

Detailed Design Document 7th November 2015

Resume Generator
Sourabh Ghurye (130050001) Nikhil Vyas (130050023) Utkarsh Mall(130050037)

Introduction

The application generates LaTeX based Resume for students. Student can create new

resume or can view/edit resumes already saved to his/her account. The users can select themes

for resume or can select the resume type. Students will also upload documents required for the

verification. Placement Coordinators can view submitted resumes and documents on their

interface. Once verification is done, users will be notified of it.

ER Diagram

figure 1

Normalization

Normalization is used to eliminate data redundancy in the database. We did the same in

our design. It also helped us to ensure that data is stored in a logical way.

Current version of our database implements 3NF where we have removed extra

dependencies which cause redundancy in the data.

Tables

Accounts : This table stores username, password, type for students/Placement co-ordinators

who currently have an account on the portal.

User Information : A table for fixed user informations which users will input during signup. It

stores Name(first,middle,last), Roll number, DoB, Sex, etc.

University Database : This table stores information pertaining to university such as Roll

Number, Name, CPI, Year, Department, Programme, etc. This information will be used for

account verification and will be imported to Resume.

Achievements : A table to store Academic achievements corresponding to particular user.. This

will be one-to-many mapping.

Projects : This table stores details related to projects done by users such as Guide, Course,

Description, etc.

Skills : This table stores user’s skills in various domains say, Computer languages, Tools, etc.

Courses : It has courses that a user wants to put on a resume. It will be verified from University

Database.

Extracurriculars : A table to store Extracurricular achievements corresponding to particular

user. This will be one-to-many mapping.

Submitted Resumes : This will contain the final version of resume submitted by particular user.

Documents : This stores documents submitted for verification.

Indexing

Importing data from all the tables for a particular resume is the bottleneck of this

application as there can be many versions. But data from all the tables is required for particular

[username, version] at a time. Hence, we keep an index on username which makes these

transactions very fast. University database (mainly courses) is expected to be much larger than

other tables. Therefore we also keep an index on it. It will be a primary index using Roll no. as a

key.

CREATE INDEX index_ach ON Achievements (username, version, order);

Similarly for other tables like Projects, Extracurriculars, etc.

 CREATE INDEX index_courses ON University_Courses (Roll No, Course ID);

Database Schema

figure 2

** PK: Primary Key FK: Foreign Key N: Nullable

Implementation Details

Classes :

1. Backend : This class implements the backend of our application. It provides functions to

Handle file operations, Compile Resumes, Upload to database, Download from the

database, etc.

2. LoginAccess : This class handles all the operations related to accounts. It allows user to

create new or use existing account. It also implements the functions to connect to

database.

Servlets :

1. pdfViewer : When user compiles his data, this servlet takes username, version and

passes it to function of Backend class to process data, generate the resume and render

it on the screen.

2. pcViewer : This servlet passes information to Backend class and allows Placement

Coordinator to view the resume when he/she selects the user for verification.

3. addRemark : This servlet handles the remark which are added by the placement

coordinators for the user’s version of resume.

4. deleteDocs : This allows the functionality for user to delete their documents from the

Database.

5. deleteResume : This allows the user to delete their resume from the Database.

6. docViewer : This servlets downloads documents from servlet for user to view them.

7. fileUploader : Using this the application can handle file uploading from the users.

8. verifyRes/unverifyRes : This handles the resume verification related details.

JSPs :

1. login.jsp: Users will be asked for username/password and will be redirected to his

account. If either of their username or password is wrong they will be asked to go login

window. Users can also go to signup window from here (See figure 3).

2. signup.jsp/signedin.jsp : User can create an account here. User will be asked to enter

some of his/her information which will later be used in the resume and for account

verification such as university roll number, name for verification and date of birth, gender

etc for resume (see figure 4).

3. home.jsp : This will be a dashboard for the user where he/she can view various versions

already submitted and can choose to edit them.

4. info.jsp : User can enter information which he/she wants to be appeared on their resume

such as Achievements, Projects, Extracurriculars, etc (see figure 5).

5. pcMain.jsp : This opens a window for placement coordinator where he/she can view

resumes uploaded by students and can also verify them. Coordinators can also see

inform users for their requirements for verification.

6. docUpload.jsp : Users can upload documents for verification on this window, which can

be later verified by, placement coordinators. User can also delete older or not of use

documents here.

External Packages Used

Jars : commons-fileupload-1.3.1.jar - for File uploading servlet

commons-io-2.4.jar - helper to above jar file

servlet-api-3.0.jar - Advanced version of servlet-api.jar

CSS : Twitter Bootstrap

How to run

1. Keep the resumeG directory at some location and in Backend.java change “String dirc”

to the location of resumeG folder.

2. Build path to above given jar files which are present in WEB-INF/lib

3. Active internet connection is required for bootstrap css to work.

4. Run sampledata.sql on the database server.

5. Change the database server specification in the “LoginAccess.java” class.

6. Start the tomcat server.

Interface Design

Signup :

figure 3

Login :

figure 4

Create Resume :

figure 5

Document uploading:

figure 6

Home of user:

figure 6

Window for placement coordinator:

figure 7

Modal view for document viewing:

figure 8

