝑏
≥
1

2
⋅

𝑣𝑖

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝑣𝑖

𝑏𝑖

≥



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 𝟐

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ≥

𝑣𝑖
2
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 𝟐

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ⋅ 𝑥𝑖

∗ 𝐯 ≥
𝑣𝑖
2
⋅ 𝑥𝑖

∗(𝐯)
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖 𝑈𝑇𝐼𝐿(𝐛) ≥

𝑈𝑇𝐼𝐿 𝐛 + 𝑅𝐸𝑉 𝐛 ≥
1

2
𝑂𝑃𝑇(𝐯)

𝑆𝑊(𝐛) ≥
1

2
𝑂𝑃𝑇(𝐯)

 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ≥

1

2
𝑂𝑃𝑇(𝐯)



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 2

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ⋅ 𝑥𝑖

∗ 𝐯 ≥
𝑣𝑖
2
⋅ 𝑥𝑖

∗(𝐯)
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖 𝑈𝑇𝐼𝐿(𝐛) ≥

𝑈𝑇𝐼𝐿 𝐛 + 𝑅𝐸𝑉 𝐛 ≥
1

2
𝑂𝑃𝑇(𝐯)

𝑆𝑊(𝑏) ≥
1

2
𝑂𝑃𝑇(𝐯)

 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ≥

1

2
𝑂𝑃𝑇(𝐯) 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑝 𝐛 ≥

1

2
𝑂𝑃𝑇(𝐯) 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑅𝐸𝑉 𝐛 ≥

1

2
𝑂𝑃𝑇(𝐯)

Key Deviation PropertySmoothness Property

Exists 𝑏𝑖
′ depending only on own value
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Exists 𝑏𝑖
′ depending only on own value

𝜆, 𝜇 −Smoothness via own-value deviations

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛
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Exists 𝑏𝑖
′ depending only on own value

𝜆, 𝜇 −Smoothness via own-value deviations

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛

Note. Smoothness is property of auction not equilibrium
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Exists 𝑏𝑖
′ depending only on own value

𝜆, 𝜇 −Smoothness via own-value deviations

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛

Applies to any auction: Not First-Price Auction specific
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𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)

Proof. If 𝐛 PNE then

𝑈𝑇𝐼𝐿 𝐛 + 𝜇 ⋅ 𝑅𝐸𝑉(𝐛) ≥

𝑈𝑇𝐼𝐿 𝐛 + 𝜇 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 𝐯

𝑆𝑊 𝐛 + (𝜇 − 1) ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 𝐯Note. SW 𝐛 ≥ 𝑅𝐸𝑉 𝐛

𝑆𝑊 𝐛 + (𝜇 − 1) ⋅ 𝑆𝑊 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 𝐯

𝜇 ⋅ 𝑆𝑊 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 𝐯

Note. UTIL 𝐛 = 𝑆𝑊 𝐛 − 𝑅𝐸𝑉 𝐛



First Extension Theorem. If PNE PoA proved by 
showing 𝜆, 𝜇 −smoothness property via own-value 
deviations, then PoA bound extends to BNE with 
correlated values

Note. Not specific to First-Price Auction
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𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)

Proof. If 𝒃(⋅) BNE then

𝑈𝑇𝐼𝐿 𝑏 + 𝜇 ⋅ 𝑅𝐸𝑉(𝑏) ≥

𝐸 𝑢𝑖 𝐛 𝐯 ≥ 𝐸 𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 𝐯−𝐢

𝐸𝑣[ ]

Just redo PNE proof in expectation over values.



𝑣1

𝑣𝑖

𝑣𝑛
𝑝(𝐛) = max

𝑖
𝑏𝑖

𝑏1
′ ∼ 𝐻 𝑣1

• Is half value best own-value deviation?

• Bid 𝑏𝑖
′ ∼ 𝐻 𝑣𝑖 with support 0, 1 −

1

𝑒
𝑣𝑖 and

ℎ 𝑏𝑖
′ =

1

𝑣𝑖 − 𝑏𝑖
′

𝑏𝑖
′ ∼ 𝐻 𝑣𝑖

𝑏𝑛
′ ∼ 𝐻 𝑣𝑛
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𝑣1

𝑣𝑖

𝑣𝑛
𝑝(𝐛) = max

𝑖
𝑏𝑖

𝑏1
′ ∼ 𝐻 𝑣1

𝑏𝑖
′ ∼ 𝐻 𝑣𝑖

𝑏𝑛
′ ∼ 𝐻 𝑣𝑛

29

𝑣𝑖𝑏𝑖
′

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝑢𝑖(𝑏𝑖
′)

𝑏𝑖
1 −

1

𝑒
𝑣𝑖

w.p. 
1

𝑣𝑖−𝑏𝑖
′

• Bid 𝑏𝑖
′ ∼ 𝐻 𝑣𝑖 with support 0, 1 −

1

𝑒
𝑣𝑖 and ℎ 𝑏𝑖

′ =
1

𝑣𝑖−𝑏𝑖
′



𝑣1

𝑣𝑖

𝑣𝑛
𝑝(𝐛) = max

𝑖
𝑏𝑖

𝑏1
′ ∼ 𝐻 𝑣1

𝑏𝑖
′ ∼ 𝐻 𝑣𝑖

𝑏𝑛
′ ∼ 𝐻 𝑣𝑛

30

𝑣𝑖𝑏𝑖
′

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛
𝑏𝑖

1 −
1

𝑒
𝑣𝑖

w.p. 
1

𝑣𝑖−𝑏𝑖
′

• Bid 𝑏𝑖
′ ∼ 𝐻 𝑣𝑖 with support 0, 1 −

1

𝑒
𝑣𝑖 and ℎ 𝑏𝑖

′ =
1

𝑣𝑖−𝑏𝑖
′



𝑣1

𝑣𝑖

𝑣𝑛
𝑝(𝐛) = max

𝑖
𝑏𝑖

𝑏1
′ ∼ 𝐻 𝑣1

𝑏𝑖
′ ∼ 𝐻 𝑣𝑖

𝑏𝑛
′ ∼ 𝐻 𝑣𝑛

31

𝑣𝑖

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝐸 𝑢𝑖 𝑏𝑖
′

𝑏𝑖
1 −

1

𝑒
𝑣𝑖

𝑝 𝑏

𝐸 𝑢𝑖 𝑏𝑖
′ + 𝑝 𝑏 > 1 −

1

𝑒
𝑣𝑖

• So in fact: 1 −
1

𝑒
, 1 -smooth. 𝑃𝑜𝐴 ≤

𝑒

𝑒−1
≈ 1.58

• Bid 𝑏𝑖
′ ∼ 𝐻 𝑣𝑖 with support 0, 1 −

1

𝑒
𝑣𝑖 and ℎ 𝑏𝑖

′ =
1

𝑣𝑖−𝑏𝑖
′



RECAP

 First Extension Thm. If proof of PNE PoA
based on 𝜆, 𝜇 −smoothness via own-
value based deviations then PoA of BNE 
with correlated values also 𝜇/𝜆

QUESTIONS?

Complete info PNE 

to BNE with 

correlated values

32



Single auction to simultaneous auctions 

PNE complete information
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 Target setting. Simultaneous single-item 
first price auctions with unit-demand 
bidders (complete information PNE). 

 Simple setting. Single-item first price 
auction (complete information PNE).

 Thm. If proof of PNE PoA of single-item 
based on proving (𝜆, 𝜇)-smoothness via 
own-value deviation then PNE PoA of 
simultaneous auctions also 𝜇/𝜆.

Single auction to 

simultaneous 

auctions 

PNE complete 

information

34
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1

𝑖

𝑛

𝑣𝑖
1

𝑣𝑖
2

𝑣𝑖
3Unit-Demand Valuation

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗



𝑏𝑖
1

𝑏𝑖
2

𝑏𝑖
3

1

𝑖

𝑛

Unit-Demand Valuation

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗



𝑝1
𝑣𝑖
𝑗

2

𝑗𝑖
∗

Can we derive global efficiency guarantees from local 
1

2
, 1 −smoothness of each first price auction? 

APPROACH: Prove smoothness of the global 

mechanism

GOAL: Construct global deviation

IDEA: Pick your item in the optimal allocation 

and perform the smoothness deviation for your 

local value 𝑣𝑖
𝑗
, i.e. 

𝑣𝑖
𝑗

2

0

0



Smoothness locally: 

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑝𝑗𝑖

∗ 𝐛 ≥
𝑣𝑖
𝑗𝑖
∗

2

Summing over players:

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑅𝐸𝑉(𝐛) ≥

1

2
𝑂𝑃𝑇(𝐯)

Implying 
1

2
, 1 −smoothness property globally. 

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑅𝐸𝑉 𝐛 ≥

1

2
⋅ 𝑂𝑃𝑇(𝐯)



Second Extension Theorem. If proof of PNE PoA of single-item 
auction based on proving (𝜆, 𝜇)-smoothness smoothness via own-
value deviation then PNE PoA of simultaneous auctions also ≤
𝜇/𝜆.

39



 BNE PoA of simultaneous single-item auctions with correlated 
unit-demand values ≤ 1/2?

 Not really: deviation not oblivious to opponent valuations 

 Item in the optimal matching depends on values of opponents

40



41

Exists 𝑏𝑖
′ depending only on valuation profile 𝐯

(not 𝐛−𝐢)

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛

What we showed:



RECAP

Second Extension Theorem. If proof of 
PNE PoA of single-item auction based on 
proving (𝜆, 𝜇)-smoothness then PNE PoA of 
simultaneous auctions also ≤ 𝜇/𝜆.

Next we will extend above to BNE

QUESTIONS?

Single auction to 

simultaneous 

auctions

PNE complete 

information

42



Complete info PNE to BNE with independent values

43



 Target setting. First Price Bayes-Nash 
Equilibrium with asymmetric 
independent values

 Simple setting. Complete information Pure 
Nash Equilibrium

 Thm. If proof of PNE PoA based on (𝜆, 𝜇)-
smoothness via valuation profile 
dependent deviation then PoA of BNE with 
independent values also 𝜇/𝜆

Complete info PNE 

to BNE with 

independent values

44
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45

Exists 𝑏𝑖
′ depending only on valuation profile 𝐯

(not 𝐛−𝐢)

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛

𝜆, 𝜇 −Smoothness via valuation profile deviations



Relax First Extension Theorem to allow for dependence 
on opponents values

To counterbalance: assume independent values

46

Recall First Extension Theorem. 

If PNE PoA proved by showing 𝜆, 𝜇 −smoothness 
property via own-value deviations, then PoA bound 
extends to BNE with correlated values



𝑣1

𝑣𝑖

𝑣𝑛

𝐹1 ∼

𝐹𝑖 ∼

𝐹𝑛 ∼

• Need to construct feasible BNE 

deviations

• Each player random samples the others 

values and deviates as if that was the 

true values of his opponents

• Above works out, due to independence of 

value distributions

47

𝑏𝑖
′ 𝑣𝑖 , 𝐰−𝐢 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝑣𝑖,𝐰−𝐢

𝑗𝑖
∗ 𝑣𝑖 , 𝐰−𝐢



𝑏𝑖
′ 𝑣𝑖 , 𝐰−𝐢 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝑣𝑖,𝐰−𝐢

𝑣𝑖𝐹𝑖 ∼

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸 𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

𝑤−𝑖 ∼ 𝐹−𝑖

𝐯−𝐢 ∼ 𝐹𝑖

Utility of deviation of player 𝑖
In expectation over his own 

value too.

Utility of deviation from a random sample of 

player 𝑖 who knows the values of all other 

players.

But where players play non equilibrium 

strategies.

𝑏1 𝑣1

𝑏𝑗 𝑣𝑗

𝑏𝑛 𝑣𝑛

48



49

𝐰−𝐢 ∼ 𝐹𝑖

𝑏1 𝑣1

𝑏𝑗 𝑣𝑗

𝑏𝑛 𝑣𝑛

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸 𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

Utility of deviation of player 𝑖
In expectation over his own 

value too.

Utility of deviation from a random sample of 

player 𝑖 who knows the values of all other 

players.

But where players play non equilibrium 

strategies.

𝑤𝑖𝐹𝑖 ∼ 𝑏𝑖
′ 𝐰 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝐰



 

𝑖

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸  

𝑖

𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

Sum of deviating utilities

50

Sum of complete information 

setting deviating utilities

𝑏𝑖
′ 𝐰 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝐰

𝐰−𝐢 ∼ 𝐹𝑖

𝑏1 𝑣1

𝑏𝑗 𝑣𝑗

𝑏𝑛 𝑣𝑛

𝑤𝑖𝐹𝑖 ∼



 

𝑖

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸  

𝑖

𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

≥ 𝐸 𝜆 ⋅ 𝑂𝑃𝑇 𝐰 − 𝜇 ⋅ 𝑅𝐸𝑉 𝐛 𝐯Utility of deviation of player 𝑖

51

By smoothness on the left

𝑏𝑖
′ 𝐰 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝐰

𝐰−𝐢 ∼ 𝐹𝑖

𝑏1 𝑣1

𝑏𝑗 𝑣𝑗

𝑏𝑛 𝑣𝑛

𝑤𝑖𝐹𝑖 ∼

𝑢𝑖 𝑏𝑖
′ 𝐰 ,𝐛−𝐢 𝐯−𝐢 ≥

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝐰

− 𝑝𝑗𝑖
∗ 𝐰 𝐛 𝐯

Recall. Exists 𝑏𝑖
′ depending 

only on valuation profile 𝐯
(not 𝐛−𝐢)

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)

For any bid vector 𝐛



 

𝑖

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸  

𝑖

𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

≥ 𝐸 𝜆 ⋅ 𝑂𝑃𝑇 𝐰 − 𝜇 ⋅ 𝑅𝐸𝑉 𝐛 𝐯

52

Found 𝑏𝑖
′ that depend only on 𝑣𝑖 such that:

 

𝑖

𝐸 𝑢𝑖 𝑏𝑖
′ 𝑣𝑖 , 𝐛−𝐢 𝐯−𝐢 + 𝝁 ⋅ 𝐸 𝑅𝐸𝑉 𝐛 𝐯 ≥ 𝝀 ⋅ 𝐸 𝑂𝑃𝑇 𝐯

Rest is easy



Third Extension Theorem. If PNE PoA proved by 
showing 𝜆, 𝜇 −smoothness property via valuation 
profile dependent deviations, then PoA bound extends to 
BNE with independent values

53



RECAP

 Thm. If proof of PNE PoA based on (𝜆, 𝜇)-
smoothness via valuation profile 
dependent deviation then PoA of BNE with 
independent values also 𝜇/𝜆

 Corollary. If PNE PoA of single-item 
auction proved via (𝜆, 𝜇)-smoothness via 
valuation profile dependent deviation, 
then BNE of simultaneous auctions with 
unit-demand and independent also 𝜇/𝜆

Corollary. BNE PoA of simultaneous first 
price auctions with submodular bidders  ≤
𝑒

𝑒−1

QUESTIONS?

Complete info PNE 

to BNE with 

independent values

54



RECAP

 Thm. If proof of PNE PoA based on (𝜆, 𝜇)-
smoothness via valuation profile 
dependent deviation then PoA of BNE with 
independent values also 𝜇/𝜆

 Corollary. If PNE PoA of single-item 
auction proved via (𝜆, 𝜇)-smoothness via 
valuation profile dependent deviation, 
then BNE of simultaneous auctions with 
submodular and independent also 𝜇/𝜆

 Corollary. BNE PoA of simultaneous first 
price auctions with submodular bidders  
≤

𝑒

𝑒−1

QUESTIONS?

Complete info PNE 

to BNE with 

independent values

55



56



Focusing on complete info PNE, 
might be restrictive in some settings

Working with the distributions 
directly can potentially yield better 
bounds

Arguing about 

distributions

57
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 Price of the item follows a distribution D

 What if a player deviates to bidding a 
random sample from price distribution

 The probability that he wins is ½ by 
symmetry of the two distributions

 He pays at most 𝐸[𝑝]

𝐸 𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 𝐯−𝐢 ≥

𝑣𝑖
2
− 𝐸[𝑝]

𝑣1 ∼ 𝐹1

𝑝 ∼ 𝐷

𝑏1(𝑣1)

𝑣𝑖 ∼ 𝐹𝑖

𝑣𝑛 ∼ 𝐹𝑛

𝑏𝑖(𝑣𝑖)

𝑏𝑛(𝑣𝑛)

58



 Same spirit: exists deviations that depend on 
price distribution such that

 

𝑖

𝐸 𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 𝐯−𝐢 + 𝐸 𝑅𝐸𝑉 𝐛 𝐯 ≥

𝐸 𝑂𝑃𝑇 𝐯

2

 BNE PoA≤ 2

𝑣1 ∼ 𝐹1

𝑝 ∼ 𝐷

𝑏1(𝑣1)

𝑣𝑖 ∼ 𝐹𝑖

𝑣𝑛 ∼ 𝐹𝑛

𝑏𝑖(𝑣𝑖)

𝑏𝑛(𝑣𝑛)

59



 Correlated deviating strategies across multiple auctions

 Decomposition of deviation analysis to separate deviations imposes 
independent randomness

1

𝑖

𝑛

𝑏𝑖1
′ ∼ 𝐷1

𝑏𝑖2
′ ∼ 𝐷2

60



 Correlation can achieve higher deviating utility

1

𝑖

𝑛

𝑏𝑖1
′

𝑏𝑖2
′

Sub-additive valuations
𝑣𝑖 𝑆 + 𝑣𝑖 𝑇 ≥ 𝑣𝑖(𝑆 ∪ 𝑇)

𝑃1

𝑃2

∼ 𝐷

𝑆

𝐵𝑖
′ ∼ 𝐷

61



 Correlation can achieve higher deviating utility

1

𝑖

𝑛

𝑏1
′

𝑏2
′

Sub-additive valuations
𝑣𝑖 𝑆 + 𝑣𝑖 𝑇 ≥ 𝑣𝑖(𝑆 ∪ 𝑇)

𝑝1

𝑝2

∼ 𝐷

𝑆

𝒃′ ∼ 𝐷

• Draw bid from price distribution

• X(𝑏, 𝑝): set of won items with 
bid vector b and price vector p

• Either I win or price wins:
𝑋 𝑏, 𝑝 + 𝑋 𝑝, 𝑏 = 𝑆

• By symmetry:

𝐸 𝑣 𝑋 𝑏′, 𝑝 = 𝐸 𝑣 𝑋 𝑝, 𝑏′

• Value collected: 𝐸 𝑣 𝑋 𝑏′, 𝑝 =
1

2
𝐸 𝑣 𝑋 𝑏′, 𝑝 + 𝑣 𝑋 𝑝, 𝑏′ ≥

1

2
𝐸 𝑣 𝑆 62



Drawing deviation from price 
distribution!

Buys correlation across auctions

Better bounds beyond submodular

Arguing about 

distributions

63
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Vickrey Auction  - Truthful, efficient, simple

(second price)

but has many bad Nash equilibria

Assume bid ≤ value (no overbidding)

Theorem. All Nash equilibria efficient. highest 
value wins

$2 $5 $7 $3 $4

Pays 

$5

$99 $0 $0 $0 $0

Pays 

$0

65



 Same approach but replace Payments with “Winning Bids” and use 

no-overbidding

No overbidding assumption: 

𝐵𝐼𝐷𝑆 ≤ 𝑊𝐸𝐿𝐹𝐴𝑅𝐸

Then 𝑃𝑜𝐴 ≤
1+𝜇

𝜆
66

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝐵𝐼𝐷𝑆 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛



 Deviate to bidding your value: 𝑏𝑖
′ 𝑣𝑖 = 𝑣𝑖

 𝐵(𝐛): winning bid

 Either winning bid B(𝐛) ≥ 𝑣𝑖 or  𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 = 𝑣𝑖 − 𝐵𝑖 𝐛

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝐵𝑖 𝐛 ≥ 𝑣𝑖 ⇒ 𝑢𝑖 𝑏𝑖

′, 𝐛−𝐢 + 𝐵𝑖 𝐛 ⋅ 𝑥𝑖
∗ 𝐯 ≥ 𝑣𝑖 ⋅ 𝑥𝑖

∗ 𝐯

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝐵𝐼𝐷𝑆 𝐛 ≥ 𝑂𝑃𝑇(𝐯)

67



 Vickrey auction (1,1)-smooth using bids

 𝑃𝑜𝐴 ≤ 2: under no-overbidding

 Vickrey is efficient?

 𝑃𝑜𝐴 ≤ 2: extends to simultaneous Vickrey auctions even under 
BNE with independent values

68
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 Allocate slots by bid

 Charge bid per-click

 Utility:
𝑢𝑖 𝑏 = 𝑎𝜎 𝑖 𝑣𝑖 − 𝑏𝑖

𝑎1

𝑎2

𝑎3

𝑎4

1

𝑖

𝑛

Advertisers Slots

CTRs

𝑏1

𝑏𝑖

𝑏𝑛

𝑣1 ∼ 𝐹1

𝑣𝑖 ∼ 𝐹𝑖

𝑣𝑛 ∼ 𝐹𝑛

70



 Allocated items greedily to 
highest remaining bid

 If allocated item 𝑗 𝑏 , charge 𝑏𝑖
𝑗 𝑏

 Utility:

𝑢𝑖 𝑏 = 𝑣𝑖
𝑗(𝑏)

− 𝑏𝑖
𝑗 𝑏

1

𝑖

𝑛

Unit-Demand Bidders Items

𝑏𝑖1

Unit-Demand

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗

𝑏𝑖2

𝑏𝑖3

71



 Each bidder submits 𝑏𝑖 and 𝑇𝑖

 Run some algorithm (optimal or 
greedy 𝑂 𝑚 -approx.) over reported 
single-minded values

 Charge bid 𝑏𝑖 if allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2

72
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GFP

 Allocate slots by bid

 Charge bid per-click

 Utility:
𝑢𝑖 𝑏 = 𝑎𝜎 𝑖 𝑣𝑖 − 𝑏𝑖

Matching 
Markets-Greedy 
Allocation
 Allocated items greedily to 

highest remaining bid

 If allocated item 𝑗 𝑏 , 
charge 𝑏𝑖

𝑗 𝑏

 Utility:

𝑢𝑖 𝑏 = 𝑣𝑖
𝑗(𝑏)

− 𝑏𝑖
𝑗 𝑏

Single-Minded 
Combinatorial 
Auctions

 Each bidder submits 𝑏𝑖
and 𝑇𝑖

 Run some algorithm 
(optimal or greedy 
𝑂 𝑚 -approx.) over 
reported single-minded 
values

 Charge bid 𝑏𝑖 if 
allocated
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 Allocate slots by bid

 Charge bid per-click

 Utility:
𝑢𝑖 𝑏 = 𝑎𝜎 𝑖 𝑣𝑖 − 𝑏𝑖

𝑎1

𝑎2

𝑎3

1

𝑖

𝑛

Advertisers Slots

CTRs

𝑏1

𝑏𝑖

𝑏𝑛

𝑣1 ∼ 𝐹1

𝑣𝑖 ∼ 𝐹𝑖

𝑣𝑛 ∼ 𝐹𝑛

75



 𝑏𝑖
′ =

𝑣𝑖

2

 Either bid of player at slot opt(𝑖) ≥
𝑣𝑖

2

 Or utility ≥
𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖

2

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 𝑎𝑜𝑝𝑡 𝑖 ⋅ 𝑏𝜋 𝑜𝑝𝑡 𝑖 ≥

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖

2

 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 

𝑖

𝑎𝑜𝑝𝑡 𝑖 ⋅ 𝑏𝜋 𝑜𝑝𝑡 𝑖 ≥  

𝑖

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖

2

 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 𝑅𝐸𝑉 𝑏 ≥

1

2
⋅ 𝑂𝑃𝑇(𝑣)

𝑎1

𝑎2

𝑎3

1

2

3

Advertisers Slots

CTRs

𝑣1

𝑣2

𝑣3
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≥
≥

𝑜𝑝𝑡 1

𝑜𝑝𝑡 2

𝑜𝑝𝑡 3

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 

𝑖

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖



 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 𝑅𝐸𝑉 𝑏 ≥

1

2
⋅ 𝑂𝑃𝑇(𝑣)

Thm. 𝑃𝑜𝐴 ≤ 2

Proof. 

 

𝑖

𝑢𝑖 𝑏 ≥ 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖

𝑈𝑇𝐼𝐿 𝑏 + 𝑅𝐸𝑉 𝑏 ≥
1

2
⋅ 𝑂𝑃𝑇(𝑣)

𝑆𝑊 𝑣 ≥
1

2
⋅ 𝑂𝑃𝑇(𝑣)

𝑎1

𝑎2

𝑎3

1

2

3

Advertisers Slots

CTRs

𝑣1

𝑣2

𝑣3

77

≥
≥

𝑜𝑝𝑡 1

𝑜𝑝𝑡 2

𝑜𝑝𝑡 3

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 

𝑖

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖



 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 𝑅𝐸𝑉 𝑏 ≥

1

2
⋅ 𝑂𝑃𝑇(𝑣)

Thm. Bayes-Nash 𝑃𝑜𝐴 ≤ 2

Proof. 

 

𝑖

𝐸 𝑢𝑖 𝑏 𝐯 ≥  

𝑖

𝐸 𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 𝑣−𝑖

𝐸 𝑈𝑇𝐼𝐿 𝑏 𝐯 + 𝐸 𝑅𝐸𝑉 𝑏 𝐯 ≥
1

2
⋅ 𝐸 𝑂𝑃𝑇 𝐯

𝐸 𝑆𝑊 b 𝐯 ≥
1

2
⋅ 𝐸 𝑂𝑃𝑇 𝐯

𝑎1

𝑎2

𝑎3

1

2

3

Advertisers Slots

CTRs

𝑣1

𝑣2

𝑣3

78

≥
≥

𝑜𝑝𝑡 1

𝑜𝑝𝑡 2

𝑜𝑝𝑡 3

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 

𝑖

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖



 Allocated items greedily to 
highest remaining bid

 If allocated item 𝑗 𝑏 , charge 𝑏𝑖
𝑗 𝑏

 Utility:

𝑢𝑖 𝑏 = 𝑣𝑖
𝑗(𝑏)

− 𝑏𝑖
𝑗 𝑏

1

𝑖

𝑛

Unit-Demand Bidders Items

𝑏𝑖1

Unit-Demand

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗

𝑏𝑖2

𝑏𝑖3
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 Deviation

𝑏𝑖
𝑗
=
𝑣𝑖
𝑗

2

 Only for 𝑗 =item in optimal matching

 If 𝑝𝑗 𝑏 is price of item 𝑗

𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖 ≥

𝑣𝑖
𝑗

2
− 𝑝𝑗(𝑏)

 Thus 
1

2
, 1 -smooth via valuation profile 

dependent deviations

1

𝑖

𝑛

Unit-Demand Bidders Items

𝑏𝑖1

Unit-Demand

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗

𝑏𝑖2

𝑏𝑖3
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 In fact

𝑏𝑖
𝑗
∼ 𝐻 𝑣𝑖

𝑗

 Only for 𝑗 =item in optimal matching

𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖 ≥ 1 −

1

𝑒
𝑣𝑖
𝑗
− 𝑝𝑗(𝑏)

 Thus 1 −
1

𝑒
, 1 -smooth

 Greedy on true values: 2-approx.

 Greedy on reported values: 1.58-approx.!

1

𝑖

𝑛

Unit-Demand Bidders Items

𝑏𝑖1

Unit-Demand

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗

𝑏𝑖2

𝑏𝑖3
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Greedy on true values: 2-approx.

At equilibrium:
 Player 2 never goes for first item

 Too expensive

 So allocation is efficient

Unit-Demand Bidders Items

1 − 𝜖

0

1

1 − 𝜖
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 Each bidder submits 𝑏𝑖 and 𝑇𝑖

 Run some algorithm over 
reported single-minded values

 Charge bid 𝑏𝑖 if allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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 Each bidder submits 𝑏𝑖 and 𝑇𝑖

 Run optimal algorithm over 
reported single-minded values

 Charge bid 𝑏𝑖 if allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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𝑚 Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1 = 𝑆2

……
…

…

𝑣 = 1 − 𝜖

𝑣 = 1 − 𝜖

𝑣 = 1 − 𝜖

𝑣1 = 1

𝑣2 = 1

At equilibrium: 

• 1 and 2 bid 𝑏 = 1, T = 𝑚

• Other players bid 0

• 𝑆𝑊 = 1 but 𝑂𝑃𝑇 = 𝑚
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 Each bidder submits 𝑏𝑖 and 𝑇𝑖

 Run 𝒎−Approximation 
Algorithm over reported 
single-minded values

 Charge bid 𝑏𝑖 if allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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𝒎−Approximation Algorithm 

 Reweight bids as:  𝒃𝒊 =
𝑏𝑖

|𝑇𝑖|

 Allocate in decreasing order of  𝒃𝒊

 Charge bid 𝑏𝑖 if allocated

 Idea: A player can block at most 
𝑚 other players of same value 

from being allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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𝑚 Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1 = 𝑆2

……
…

…

𝑣 = 1 − 𝜖

𝑣 = 1 − 𝜖

𝑣 = 1 − 𝜖

𝑣1 = 1

𝑣2 = 1

Large players cannot block 

all small players
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 Deviation 𝑏𝑖
′: bid 

𝑣𝑖

2
for 𝑆𝑖

 Let 𝜏𝑖(b): Threshold bid for being 
allocated 𝑆𝑖 (including bid of player)

 By similar analysis:

𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖 + 𝜏𝑖(𝑏) ≥

𝑣𝑖
2

 Need to show:  𝑖 𝜏𝑖 𝑏 ≤ 𝑐 ⋅ 𝑅𝐸𝑉

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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 Fact: Algorithm is 𝑚−approximation

 Think of hypothetical situation where each bidder is duplicated

 Duplicate bidder bids: 𝑏𝑖 = 𝜏𝑖 𝑏 − 𝜖 for set 𝑆𝑖

 By definition of 𝜏𝑖(𝑏): algorithm doesn’t allocate to them

 Allocating to duplicate bidders yields welfare 

 

𝑖

𝜏𝑖(𝑏)

 Since algorithm is 𝑚−approximation: 𝑅𝐸𝑉 =  𝑖 𝑏𝑖𝑋𝑖(𝑏) ≥
1

𝑚
 𝑖 𝜏𝑖(𝑏)
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 Approximate mechanism: 
1

2
, 𝑚 −smooth

 Welfare at equilibrium 𝑂 𝑚 -approximate NOT 𝑂 𝑚 −approximate
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 Smoothness

Roughgarden STOC’09, Lucier, Paes Leme EC’11, Roughgarden EC’12, Syrgkanis ‘12,

Syrgkanis, Tardos STOC’13  

 Simultaneous First-Second Price Single-Item Auctions

Bikhchandani GEB’96, Christodoulou, Kovacs, Schapira ICALP’08, Bhawalkar, Roughgarden
SODA’11, Hassidim, Kaplan, Mansour, Nisan EC’11, Feldman, Fu, Gravin, Lucier STOC’13

 Auctions based on Greedy Allocation Algorithms

Lucier, Borodin SODA’10

 AdAuctions (GSP, GFP)

Paes-Leme Tardos FOCS’10, Lucier, Paes-Leme + CKKK EC’11

 Sequential First/Second Price Auctions

Paes Leme, Syrgkanis, Tardos SODA’12, Syrgkanis, Tardos EC’12

 Multi-Unit Auctions

Bart de Keijzer et al. ESA’13

All above can be thought as smoothness proofs and some are compositions of auctions



Price of Anarchy in Auctions and Mechanisms

 Dutting, Henzinger, Stanberger. Valuation Compressions in VCG-Based Combinatorial Auctions

 Jose R. Correa, Andreas S. Schulz and Nicolas E. Stier-Moses. The Price of Anarchy of the 
Proportional Allocation Mechanism Revisited

 Jason Hartline, Darrell Hoy and Sam Taggart. Interim Smoothness for Auction Welfare and 
Revenue. (poster)

 Michal Feldman, Vasilis Syrgkanis and Brendan Lucier. Limits of Efficiency in Sequential Auctions

 Brendan Lucier, Yaron Singer, Vasilis Syrgkanis and Eva Tardos. Equilibrium in Combinatorial 
Public Projects

Price of Anarchy in Games

 Xinran He and David Kempe. Price of Anarchy for the N-player Competitive Cascade Game with 
Submodular Activation Functions
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