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PoA in auctions (as games of incomplete information):

 Single-Item First Price, All-Pay, Second Price Auctions

 Simultaneous Single Item Auctions

 Position Auctions: GSP, GFP 

 Combinatorial auctions
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 Reduce analysis of complex setting to simple setting.

 Conclusion for simple setting X, proved under restriction P, 
extends to complex setting Y

 X: complete information PNE to Y: incomplete information BNE

 X: single auction to Y: composition of auctions
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 Objective in X is good because each player doesn’t want to 
deviate to strategy 𝑏𝑖

′

 Extension from setting X to setting Y: if best response argument 
satisfies condition P then conclusion extends to Y
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Complete info PNE to BNE with correlated values
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 Target setting. First Price Bayes-Nash 
Equilibrium with asymmetric correlated 
values

 Simple setting. Complete information Pure 
Nash Equilibrium

 Thm. If proof of PNE PoA based on own-
value based deviation argument then PoA
of BNE also good

Complete info PNE 

to BNE with 

correlated values
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𝑏𝑖

𝑏1

𝑏𝑛

• Highest bidder wins:

𝑥𝑖 𝐛 = {𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑡ℎ𝑎𝑡 𝑖 𝑤𝑖𝑛𝑠}
• Pays his bid: 𝑃𝑖 𝐛 = 𝑏𝑖 ⋅ 𝑥𝑖 𝐛
• Quasi-Linear preferences: 

UTILITY = VALUE − PAYMENT
𝑢𝑖 𝐛 = (𝑣𝑖 − 𝑏𝑖) ⋅ 𝑥𝑖 𝐛

• Objective:

WELFARE = UTILITIES + PAYMENTS

𝑆𝑊 𝐛 =  

𝑖

𝑢𝑖 𝐛 + 

𝑖

𝑃𝑖 𝐛

= 

𝑖

𝑢𝑖 𝐛 + 𝑏𝑖 ⋅ 𝑥𝑖 𝐛 =  

𝑖

𝑣𝑖 ⋅ 𝑥𝑖 𝐛
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𝑣1

𝑣𝑖

𝑣𝑛



Target: BNE with correlated values

𝑏𝑖 𝑣𝑖

𝑏1 𝑣1

𝑏𝑛 𝑣𝑛

𝑣1

𝑣𝑖

𝑣𝑛

• 𝐯 = 𝑣1, … , 𝑣𝑛 ∼ 𝐹: correlated distribution

• Conditional on value, maximizes utility:

𝐸 𝑢𝑖 𝐛 𝐯 | 𝑣𝑖 ≥ 𝐸 𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 𝐯−𝐢 | 𝑣𝑖

• Equilibrium Welfare:

𝐸 𝑆𝑊 𝐛 𝐯 = 𝐸  

𝑖

𝑣𝑖 ⋅ 𝑥𝑖 𝐛 𝐯

• Optimal Welfare: highest value bidder

𝐸 𝑂𝑃𝑇 𝐯 = 𝐸  

𝑖

𝑣𝑖 ⋅ 𝑥𝑖
∗ 𝐯
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𝐹 ∼



Target: BNE with correlated values

𝑏𝑖 𝑣𝑖

𝑏1 𝑣1

𝑏𝑛 𝑣𝑛

𝑣1

𝑣𝑖

𝑣𝑛

𝑃𝑜𝐴 =
𝐸 𝑂𝑃𝑇 𝐯

𝐸 𝑆𝑊 𝐛 𝐯
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𝐹 ∼



Simpler: PNE and complete Information

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1
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𝑏𝑖

𝑏𝑛

• 𝑣 = (𝑣1, … , 𝑣𝑛): common knowledge

• 𝑏𝑖 maximizes utility:

𝑢𝑖 𝑏 ≥ 𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖

• Equilibrium Welfare:

𝑆𝑊 𝑏 =  

𝑖

𝑣𝑖 ⋅ 𝑥𝑖 𝐛

• Optimal Welfare:

𝑂𝑃𝑇 𝑣 = 

𝑖

𝑣𝑖 ⋅ 𝑥𝑖
∗ 𝐯



Simpler: PNE and complete Information
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𝑃𝑜𝐴 =
𝑂𝑃𝑇(𝐯)

𝑆𝑊(𝐛)

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖



Simpler: PNE and complete Information

Theorem. 𝑃𝑜𝐴 = 1

Proof. Highest value player can deviate to 𝑝 𝐛 +

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 =𝑣1 − 𝑝 𝐛

𝑢1 𝑝 𝐛 +, 𝐛−𝐢 = 𝑣1 − 𝑝 𝐛 +

𝑢𝑖 0, 𝐛−𝐢 = 0
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By PNE condition

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖  

𝑖

𝑢𝑖 𝐛 ≥



 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 =𝑣1 − 𝑅𝐸𝑉(𝑏)

Simpler: PNE and complete Information

Theorem. 𝑃𝑜𝐴 = 1

Proof. Highest value player can deviate to 𝑝 𝐛 +

𝑢1 𝑝 𝐛 +, 𝐛−𝐢 = 𝑣1 − 𝑝 𝐛 +

𝑢𝑖 0, 𝐛−𝐢 = 0
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖 𝑈𝑇𝐼𝐿(𝑏) ≥

𝑈𝑇𝐼𝐿 𝑏 + 𝑅𝐸𝑉 𝑏 ≥ 𝑣1

𝑆𝑊(𝑏) ≥ 𝑣1



 What if conclusions for PNE of complete information directly 
extended to: 
 incomplete information BNE 

 simultaneous composition of single-item auctions

 Obviously: 𝑃𝑜𝐴 = 1 doesn’t carry over

 Possible, but we need to restrict the type of analysis
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑝 = max
𝑖

𝑏𝑖

𝑏1
′

• Recall. 𝑃𝑜𝐴 = 1 because highest value 

player doesn’t want to deviate to 𝑝+

• Challenge. Don’t know 𝑝 or 𝐯−𝐢 in 

incomplete information

• Idea. Restrict deviation to not depend on 

these parameters

𝑝+
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Simpler: PNE and complete Information

Theorem. 𝑃𝑜𝐴 = 1

Proof. Highest value player can deviate to 𝑝 𝐛 +

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 =𝑣1 − 𝑅𝐸𝑉(𝑏)

𝑢1 𝑝 𝐛 +, 𝐛−𝐢 = 𝑣1 − 𝑝 𝐛 +

𝑢𝑖 0, 𝐛−𝐢 = 0
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖 𝑈(𝑏) ≥

𝑈 𝑏 + 𝑅𝐸𝑉 𝑏 ≥ 𝑣1

𝑆𝑊(𝑏) ≥ 𝑣1

Recall PoA=1 Proof

Can we find 𝑏𝑖
′ that 

depend only on 𝑣𝑖?



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 𝟐

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖

𝑣𝑖
𝑣𝑖
2

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝑣𝑖
2

1

𝑣𝑖
𝑣𝑖
2

𝑝 𝐛

𝑝 𝑏 ≥
𝑣𝑖
2

1

OR

𝑏𝑖 𝑏𝑖

𝑥(𝑏𝑖 , 𝐛−𝐢)



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 𝟐

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖

𝑣𝑖
𝑣𝑖
2

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢

1

𝑏𝑖

𝑝 𝑏
≥
1

2
⋅

𝑣𝑖

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝑣𝑖

𝑏𝑖

≥



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 𝟐

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ≥

𝑣𝑖
2

19

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 𝟐

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ⋅ 𝑥𝑖

∗ 𝐯 ≥
𝑣𝑖
2
⋅ 𝑥𝑖

∗(𝐯)

20

𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖 𝑈𝑇𝐼𝐿(𝐛) ≥

𝑈𝑇𝐼𝐿 𝐛 + 𝑅𝐸𝑉 𝐛 ≥
1

2
𝑂𝑃𝑇(𝐯)

𝑆𝑊(𝐛) ≥
1

2
𝑂𝑃𝑇(𝐯)

 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ≥

1

2
𝑂𝑃𝑇(𝐯)



(price and other values oblivious)

New Theorem. 𝑃𝑜𝐴 ≤ 2

Proof. Each player can deviate to 𝑏𝑖
′ =

𝑣𝑖

2

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ⋅ 𝑥𝑖

∗ 𝐯 ≥
𝑣𝑖
2
⋅ 𝑥𝑖

∗(𝐯)
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𝑣1

𝑣𝑖

𝑣𝑛

≥
≥

𝑏1

𝑏𝑖

𝑏𝑛

𝑝 𝐛 = max
𝑖

𝑏𝑖 𝑈𝑇𝐼𝐿(𝐛) ≥

𝑈𝑇𝐼𝐿 𝐛 + 𝑅𝐸𝑉 𝐛 ≥
1

2
𝑂𝑃𝑇(𝐯)

𝑆𝑊(𝑏) ≥
1

2
𝑂𝑃𝑇(𝐯)

 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 + 𝑝 𝐛 ≥

1

2
𝑂𝑃𝑇(𝐯) 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑝 𝐛 ≥

1

2
𝑂𝑃𝑇(𝐯) 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑅𝐸𝑉 𝐛 ≥

1

2
𝑂𝑃𝑇(𝐯)

Key Deviation PropertySmoothness Property

Exists 𝑏𝑖
′ depending only on own value
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Exists 𝑏𝑖
′ depending only on own value

𝜆, 𝜇 −Smoothness via own-value deviations

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛
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Exists 𝑏𝑖
′ depending only on own value

𝜆, 𝜇 −Smoothness via own-value deviations

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛

Note. Smoothness is property of auction not equilibrium
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Exists 𝑏𝑖
′ depending only on own value

𝜆, 𝜇 −Smoothness via own-value deviations

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛

Applies to any auction: Not First-Price Auction specific
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𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)

Proof. If 𝐛 PNE then

𝑈𝑇𝐼𝐿 𝐛 + 𝜇 ⋅ 𝑅𝐸𝑉(𝐛) ≥

𝑈𝑇𝐼𝐿 𝐛 + 𝜇 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 𝐯

𝑆𝑊 𝐛 + (𝜇 − 1) ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 𝐯Note. SW 𝐛 ≥ 𝑅𝐸𝑉 𝐛

𝑆𝑊 𝐛 + (𝜇 − 1) ⋅ 𝑆𝑊 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 𝐯

𝜇 ⋅ 𝑆𝑊 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 𝐯

Note. UTIL 𝐛 = 𝑆𝑊 𝐛 − 𝑅𝐸𝑉 𝐛



First Extension Theorem. If PNE PoA proved by 
showing 𝜆, 𝜇 −smoothness property via own-value 
deviations, then PoA bound extends to BNE with 
correlated values

Note. Not specific to First-Price Auction
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𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)

Proof. If 𝒃(⋅) BNE then

𝑈𝑇𝐼𝐿 𝑏 + 𝜇 ⋅ 𝑅𝐸𝑉(𝑏) ≥

𝐸 𝑢𝑖 𝐛 𝐯 ≥ 𝐸 𝑢𝑖
𝑣𝑖
2
, 𝐛−𝐢 𝐯−𝐢

𝐸𝑣[ ]

Just redo PNE proof in expectation over values.



𝑣1

𝑣𝑖

𝑣𝑛
𝑝(𝐛) = max

𝑖
𝑏𝑖

𝑏1
′ ∼ 𝐻 𝑣1

• Is half value best own-value deviation?

• Bid 𝑏𝑖
′ ∼ 𝐻 𝑣𝑖 with support 0, 1 −

1

𝑒
𝑣𝑖 and

ℎ 𝑏𝑖
′ =

1

𝑣𝑖 − 𝑏𝑖
′

𝑏𝑖
′ ∼ 𝐻 𝑣𝑖

𝑏𝑛
′ ∼ 𝐻 𝑣𝑛
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𝑣1

𝑣𝑖

𝑣𝑛
𝑝(𝐛) = max

𝑖
𝑏𝑖

𝑏1
′ ∼ 𝐻 𝑣1

𝑏𝑖
′ ∼ 𝐻 𝑣𝑖

𝑏𝑛
′ ∼ 𝐻 𝑣𝑛

29

𝑣𝑖𝑏𝑖
′

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝑢𝑖(𝑏𝑖
′)

𝑏𝑖
1 −

1

𝑒
𝑣𝑖

w.p. 
1

𝑣𝑖−𝑏𝑖
′

• Bid 𝑏𝑖
′ ∼ 𝐻 𝑣𝑖 with support 0, 1 −

1

𝑒
𝑣𝑖 and ℎ 𝑏𝑖

′ =
1

𝑣𝑖−𝑏𝑖
′



𝑣1

𝑣𝑖

𝑣𝑛
𝑝(𝐛) = max

𝑖
𝑏𝑖

𝑏1
′ ∼ 𝐻 𝑣1

𝑏𝑖
′ ∼ 𝐻 𝑣𝑖

𝑏𝑛
′ ∼ 𝐻 𝑣𝑛

30

𝑣𝑖𝑏𝑖
′

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛
𝑏𝑖

1 −
1

𝑒
𝑣𝑖

w.p. 
1

𝑣𝑖−𝑏𝑖
′

• Bid 𝑏𝑖
′ ∼ 𝐻 𝑣𝑖 with support 0, 1 −

1

𝑒
𝑣𝑖 and ℎ 𝑏𝑖

′ =
1

𝑣𝑖−𝑏𝑖
′



𝑣1

𝑣𝑖

𝑣𝑛
𝑝(𝐛) = max

𝑖
𝑏𝑖

𝑏1
′ ∼ 𝐻 𝑣1

𝑏𝑖
′ ∼ 𝐻 𝑣𝑖

𝑏𝑛
′ ∼ 𝐻 𝑣𝑛

31

𝑣𝑖

𝑥(𝑏𝑖 , 𝐛−𝐢)

𝑝 𝐛

𝐸 𝑢𝑖 𝑏𝑖
′

𝑏𝑖
1 −

1

𝑒
𝑣𝑖

𝑝 𝑏

𝐸 𝑢𝑖 𝑏𝑖
′ + 𝑝 𝑏 > 1 −

1

𝑒
𝑣𝑖

• So in fact: 1 −
1

𝑒
, 1 -smooth. 𝑃𝑜𝐴 ≤

𝑒

𝑒−1
≈ 1.58

• Bid 𝑏𝑖
′ ∼ 𝐻 𝑣𝑖 with support 0, 1 −

1

𝑒
𝑣𝑖 and ℎ 𝑏𝑖

′ =
1

𝑣𝑖−𝑏𝑖
′



RECAP

 First Extension Thm. If proof of PNE PoA
based on 𝜆, 𝜇 −smoothness via own-
value based deviations then PoA of BNE 
with correlated values also 𝜇/𝜆

QUESTIONS?

Complete info PNE 

to BNE with 

correlated values
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Single auction to simultaneous auctions 

PNE complete information

33



 Target setting. Simultaneous single-item 
first price auctions with unit-demand 
bidders (complete information PNE). 

 Simple setting. Single-item first price 
auction (complete information PNE).

 Thm. If proof of PNE PoA of single-item 
based on proving (𝜆, 𝜇)-smoothness via 
own-value deviation then PNE PoA of 
simultaneous auctions also 𝜇/𝜆.

Single auction to 

simultaneous 

auctions 

PNE complete 

information

34
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1

𝑖

𝑛

𝑣𝑖
1

𝑣𝑖
2

𝑣𝑖
3Unit-Demand Valuation

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗



𝑏𝑖
1

𝑏𝑖
2

𝑏𝑖
3

1

𝑖

𝑛

Unit-Demand Valuation

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗



𝑝1
𝑣𝑖
𝑗

2

𝑗𝑖
∗

Can we derive global efficiency guarantees from local 
1

2
, 1 −smoothness of each first price auction? 

APPROACH: Prove smoothness of the global 

mechanism

GOAL: Construct global deviation

IDEA: Pick your item in the optimal allocation 

and perform the smoothness deviation for your 

local value 𝑣𝑖
𝑗
, i.e. 

𝑣𝑖
𝑗

2

0

0



Smoothness locally: 

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑝𝑗𝑖

∗ 𝐛 ≥
𝑣𝑖
𝑗𝑖
∗

2

Summing over players:

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑅𝐸𝑉(𝐛) ≥

1

2
𝑂𝑃𝑇(𝐯)

Implying 
1

2
, 1 −smoothness property globally. 

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝑅𝐸𝑉 𝐛 ≥

1

2
⋅ 𝑂𝑃𝑇(𝐯)



Second Extension Theorem. If proof of PNE PoA of single-item 
auction based on proving (𝜆, 𝜇)-smoothness smoothness via own-
value deviation then PNE PoA of simultaneous auctions also ≤
𝜇/𝜆.

39



 BNE PoA of simultaneous single-item auctions with correlated 
unit-demand values ≤ 1/2?

 Not really: deviation not oblivious to opponent valuations 

 Item in the optimal matching depends on values of opponents

40



41

Exists 𝑏𝑖
′ depending only on valuation profile 𝐯

(not 𝐛−𝐢)

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛

What we showed:



RECAP

Second Extension Theorem. If proof of 
PNE PoA of single-item auction based on 
proving (𝜆, 𝜇)-smoothness then PNE PoA of 
simultaneous auctions also ≤ 𝜇/𝜆.

Next we will extend above to BNE

QUESTIONS?

Single auction to 

simultaneous 

auctions

PNE complete 

information

42



Complete info PNE to BNE with independent values

43



 Target setting. First Price Bayes-Nash 
Equilibrium with asymmetric 
independent values

 Simple setting. Complete information Pure 
Nash Equilibrium

 Thm. If proof of PNE PoA based on (𝜆, 𝜇)-
smoothness via valuation profile 
dependent deviation then PoA of BNE with 
independent values also 𝜇/𝜆

Complete info PNE 

to BNE with 

independent values

44
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45

Exists 𝑏𝑖
′ depending only on valuation profile 𝐯

(not 𝐛−𝐢)

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛

𝜆, 𝜇 −Smoothness via valuation profile deviations



Relax First Extension Theorem to allow for dependence 
on opponents values

To counterbalance: assume independent values

46

Recall First Extension Theorem. 

If PNE PoA proved by showing 𝜆, 𝜇 −smoothness 
property via own-value deviations, then PoA bound 
extends to BNE with correlated values



𝑣1

𝑣𝑖

𝑣𝑛

𝐹1 ∼

𝐹𝑖 ∼

𝐹𝑛 ∼

• Need to construct feasible BNE 

deviations

• Each player random samples the others 

values and deviates as if that was the 

true values of his opponents

• Above works out, due to independence of 

value distributions

47

𝑏𝑖
′ 𝑣𝑖 , 𝐰−𝐢 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝑣𝑖,𝐰−𝐢

𝑗𝑖
∗ 𝑣𝑖 , 𝐰−𝐢



𝑏𝑖
′ 𝑣𝑖 , 𝐰−𝐢 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝑣𝑖,𝐰−𝐢

𝑣𝑖𝐹𝑖 ∼

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸 𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

𝑤−𝑖 ∼ 𝐹−𝑖

𝐯−𝐢 ∼ 𝐹𝑖

Utility of deviation of player 𝑖
In expectation over his own 

value too.

Utility of deviation from a random sample of 

player 𝑖 who knows the values of all other 

players.

But where players play non equilibrium 

strategies.

𝑏1 𝑣1

𝑏𝑗 𝑣𝑗

𝑏𝑛 𝑣𝑛

48
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𝐰−𝐢 ∼ 𝐹𝑖

𝑏1 𝑣1

𝑏𝑗 𝑣𝑗

𝑏𝑛 𝑣𝑛

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸 𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

Utility of deviation of player 𝑖
In expectation over his own 

value too.

Utility of deviation from a random sample of 

player 𝑖 who knows the values of all other 

players.

But where players play non equilibrium 

strategies.

𝑤𝑖𝐹𝑖 ∼ 𝑏𝑖
′ 𝐰 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝐰



 

𝑖

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸  

𝑖

𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

Sum of deviating utilities

50

Sum of complete information 

setting deviating utilities

𝑏𝑖
′ 𝐰 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝐰

𝐰−𝐢 ∼ 𝐹𝑖

𝑏1 𝑣1

𝑏𝑗 𝑣𝑗

𝑏𝑛 𝑣𝑛

𝑤𝑖𝐹𝑖 ∼



 

𝑖

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸  

𝑖

𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

≥ 𝐸 𝜆 ⋅ 𝑂𝑃𝑇 𝐰 − 𝜇 ⋅ 𝑅𝐸𝑉 𝐛 𝐯Utility of deviation of player 𝑖

51

By smoothness on the left

𝑏𝑖
′ 𝐰 =

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝐰

𝐰−𝐢 ∼ 𝐹𝑖

𝑏1 𝑣1

𝑏𝑗 𝑣𝑗

𝑏𝑛 𝑣𝑛

𝑤𝑖𝐹𝑖 ∼

𝑢𝑖 𝑏𝑖
′ 𝐰 ,𝐛−𝐢 𝐯−𝐢 ≥

1

2
⋅ 𝑣𝑖

𝑗𝑖
∗ 𝐰

− 𝑝𝑗𝑖
∗ 𝐰 𝐛 𝐯

Recall. Exists 𝑏𝑖
′ depending 

only on valuation profile 𝐯
(not 𝐛−𝐢)

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)

For any bid vector 𝐛



 

𝑖

𝐸 𝑢𝑖
𝑣𝑖 𝑏𝑖

′ 𝑣𝑖 , 𝐰−𝐢 , 𝐛−𝐢 𝐯−𝐢 = 𝐸  

𝑖

𝑢𝑖
𝑤𝑖 𝑏𝑖

′ 𝐰 ,𝐛−𝐢 𝐯−𝐢

≥ 𝐸 𝜆 ⋅ 𝑂𝑃𝑇 𝐰 − 𝜇 ⋅ 𝑅𝐸𝑉 𝐛 𝐯

52

Found 𝑏𝑖
′ that depend only on 𝑣𝑖 such that:

 

𝑖

𝐸 𝑢𝑖 𝑏𝑖
′ 𝑣𝑖 , 𝐛−𝐢 𝐯−𝐢 + 𝝁 ⋅ 𝐸 𝑅𝐸𝑉 𝐛 𝐯 ≥ 𝝀 ⋅ 𝐸 𝑂𝑃𝑇 𝐯

Rest is easy



Third Extension Theorem. If PNE PoA proved by 
showing 𝜆, 𝜇 −smoothness property via valuation 
profile dependent deviations, then PoA bound extends to 
BNE with independent values

53



RECAP

 Thm. If proof of PNE PoA based on (𝜆, 𝜇)-
smoothness via valuation profile 
dependent deviation then PoA of BNE with 
independent values also 𝜇/𝜆

 Corollary. If PNE PoA of single-item 
auction proved via (𝜆, 𝜇)-smoothness via 
valuation profile dependent deviation, 
then BNE of simultaneous auctions with 
unit-demand and independent also 𝜇/𝜆

Corollary. BNE PoA of simultaneous first 
price auctions with submodular bidders  ≤
𝑒

𝑒−1

QUESTIONS?

Complete info PNE 

to BNE with 

independent values

54



RECAP

 Thm. If proof of PNE PoA based on (𝜆, 𝜇)-
smoothness via valuation profile 
dependent deviation then PoA of BNE with 
independent values also 𝜇/𝜆

 Corollary. If PNE PoA of single-item 
auction proved via (𝜆, 𝜇)-smoothness via 
valuation profile dependent deviation, 
then BNE of simultaneous auctions with 
submodular and independent also 𝜇/𝜆

 Corollary. BNE PoA of simultaneous first 
price auctions with submodular bidders  
≤

𝑒

𝑒−1

QUESTIONS?

Complete info PNE 

to BNE with 

independent values

55
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Focusing on complete info PNE, 
might be restrictive in some settings

Working with the distributions 
directly can potentially yield better 
bounds

Arguing about 

distributions

57
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 Price of the item follows a distribution D

 What if a player deviates to bidding a 
random sample from price distribution

 The probability that he wins is ½ by 
symmetry of the two distributions

 He pays at most 𝐸[𝑝]

𝐸 𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 𝐯−𝐢 ≥

𝑣𝑖
2
− 𝐸[𝑝]

𝑣1 ∼ 𝐹1

𝑝 ∼ 𝐷

𝑏1(𝑣1)

𝑣𝑖 ∼ 𝐹𝑖

𝑣𝑛 ∼ 𝐹𝑛

𝑏𝑖(𝑣𝑖)

𝑏𝑛(𝑣𝑛)

58



 Same spirit: exists deviations that depend on 
price distribution such that

 

𝑖

𝐸 𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 𝐯−𝐢 + 𝐸 𝑅𝐸𝑉 𝐛 𝐯 ≥

𝐸 𝑂𝑃𝑇 𝐯

2

 BNE PoA≤ 2

𝑣1 ∼ 𝐹1

𝑝 ∼ 𝐷

𝑏1(𝑣1)

𝑣𝑖 ∼ 𝐹𝑖

𝑣𝑛 ∼ 𝐹𝑛

𝑏𝑖(𝑣𝑖)

𝑏𝑛(𝑣𝑛)

59



 Correlated deviating strategies across multiple auctions

 Decomposition of deviation analysis to separate deviations imposes 
independent randomness

1

𝑖

𝑛

𝑏𝑖1
′ ∼ 𝐷1

𝑏𝑖2
′ ∼ 𝐷2

60



 Correlation can achieve higher deviating utility

1

𝑖

𝑛

𝑏𝑖1
′

𝑏𝑖2
′

Sub-additive valuations
𝑣𝑖 𝑆 + 𝑣𝑖 𝑇 ≥ 𝑣𝑖(𝑆 ∪ 𝑇)

𝑃1

𝑃2

∼ 𝐷

𝑆

𝐵𝑖
′ ∼ 𝐷

61



 Correlation can achieve higher deviating utility

1

𝑖

𝑛

𝑏1
′

𝑏2
′

Sub-additive valuations
𝑣𝑖 𝑆 + 𝑣𝑖 𝑇 ≥ 𝑣𝑖(𝑆 ∪ 𝑇)

𝑝1

𝑝2

∼ 𝐷

𝑆

𝒃′ ∼ 𝐷

• Draw bid from price distribution

• X(𝑏, 𝑝): set of won items with 
bid vector b and price vector p

• Either I win or price wins:
𝑋 𝑏, 𝑝 + 𝑋 𝑝, 𝑏 = 𝑆

• By symmetry:

𝐸 𝑣 𝑋 𝑏′, 𝑝 = 𝐸 𝑣 𝑋 𝑝, 𝑏′

• Value collected: 𝐸 𝑣 𝑋 𝑏′, 𝑝 =
1

2
𝐸 𝑣 𝑋 𝑏′, 𝑝 + 𝑣 𝑋 𝑝, 𝑏′ ≥

1

2
𝐸 𝑣 𝑆 62



Drawing deviation from price 
distribution!

Buys correlation across auctions

Better bounds beyond submodular

Arguing about 

distributions

63
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Vickrey Auction  - Truthful, efficient, simple

(second price)

but has many bad Nash equilibria

Assume bid ≤ value (no overbidding)

Theorem. All Nash equilibria efficient. highest 
value wins

$2 $5 $7 $3 $4

Pays 

$5

$99 $0 $0 $0 $0

Pays 

$0

65



 Same approach but replace Payments with “Winning Bids” and use 

no-overbidding

No overbidding assumption: 

𝐵𝐼𝐷𝑆 ≤ 𝑊𝐸𝐿𝐹𝐴𝑅𝐸

Then 𝑃𝑜𝐴 ≤
1+𝜇

𝜆
66

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝐵𝐼𝐷𝑆 𝐛 ≥ 𝝀 ⋅ 𝑂𝑃𝑇(𝐯)For any bid vector 𝐛



 Deviate to bidding your value: 𝑏𝑖
′ 𝑣𝑖 = 𝑣𝑖

 𝐵(𝐛): winning bid

 Either winning bid B(𝐛) ≥ 𝑣𝑖 or  𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 = 𝑣𝑖 − 𝐵𝑖 𝐛

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝐵𝑖 𝐛 ≥ 𝑣𝑖 ⇒ 𝑢𝑖 𝑏𝑖

′, 𝐛−𝐢 + 𝐵𝑖 𝐛 ⋅ 𝑥𝑖
∗ 𝐯 ≥ 𝑣𝑖 ⋅ 𝑥𝑖

∗ 𝐯

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝐵𝐼𝐷𝑆 𝐛 ≥ 𝑂𝑃𝑇(𝐯)
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 Vickrey auction (1,1)-smooth using bids

 𝑃𝑜𝐴 ≤ 2: under no-overbidding

 Vickrey is efficient?

 𝑃𝑜𝐴 ≤ 2: extends to simultaneous Vickrey auctions even under 
BNE with independent values

68
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 Allocate slots by bid

 Charge bid per-click

 Utility:
𝑢𝑖 𝑏 = 𝑎𝜎 𝑖 𝑣𝑖 − 𝑏𝑖

𝑎1

𝑎2

𝑎3

𝑎4

1

𝑖

𝑛

Advertisers Slots

CTRs

𝑏1

𝑏𝑖

𝑏𝑛

𝑣1 ∼ 𝐹1

𝑣𝑖 ∼ 𝐹𝑖

𝑣𝑛 ∼ 𝐹𝑛
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 Allocated items greedily to 
highest remaining bid

 If allocated item 𝑗 𝑏 , charge 𝑏𝑖
𝑗 𝑏

 Utility:

𝑢𝑖 𝑏 = 𝑣𝑖
𝑗(𝑏)

− 𝑏𝑖
𝑗 𝑏

1

𝑖

𝑛

Unit-Demand Bidders Items

𝑏𝑖1

Unit-Demand

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗

𝑏𝑖2

𝑏𝑖3

71



 Each bidder submits 𝑏𝑖 and 𝑇𝑖

 Run some algorithm (optimal or 
greedy 𝑂 𝑚 -approx.) over reported 
single-minded values

 Charge bid 𝑏𝑖 if allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2

72
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GFP

 Allocate slots by bid

 Charge bid per-click

 Utility:
𝑢𝑖 𝑏 = 𝑎𝜎 𝑖 𝑣𝑖 − 𝑏𝑖

Matching 
Markets-Greedy 
Allocation
 Allocated items greedily to 

highest remaining bid

 If allocated item 𝑗 𝑏 , 
charge 𝑏𝑖

𝑗 𝑏

 Utility:

𝑢𝑖 𝑏 = 𝑣𝑖
𝑗(𝑏)

− 𝑏𝑖
𝑗 𝑏

Single-Minded 
Combinatorial 
Auctions

 Each bidder submits 𝑏𝑖
and 𝑇𝑖

 Run some algorithm 
(optimal or greedy 
𝑂 𝑚 -approx.) over 
reported single-minded 
values

 Charge bid 𝑏𝑖 if 
allocated
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 Allocate slots by bid

 Charge bid per-click

 Utility:
𝑢𝑖 𝑏 = 𝑎𝜎 𝑖 𝑣𝑖 − 𝑏𝑖

𝑎1

𝑎2

𝑎3

1

𝑖

𝑛

Advertisers Slots

CTRs

𝑏1

𝑏𝑖

𝑏𝑛

𝑣1 ∼ 𝐹1

𝑣𝑖 ∼ 𝐹𝑖

𝑣𝑛 ∼ 𝐹𝑛
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 𝑏𝑖
′ =

𝑣𝑖

2

 Either bid of player at slot opt(𝑖) ≥
𝑣𝑖

2

 Or utility ≥
𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖

2

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 𝑎𝑜𝑝𝑡 𝑖 ⋅ 𝑏𝜋 𝑜𝑝𝑡 𝑖 ≥

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖

2

 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 

𝑖

𝑎𝑜𝑝𝑡 𝑖 ⋅ 𝑏𝜋 𝑜𝑝𝑡 𝑖 ≥  

𝑖

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖

2

 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 𝑅𝐸𝑉 𝑏 ≥

1

2
⋅ 𝑂𝑃𝑇(𝑣)

𝑎1

𝑎2

𝑎3

1

2

3

Advertisers Slots

CTRs

𝑣1

𝑣2

𝑣3

76

≥
≥

𝑜𝑝𝑡 1

𝑜𝑝𝑡 2

𝑜𝑝𝑡 3

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 

𝑖

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖



 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 𝑅𝐸𝑉 𝑏 ≥

1

2
⋅ 𝑂𝑃𝑇(𝑣)

Thm. 𝑃𝑜𝐴 ≤ 2

Proof. 

 

𝑖

𝑢𝑖 𝑏 ≥ 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖

𝑈𝑇𝐼𝐿 𝑏 + 𝑅𝐸𝑉 𝑏 ≥
1

2
⋅ 𝑂𝑃𝑇(𝑣)

𝑆𝑊 𝑣 ≥
1

2
⋅ 𝑂𝑃𝑇(𝑣)

𝑎1

𝑎2

𝑎3

1

2

3

Advertisers Slots

CTRs

𝑣1

𝑣2

𝑣3
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≥
≥

𝑜𝑝𝑡 1

𝑜𝑝𝑡 2

𝑜𝑝𝑡 3

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 

𝑖

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖



 

𝑖

𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 + 𝑅𝐸𝑉 𝑏 ≥

1

2
⋅ 𝑂𝑃𝑇(𝑣)

Thm. Bayes-Nash 𝑃𝑜𝐴 ≤ 2

Proof. 

 

𝑖

𝐸 𝑢𝑖 𝑏 𝐯 ≥  

𝑖

𝐸 𝑢𝑖
𝑣𝑖
2
, 𝑏−𝑖 𝑣−𝑖

𝐸 𝑈𝑇𝐼𝐿 𝑏 𝐯 + 𝐸 𝑅𝐸𝑉 𝑏 𝐯 ≥
1

2
⋅ 𝐸 𝑂𝑃𝑇 𝐯

𝐸 𝑆𝑊 b 𝐯 ≥
1

2
⋅ 𝐸 𝑂𝑃𝑇 𝐯

𝑎1

𝑎2

𝑎3

1

2

3

Advertisers Slots

CTRs

𝑣1

𝑣2

𝑣3
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≥
≥

𝑜𝑝𝑡 1

𝑜𝑝𝑡 2

𝑜𝑝𝑡 3

 

𝑖

𝑢𝑖 𝑏𝑖
′, 𝐛−𝐢 + 𝝁 ⋅ 𝑅𝐸𝑉 𝐛 ≥ 𝝀 ⋅ 

𝑖

𝑎𝑜𝑝𝑡 𝑖 𝑣𝑖



 Allocated items greedily to 
highest remaining bid

 If allocated item 𝑗 𝑏 , charge 𝑏𝑖
𝑗 𝑏

 Utility:

𝑢𝑖 𝑏 = 𝑣𝑖
𝑗(𝑏)

− 𝑏𝑖
𝑗 𝑏

1

𝑖

𝑛

Unit-Demand Bidders Items

𝑏𝑖1

Unit-Demand

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗

𝑏𝑖2

𝑏𝑖3
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 Deviation

𝑏𝑖
𝑗
=
𝑣𝑖
𝑗

2

 Only for 𝑗 =item in optimal matching

 If 𝑝𝑗 𝑏 is price of item 𝑗

𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖 ≥

𝑣𝑖
𝑗

2
− 𝑝𝑗(𝑏)

 Thus 
1

2
, 1 -smooth via valuation profile 

dependent deviations

1

𝑖

𝑛

Unit-Demand Bidders Items

𝑏𝑖1

Unit-Demand

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗

𝑏𝑖2

𝑏𝑖3

80



 In fact

𝑏𝑖
𝑗
∼ 𝐻 𝑣𝑖

𝑗

 Only for 𝑗 =item in optimal matching

𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖 ≥ 1 −

1

𝑒
𝑣𝑖
𝑗
− 𝑝𝑗(𝑏)

 Thus 1 −
1

𝑒
, 1 -smooth

 Greedy on true values: 2-approx.

 Greedy on reported values: 1.58-approx.!

1

𝑖

𝑛

Unit-Demand Bidders Items

𝑏𝑖1

Unit-Demand

𝑣𝑖 𝑆 = max
𝑗∈𝑆

𝑣𝑖
𝑗

𝑏𝑖2

𝑏𝑖3
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Greedy on true values: 2-approx.

At equilibrium:
 Player 2 never goes for first item

 Too expensive

 So allocation is efficient

Unit-Demand Bidders Items

1 − 𝜖

0

1

1 − 𝜖
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 Each bidder submits 𝑏𝑖 and 𝑇𝑖

 Run some algorithm over 
reported single-minded values

 Charge bid 𝑏𝑖 if allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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 Each bidder submits 𝑏𝑖 and 𝑇𝑖

 Run optimal algorithm over 
reported single-minded values

 Charge bid 𝑏𝑖 if allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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𝑚 Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1 = 𝑆2

……
…

…

𝑣 = 1 − 𝜖

𝑣 = 1 − 𝜖

𝑣 = 1 − 𝜖

𝑣1 = 1

𝑣2 = 1

At equilibrium: 

• 1 and 2 bid 𝑏 = 1, T = 𝑚

• Other players bid 0

• 𝑆𝑊 = 1 but 𝑂𝑃𝑇 = 𝑚
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 Each bidder submits 𝑏𝑖 and 𝑇𝑖

 Run 𝒎−Approximation 
Algorithm over reported 
single-minded values

 Charge bid 𝑏𝑖 if allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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𝒎−Approximation Algorithm 

 Reweight bids as:  𝒃𝒊 =
𝑏𝑖

|𝑇𝑖|

 Allocate in decreasing order of  𝒃𝒊

 Charge bid 𝑏𝑖 if allocated

 Idea: A player can block at most 
𝑚 other players of same value 

from being allocated

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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𝑚 Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1 = 𝑆2

……
…

…

𝑣 = 1 − 𝜖

𝑣 = 1 − 𝜖

𝑣 = 1 − 𝜖

𝑣1 = 1

𝑣2 = 1

Large players cannot block 

all small players
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 Deviation 𝑏𝑖
′: bid 

𝑣𝑖

2
for 𝑆𝑖

 Let 𝜏𝑖(b): Threshold bid for being 
allocated 𝑆𝑖 (including bid of player)

 By similar analysis:

𝑢𝑖 𝑏𝑖
′, 𝑏−𝑖 + 𝜏𝑖(𝑏) ≥

𝑣𝑖
2

 Need to show:  𝑖 𝜏𝑖 𝑏 ≤ 𝑐 ⋅ 𝑅𝐸𝑉

1

2

3

Single-Minded Bidders Items

Single-minded:
𝑣𝑖 for whole set 𝑆𝑖

𝑆1

𝑆3

𝑆2
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 Fact: Algorithm is 𝑚−approximation

 Think of hypothetical situation where each bidder is duplicated

 Duplicate bidder bids: 𝑏𝑖 = 𝜏𝑖 𝑏 − 𝜖 for set 𝑆𝑖

 By definition of 𝜏𝑖(𝑏): algorithm doesn’t allocate to them

 Allocating to duplicate bidders yields welfare 

 

𝑖

𝜏𝑖(𝑏)

 Since algorithm is 𝑚−approximation: 𝑅𝐸𝑉 =  𝑖 𝑏𝑖𝑋𝑖(𝑏) ≥
1

𝑚
 𝑖 𝜏𝑖(𝑏)
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 Approximate mechanism: 
1

2
, 𝑚 −smooth

 Welfare at equilibrium 𝑂 𝑚 -approximate NOT 𝑂 𝑚 −approximate
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 Smoothness

Roughgarden STOC’09, Lucier, Paes Leme EC’11, Roughgarden EC’12, Syrgkanis ‘12,

Syrgkanis, Tardos STOC’13  

 Simultaneous First-Second Price Single-Item Auctions

Bikhchandani GEB’96, Christodoulou, Kovacs, Schapira ICALP’08, Bhawalkar, Roughgarden
SODA’11, Hassidim, Kaplan, Mansour, Nisan EC’11, Feldman, Fu, Gravin, Lucier STOC’13

 Auctions based on Greedy Allocation Algorithms

Lucier, Borodin SODA’10

 AdAuctions (GSP, GFP)

Paes-Leme Tardos FOCS’10, Lucier, Paes-Leme + CKKK EC’11

 Sequential First/Second Price Auctions

Paes Leme, Syrgkanis, Tardos SODA’12, Syrgkanis, Tardos EC’12

 Multi-Unit Auctions

Bart de Keijzer et al. ESA’13

All above can be thought as smoothness proofs and some are compositions of auctions



Price of Anarchy in Auctions and Mechanisms

 Dutting, Henzinger, Stanberger. Valuation Compressions in VCG-Based Combinatorial Auctions

 Jose R. Correa, Andreas S. Schulz and Nicolas E. Stier-Moses. The Price of Anarchy of the 
Proportional Allocation Mechanism Revisited

 Jason Hartline, Darrell Hoy and Sam Taggart. Interim Smoothness for Auction Welfare and 
Revenue. (poster)

 Michal Feldman, Vasilis Syrgkanis and Brendan Lucier. Limits of Efficiency in Sequential Auctions

 Brendan Lucier, Yaron Singer, Vasilis Syrgkanis and Eva Tardos. Equilibrium in Combinatorial 
Public Projects

Price of Anarchy in Games

 Xinran He and David Kempe. Price of Anarchy for the N-player Competitive Cascade Game with 
Submodular Activation Functions

 Mona Rahn and Guido Schäfer. Bounding the Inefficiency of Altruism Through Social Contribution 
Games

 Yoram Bachrach, Vasilis Syrgkanis and Milan Vojnovic. Incentives and Efficiency in Uncertain 
Collaborative Environments


