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Part ll: High-level goals
PoA in auctions (as games of incomplete information):

Single-Item First Price, All-Pay, Second Price Auctions
Simultaneous Single Item Auctions

Position Auctions: GSP, GFP

Combinatorial auctions
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General Approach

Reduce analysis of complex setting to simple setting.

Conclusion for simple setting X, proved under restriction P,
extends to complex setting Y

X: complete information PNE to Y: incomplete information BNE

X: single auction to Y: composition of auctions

e



Best-Response Analysis

Objective in X is good because each player doesn’t want to
deviate to strategy b,

Extension from setting X to setting Y: if best response argument
satisfies condition P then conclusion extends to Y

©



First Extension Theorem

Complete info PNE to BNE with correlated values



Target setting. First Price Bayes-Nash
Equilibrium with asymmetric correlated
values

Simple setting. Complete information Pure
Nash Equilibrium

Thm. If proof of PNE PoA based on own-
value based deviation argument then PoA
of BNE also good

First Extension
Thecrem

Complete info PNE
to BNE with
correlated values

References:

Roughgarden STOC’09
Lucier, Paes Leme EC’11
Roughgarden EC’12
Syrgkanis ‘12

Syrgkanis, Tardos STOC’13
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First-Price Auction Refresher

* Highest bidder wins:
x;(b) = {indicator that i wins}
 Pays his bid: P;(b) = b; - x;(b)
* Quasi-Linear preferences:
UTILITY = VALUE — PAYMENT
u;(b) = (v; — by) - x;(b)
* Objective:
WELFARE = UTILITIES + PAYMENTS

SW(b) = ) ) + ) P(b)

_ Zl(uz(b) n bll, - x;(b)) = Z V; -xi(b®




First-Price Auction
Target: BNE with correlated values

 v=(vq,..,v,) ~ F: correlated distribution

* Conditional on value, maximizes utility:
Elu;(b(W)| v;] = E|uy(bf, b_;(v_))| v{]

* Equilibrium Welfare:

Elsw(bW))|=E

> v xi(b)

l

* Optimal Welfare: highest value bidder

Zvi'xf(V)

i

E|OPT(v)] =E

)



First-Price Auction
Target: BNE with correlated values

tﬂ/!z b1 (vy)




First-Price Auction
Simpler: PNE and complete Information

* v=(vq,..,Vy): common knowledge

* b; maximizes utility:
u;(b) = u;(b;,b_;)

 Equilibrium Welfare:

SW(b) = z v; - x;(b)

l
* Optimal Welfare:
OPT(v) = z v - x5 (V)

i
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First-Price Auction
Simpler: PNE and complete Information

~ OPT(v)

PoA = SW (b)

p(b) = max b;




First-Price Auction
Simpler: PNE and complete Information

Q Theorem. PoA =1

) 4
s

\Y ‘b@

Proof. Highest value player can deviate to p(b)™

u, (p(b)*,b_y) =v; —p(b)*
ui(()»b—i) =0

> wi®) = ) wbj,bg) =v; — p(b)

[ [

L

By PNE condition

@



First-Price Auction
Simpler: PNE and complete Information

q Theorem. PoA =1

-
/)\

\Y, *»,!"

Proof. Highest value player can deviate to p(b)™

u, (p(b)*,b_y) =v; —p(b)*
ui(()»b—i) =0

p(b) = maxb; UTIL(b) 22 u;(b;, b_;) =v; — REV(b)

l

UTIL(b) + REV(b) = v,

SW(b) = v, @




Direct extensions

What if conclusions for PNE of complete information directly
extended to:

incomplete information BNE
simultaneous composition of single-item auctions

Obviously: PoA = 1 doesn’t carry over

Possible, but we need to restrict the type of analysis

e



Problem in previous PNE proof

* Recall. PoA = 1 because highest value
player doesn’t want to deviate to p*

//ﬁ}
‘ * Challenge. Don’t know p or v_; in
J incomplete information

« Idea. Restrict deviation to not depend on
these parameters

©



First-Price Auction

Simpler: PNE ¢
Recall PoA=1 Proof

A SN Proof. Highest value player can deviate to p(b)*

u; (p(b)*,b_y) =v; —p(b)”*
ui(o'b—i) =0

l

HE U(b) + REV (b) = v,

e

SW(b) = v,



Own-value deviations
(price and other values oblivious)

New Theorem. PoA < 2

Proof. Each player can deviate to b; = %

x(b;, b_;)
1

OR

% p(b)




Own-value deviations
(price and other values oblivious)

Q New Theorem. PoA < 2

W

Proof. Each player can deviate to b; = %

x(b;, b_;) x(b;,b_;)

\Y
N| =

bi p(b)

I\/



Own-value deviations
(price and other values oblivious)

q New Theorem. PoA < 2

-
-

\Y, %/!L

Proof. Each player can deviate to b; = %

Vi

w; (2, b_;) + p(b) .

2

e©



Own-value deviations
(price and other values oblivious)

q New Theorem. PoA < 2

WY, t”’:'}

Proof. Each player can deviate to b; = %

” (%,b_i) +o(b) - xI(V) = % Xl (V)

p(b) = maxh, UTIL(b) = 2 u; (25, b;) + p(b) = 5 0PT(v)
[

1
br, UTIL(b) + REV(b) > > OPT (V)

SW(b) = %OPT(V)

(=)



Smoothness Property

Exists b; depending only on own value

p(b) = maxb, UTIL(b) > z u;(bj,b_) + REV(b) 2 - OPT (V)

by UTIL(b) + REV(b) = %OPT(V)

SW(b) > %OPT(V) (21)



(1, 1) —Smoothness via own-value deviations

Exists b; depending only on own value

For any bid vector b Z ui(b;,b_y) + - REV(b) = 1- OPT (V)




(1, 1) —Smoothness via own-value deviations

Exists b; depending only on own value

For any bid vector b z ui(b;,b_y) + - REV(b) = 1- OPT (V)

Note. Smoothness is property of auction not equilibrium




(1, 1) —Smoothness via own-value deviations

Exists b; depending only on own value

For any bid vector b z ui(b;,b_y) + - REV(b) = 1- OPT (V)

Applies to any auction: Not First-Price Auction specific




(4, u) —Smoothness implies POA < u/A
Proof. If b PNE then

UTIL(b) + 1t - REV(b) > z 1w, (b, b_y) + 1t - REV(b) = A -

Note. UTIL(b) = SW(b) — REV (b) UTIL(b) + i - REV(b) = A - OPT (V)
Note. SW(b) > REV (b) SW(b) + (u—1)-REV(b) = 1-O0PT(v)

SWM)+(u—1)-SW(b) =A1:-0PT(v)
u-SW)=A1-0PT(v)



Finally

First Extension Theorem. If PNE PoA proved by
showing (4, u) —smoothness property via own-value
deviations, then PoA bound extends to BNE with
correlated values

Note. Not specific to First-Price Auction



(4, u) —Smoothness implies BNE PoA < u/A

(omae)

E v [U TIL(b) + - REV(D) = z u;(bj, b_y) + 12 - REV(b) = A - OPT(v)

Proof. If b(-) BNE then E[u(b(v))|] =E

Just redo PNE proof in expectation over values.



Optimizing over (4, u)

Q  [Is half value best own-value deviation?

N b1 ~ H(wy)

« Bid b; ~ H(v;) with support [0, (1 — i) vi] and
1
v; — b;

l

h(b}) =




Optimizing over (4, u)
« Bid b; ~ H(v;) with support lO, (1 — é) vi] and h(b;) =
x(bi,b_j)

1
Ui—bi,

p(b) b; <1_1> b, U




Optimizing over (4, u)

« Bid b; ~ H(v;) with support lO, (1 — é) vi] and h(b;) =

Q x(bb_y) |

%\L by ~ H(v,)

1
Ui—bi,




Optimizing over (4, u)
« Bid b; ~ H(v;) with support [0, (1 — é) vi] and h(b;) = ! ;

x(b;, b_;)

p(b)  E[u;(b)]

p(b) (1 _1) b, U
e

Elw (b)) + p(b) > (1 - %) v,

So in fact: (1 — é, 1)—smooth. PoA < ﬁ ~ 1.58



RECAP

First Extension Thm. If proof of PNE PoA
based on (4, u) —smoothness via own-
value based deviations then PoA of BNE
with correlated values also u/A

QUESTIONS?

First Extension
Thecrem

Complete info PNE
to BNE with
correlated values

o



Second Extension Theorem

Single auction to simultaneous auctions

PNE complete information



Target setting. Simultaneous single-item
first price auctions with unit-demand
bidders (complete information PNE).

Simple setting. Single-item first price
auction (complete information PNE).

Thm. If proof of PNE PoA of single-item
based on proving (4, u)-smoothness via
own-value deviation then PNE PoA of
simultaneous auctions also u/A.

Second
Extension
Thecrem

Single auction to
simultaneous
auctions

PNE complete
information

References:

Roughgarden STOC’09
Roughgarden EC’12
Syrgkanis ‘12

Syrgkanis, Tardos STOC’13
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Simultaneous First-Price Auctions
Unit-demand bidders

1 ‘1'4&

1
Vi
2 .

- N Vi

)/ ¢
Unit-Demand Valuation v3

v;(§) = max vi] |-
JES ' o 4 |

-—

n i”/@g




Simultaneous First-Price Auctions
Unit-demand bidders

1 ‘1'4&

1
b;
2 5

- b

)/ ¢
Unit-Demand Valuation b}

v;(S) = max v/ g =n

JES o N

-—

n i”/@g




Simultaneous First-Price Auctions

Can we derive global efficiency guarantees from local
G, 1) —smoothness of each first price auction?

APPROACH: Prove smoothness of the global
mechanism

GOAL: Construct global deviation

o

IDEA: Pick your item in the optimal allocation ‘f,z‘
and perform the smoothness deviation for your
J 0

. i o—

J 1.€. — ' -

L’ 2 i/

local value v




Simultaneous First-Price Auctions

Smoothness locally:
vij :

2

ui(b;, b_y) + p;(b) =

Summing over players:

z w;(bf,b_y) + REV(b) = _ - OPT(v)

[

Implying G, 1) —smoothness property globally.




Second Extension Theorem. If proof of PNE PoA of single-item
auction based on proving (4, u)-smoothness smoothness via own-
value deviation then PNE PoA of simultaneous auctions also <

u/A.

o



BNE PoA?

BNE PoA of simultaneous single-item auctions with correlated
unit-demand values < 1/2?

Not really: deviation not oblivious to opponent valuations

[tem in the optimal matching depends on values of opponents

©



But Half-way there

What we showed:

Exists b; depending only on valuation profile v

(l’lOt b—i)

For any bid vector b z ui(b;,b_) + 11 - REV(b) = 1 - OPT(v)




RECAP

Second Extension Theorem. If proof of
PNE PoA of single-item auction based on
proving (4, u)-smoothness then PNE PoA of
simultaneous auctions also < u/A.

Next we will extend above to BNE

QUESTIONS?

Second
Extension
Theorem
Single auction to

simultaneous
auctions

PNE complete
information

o



&) Third Extension Theorem

Complete info PNE to BNE with independent values




Target setting. First Price Bayes-Nash
Equilibrium with asymmetric
independent values

Simple setting. Complete information Pure
Nash Equilibrium

Thm. If proof of PNE PoA based on (4, u)-
smoothness via valuation profile
dependent deviation then PoA of BNE with
independent values also u/A

Third Extension
Thecrem

Complete info PNE
to BNE with
independent values

References:

Christodoulou et al. ICALP’08
Roughgarden EC’12
Syrgkanis ‘12

Syrgkanis, Tardos STOC’13
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Does this extend to BNE POA?

(1, 1) —Smoothness via valuation profile deviations

Exists b; depending only on valuation profile v
(l’lOt b—i)

For any bid vector b z ui(b;,b_) + 11 - REV(b) = 1 - OPT(v)




Recall First Extension Theorem.

If PNE PoA proved by showing (A, u) —smoothness

property via own-value deviations, then PoA bound
extends to BNE with correlated values

= Relax First Extension Theorem to allow for dependence
on opponents values

= To counterbalance: assume independent values



BNE (independent valuations)

* Need to construct feasible BNE
deviations

];k (vil W_i)

Each player random samples the others
values and deviates as if that was the
true values of his opponents

Above works out, due to independence of
value distributions

)



BNE (independent valuations)

Elu/ (bj (v, w_p),b_j(v_))]| = E[w," (bj(w),b_j(v_}))]

| |

Utility of deviation of player i Utility of deviation from a random sample of
In expectation over his own player i who knows the values of all other
value too. players.
But where players play non equilibrium
strategies.
: vfik (vi,w_i) b1(v1) t”’/!l

bi(v;)) #
t/‘ - V_. ~ F.
/" 1 l

le (Un) tl/“‘.'\

48

©



BNE (independent valuations)
Elu/ (bj (v, w_p),b_j(v_))]| = E[w," (bj(w),b_j(v_}))]

\ } \
f |

Utility of deviation of player i Utility of deviation from a random sample of
In expectation over his own player i who knows the values of all other
value too. players.
But where players play non equilibrium
strategies.
1 bi(v1) o
-9 Hw=gut K
C)O
v / = B b;(v;) Al

b, (v,) y NN




BNE (independent valuations)
z E[ufi(b{(vi, w_i), b—i(v—i))] =

| 1

u; ' (bj(w), b—i(v—i)}]

}
Y |
Sum of deviating utilities Sum of complete information
setting deviating utilities
1 bl(vl) '\
- @) tw =zt L'
o, 2

;-v\ _ X b] (v]) i/"\

@ %

bn(vn) i/'\




Recall. Exists b; depending eni' VCI|UCIﬁ0n5)

only on valuation profile v
(nOt b—i) _i))] _

ulwi (bl’ (w), b—i(v—i))]

Weyer i = E[A-OPT(W) — - REV(b(V))]

For any bid vector b

|

z u;(b;,b_;) + 1t- REV(b) = A- OPT(V) By smoothness on the left
b (vy,) y&

by (vy)

b(v;)




BNE (independent valuations)
Zu:”i(bxw),b_i(v_i))]

l

z Elw (b{(v;,w_i),bi(v_)| = E

> E[A- OPT(w) — - REV(b(V))]

Found b; that depend only on v; such that:

> E[us(bj (v, b_i(v-0))] + 12+ E[REV(B(»)] = - E[OPT(V)]




Third Extension Theorem. If PNE PoA proved by

showing (4, u) —smoothness property via valuation
profile dependent deviations, then PoA bound extends to
BNE with independent values

o



RECAP

Thm. If proof of PNE PoA based on (4, u)-
smoothness via valuation profile
dependent deviation then PoA of BNE with
independent values also u/A

Corollary. If PNE PoA of single-item
auction proved via (4, u)-smoothness via
valuation profile dependent deviation,
then BNE of simultaneous auctions with
unit-demand and independent also u/A

Third Extension
Thecrem

Complete info PNE
to BNE with
independent values

(2]



RECAP
Thm. If proof of PNE PoA based on (4, u)-

smoothness via valuation profile - i
dependent deviation then PoA of BNE with Third Extension
independent values also u/A Theorem
Complete info PNE
Corollary. If PNE PoA of single-item to BNE with
auction proved via (4, u)-smoothness via independent values

valuation profile dependent deviation,
then BNE of simultaneous auctions with
submodular and independent also u/A

Corollary. BNE PoA of simultaneous first
pricee auctions with submodular bidders
< —

e—1

QUESTIONS?

O



g Direct approach:
. Arg uin g a bout distributions



Focusing on complete info PNE,
might be restrictive in some settings

Working with the distributions
directly can potentially yield better
bounds

Direct
dapproach

Arguing about
distributions

References:
Feldman et al. STOC’13
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Single-item auction BNE

= Price of the item follows a distribution D

= What if a player deviates to bidding a
random sample from price distribution

= The probability that he wins is 2 by
symmetry of the two distributions

= He pays at most E|p]

/ Yi
Elu;(bl,b_i(v_))] = —~ — E[p] ©




Single-item auction BNE

= Same spirit: exists deviations that depend on
price distribution such that

Z E|u; (b, b_i(v_))| + E[REV(b(V))] = E[OPT(V)]

2

= BNE PoA< 2

o



What does it buy us

= Correlated deviating strategies across multiple auctions

= Decomposition of deviation analysis to separate deviations imposes
independent randomness




What does it buy us

= Correlation can achieve higher deviating utility

i **/gﬁ B! ~D
Sub-additive valuations
’Ui(S) + Ui(T) > Ui(S U T)

n Y
) 8

©



What does it buy us

Correlation can achieve higher deviating utility

] i:\ ,
L b ~D

Sub-additive valuations
Ui(S) + Ui(T) > Ui(S U T)

-—

-

n f{ ;

P1

P2

~D

* Draw bid from price distribution

* X(b,p): set of won items with
bid vector b and price vector p

e Either I win or price wins:
X(b,p) +X(p,b) =S

* By symmetry:

E[v(X(b’, p))] = E[U(X(p, b’))]

» Value collected: E|v(X(b',p))| = %E[U(X(b',P)) +v(X(p,b))| = %E[V(S)] @



Drawing deviation from price
distribution!

Buys correlation across auctions

Better bounds beyond submodular

Direct
dapproach

Arguing about
distributions

©






Second price

Vickrey Auction - Truthful, efficient, simple

(second price)

but has many bad Nash equilibria

Assume bid < value (no overbidding)

Theorem. All Nash equilibria efficient. highest
value wins

©



Second Price and Overbidding

= Same approach but replace Payments with “Winning Bids” and use
no-overbidding

For any bid vector b z u;(b;,b_;) + - BIDS(b) = 4 - OPT(v)

= No overbidding assumption:

BIDS < WELFARE

14+u

Then PoA < T



Smoothness of Vickrey Auction

Deviate to bidding your value: b; (v;) = v;
B(b): winning bid
Either winning bid B(b) = v; or wu;(b;,b_;) = v; — B;(b)

u;(b{,b_;) + B;(b) = v; = u;(b;,b_;) + B;(b) - x; (V) = v; - x; (V)

z u;(bl,b_y) + BIDS(b) = OPT(V)

l

©



Smoothness of Vickrey Auction

Vickrey auction (1,1)-smooth using bids

PoA < 2: under no-overbidding
Vickrey is efficient?

PoA < 2: extends to simultaneous Vickrey auctions even under
BNE with independent values







Generalized First-Price Auction

Advertisers Slots
= Allocate slots by bid

1 w;il L = Charge bid per-click

- = Utility:
i Yax b; CTRs u;(b) = Ag (i) (v; — b;)
n w'\ : bn

©



Matching Markets - Greedy
Mechanism

Unit-Demand Bidders [tems « Allocated items greedﬂy to
highest remaining bid

« If allocated item j(b), charge bij(b)

= Utility:
Y _ . J) j(b)
u;(b) = v/ — b;

Unit-Demand

v:(S) = max v’
l( ) ]ES i

A N
n =« /m




Single-Minded Combinatorial
Auction

Single-Minded Bidders Items

= Each bidder submits b; and T;

1 i”@‘

= Run some algorithm (optimal or

5 x%} greedy 0(y/m)-approx.) over reported
- 2 single-minded values
Single-minded:
v; for whole set S;

= Charge bid b; if allocated

3 V/ﬁ}

()



GFP

Allocate slots by bid

Charge bid per-click

Utility:
u;(b) = A (i) (v; — b

Matching
Markets-Greedy
Allocation

Allocated items greedily to
highest remaining bid

If allocated item j(b),
charge b/ ®

Utility: : :
u;(b) = vi](b) = bij(b)

Single-Minded
Combinatorial
Auctions

Each bidder submits b;
and T;

Run some algorithm
(optimal or greedy
0(v/m)-approx.) over
reported single-minded
values

Charge bid b; if
allocated







Generalized First-Price Auction

Advertisers Slots
= Allocate slots by bid

1 w;il L = Charge bid per-click
o . - Utiity;
i *‘4/!;’ b; CTRs u;(b) = Ag (i) (v; — b;)
ax .

©



Smoothness of GFP

Advertisers Slots

> bl bo) + 1 REV(D) 2 7+ ) agpeyv;

w t(1 , ;
: opt(1) _bi_l;

0
Q = Either bid of player at slot opt(i) >
opt(2) } Qopt()Vi
Vo2 ‘hL — : CTRs o Utﬂl?l’ =7 Aopt (i) Vi
U; (2 yb_; ) T+ Aopt(i) bn(opt(i)) = 2
Q Opt(3 V; Aopt (i) Vi
( : ) + z Qopt (i) * bn(opt(i)) = 2

Ui\ b 2

i i

Z U (% b_l-) + REV(D) = % . OPT (v)

| o



Smoothness of GFP

Advertisers Slots

D uilbiyb_i) + - REV(D) 2 1 ) aoprov

> opt(1)

="
vV 2 "}u, CTRs Proof.

Q /“ Zui(b) > 2”" (%'b—i)
opt(3 l i 1

1
ul W b_l) +REV(b) = - OPT(v)

Thm. PoA <2

opt(2)

UTIL(b) + REV(b) 2 - OPT(v)

SW(w) = % . OPT(v)

e



Smoothness of GFP

Advertisers Slots

> bl bo) + 1 REV(D) 2 7+ ) agpeyv;

z U (% b_;) + REV (b) > % . OPT(v)

l

Thm. Bayes-Nash PoA <2
CTRs Proof.

Z Elu;(b(v))] = Z E [ui <% b—i(v—i)>]

E[UTIL(b(v))]| + E|REV(b(V))] = % - E[OPT (V)]

©

opt(3

E[sw(b())] = % . E[OPT (V)]



Matching Markets - Greedy
Mechanism

Unit-Demand Bidders Items Allocated items greedﬂy to
highest remaining bid

If allocated item j(b), charge bij(b)

Utility:
Y _ . J) j(b)
u;(b) = v/ — b;

A N
. .4
l ,r'f:!‘ &

Unit-Demand

v:(S) = max v’
l( ) ]ES i

A NG
n %



Matching Markets - Greedy
Mechanism

Unit-Demand Bidders [tems Deviation
)
b} =—
= , l 2

Only for j =item in optimal matching

If p;j(b) is price of item j
J

/ V;
u;(b;,b_;) = ?l —pj(b)

. i p

Unit-Demand

v:(S) = max v’
l( ) ]ES i

_ | Thus G, 1)—smooth via valuation profile
n x:l dependent deviations
%



Matching Markets - Greedy
Mechanism

Unit-Demand Bidders Items In fact
bl ~ H(v))
Only for j =item in optimal matching

!/ 1 '
wib-) > (1-3) ol )

PN Thus (1 — 1, 1)—smooth
' :

Unit-Demand

v;(S) = max v/

nax vj Greedy on true values: 2-approx.

Greedy on reported values: 1.58-approx.!



9

Incentives improve algorithmic
approximation

= Greedy on true values: 2-approx.
Unit-Demand Bidders [tems

—— = At equilibrium:

h = Player 2 never goes for first item
= Too expensive
= So allocation is efficient

(&)



Single-Minded Combinatorial
Auction

Single-Minded Bidders Items
" $1 = Each bidder submits b; and T;
= Run some algorithm over
PN S, reported single-minded values
2 "Nk
Single-minded:
v; for whole set 5; = Charge bid b; if allocated
3 Vm} 53

(2



Optimal Algorithm

Single-Minded Bidders Items

1 )’ ¢ = Each bidder submits b; and T;
p N s, = Run optimal algorithm over
2 e reported single-minded values

Single-mi'rided:
v; for whole set §;

= Charge bid b; if allocated

3 t‘,!l

(2



Linear inefficiency!

m Items

U2=1

Single-minded:
v; for whole set S;

At equilibrium:
v v=l-€e o land2bidb=1,T = |[m]

* Other players bid O

“ v=1—¢€

K + SW =1 but OPT =m

o



vm —Approximation Algorithm

Single-Minded Bidders Items
1 *7‘} = Each bidder submits b; and T;
N = Run m —Approximation
2 e Algorithm over reported
Single-minded: single-minded values

v; for whole set S;

= Charge bid b; if allocated

3 y/‘}

(2



vm —Approximation Algorithm

Single-Minded Bidders Items m — Approximation Algorithm

1 )’ ¢ - Reweight bids as: b; = \/%
- = Allocate in decreasing order of b;
2 “HK = Charge bid b; if allocated
Single-minded:

v; for whole set S;

= Idea: A player can block at most

\Jm other players of same value
from being allocated

3 V/ﬁ}
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Bad Example Corrected

m Items

Large players cannot block
v v=1-¢€ all small players

)’ ‘ )’

Single-minded:
v; for whole set S;




Smoothness of Approximation
Algorithm

Single-Minded Bidders Items .
* Deviation b;: bid - for S;

1 i”@‘

= Let 1;(b): Threshold bid for being
allocated S§; (including bid of player)

2 YAk
Single-mivn‘ded:
v; for whole set §;

= By similar analysis:

4 v
u;(b;, b_;) + 17;(b) = ?l

« Need to show: ),;7;(b) < c-REV

3 V/ﬁ}
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Smoothness of Approximation
Algorithm

Fact: Algorithm is y/m —approximation

Think of hypothetical situation where each bidder is duplicated
Duplicate bidder bids: b; = 7;(b) — € for set S;

By definition of 7;(b): algorithm doesn’t allocate to them

Allocating to duplicate bidders yields welfare

D i)

l

Since algorithm is vm —approximation: REV = Y; b;X;(b) = \/%Zi 7;(b)
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Approximation improves
efficiency

Approximate mechanism: G,\/ﬁ) —smooth

Welfare at equilibrium 0(y/m)-approximate NOT 0(m) —approximate
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Some References

Smoothness
Roughgarden STOC’09, Lucier, Paes Leme EC’11, Roughgarden EC’12, Syrgkanis ‘12,
Syrgkanis, Tardos STOC’13

Simultaneous First-Second Price Single-Item Auctions

Bikhchandani GEB’96, Christodoulou, Kovacs, Schapira ICALP’08, Bhawalkar, Roughgarden
SODA’11, Hassidim, Kaplan, Mansour, Nisan EC’11, Feldman, Fu, Gravin, Lucier STOC’13

Auctions based on Greedy Allocation Algorithms
Lucier, Borodin SODA’10

AdAuctions (GSP, GFP)
Paes-Leme Tardos FOCS’10, Lucier, Paes-Leme + CKKK EC’11

Sequential First/Second Price Auctions
Paes Leme, Syrgkanis, Tardos SODA’12, Syrgkanis, Tardos EC’12

Multi-Unit Auctions
Bart de Keijzer et al. ESA’13

All above can be thought as smoothness proofs and some are compositions of auctions
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