
Digit Recognition
Sourabh Ghurye, Nikhil Vyas, Utkarsh Mall
130050001, 130050023, 130050037

Problem Statement

Given a Training Data with images and corresponding digits to learn to classify
new data among the characters.

This is a subcase of OCR which is meant to recognise characters. OCR is useful
as a form of data entry from printed paper records as well as to digitalize
printed texts.

Overview

We use MNIST dataset for training and testing. The input is a 28*28 (784)
grayscale image i.e. each pixel has an associated float in between 0 and 1.

The approaches implement for solving the problem are:

a. Neural Networks
b. Support Vector Machines
c. k-Nearest Neighbor Classifier

Neural Network

Neural Network is implemented through PyBrain library. The structure of the
neural network is (784, 30, 10) i.e. 784 (28*28) input nodes, 30 hidden layer
neurons and 10 output layer neurons. Each output layer neuron represents a
digit.

Data on error on test data vs number of iterations was measured till it
converged.

Neural Network

Support Vector Machines

Support Vector Machines (SVM) was implemented using scikit-learn library for
python.

The error measured on the test data was about 3.3%, lower than the final error
of the neural network.

k-Nearest Neighbor Classifier

Nearest Neighbor classifier was implemented using scikit-learn library for
python.

The error on the training was recorded for different numbers on nearest
neighbors. It is in the form of peaks (on even numbers) and troughs (on odd
numbers) with the lowest error being 3.19 % at k = 3. This is as even number
add a random error compared to the odd numbers.

k-Nearest Neighbor

Precision and Recall

We calculated precision, recall and confusion matrix for all three classifiers.

Neural Net svm KNN

User Interface

We created user interface that enables user to draw
digits and get recognized output using the three
different methods.

Conclusion and future work

Amongst the three implementations k-Nearest Neighbor performed the best
followed by Support Vector Machines with Neural Neural at last.

This was mainly as the neural network was unoptimized. As a continuation of
this work a convolutional neural network with sparsity (SCNNs) can be
implemented. These are designed so as to exploit the structure of an image
and give much better results than both Support Vector Machines and k-Nearest
Neighbor.

