

Hyperbolic Space

Machine learning has achieved great success by embedding objects into Euclidean space, recent some exciting work [1,2,3,4,5] proposed embeddings in hyperbolic space.

- → Hyperbolic space is a maximally symmetric, simply connected Riemannian manifold with a constant negative sectional curvature.
- → Hyperbolic space contains more space for embeddings: Area (Volume) of a disk (ball) in the space increases exponentially over the radius (polynomially in Euclidean space). Standard models:
 - Poincare ball model:

where g_e is the Euclidean metric.

□ Lorentz hyperboloid model:

$$(\mathcal{L}^n, g_l) : \mathcal{L}^n = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{x}^T g_l \boldsymbol{x} = -1, x_0 \}$$

Poincare half-space model:

 $(\mathcal{U}^n, g_u) : \mathcal{U}^n = \{ \boldsymbol{x} \in \mathbb{R}^n : x_n > 0 \}$, $g_u(\boldsymbol{x}) = \frac{g_e}{r^2}$

The NaN Problem

Hyperbolic embeddings are limited by numerical issues when the space is represented by floating-points.

• Computing the distance produces NaNs as points get far from the origin.

A simple task::

- 1. Start from the origin
- 2. Move in a direction for a distance

Proved: If the space is represented with floating-points ($fl(\cdot)$) with machine epsilon ϵ_m) in standard models, the worst case representation error is $d(x, f(x)) = \Omega(\epsilon_m \exp(d(x, O)))$ the worst case relative numerical error to compute the distance d(x, y) and its gradient is $\Omega(\epsilon_m \exp(d(x, O) + d(y, O)))$

Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models Tao Yu & Christopher De Sa {tyu,cdesa}@cs.cornell.edu **Cornell University Computer Science**

Numerical Error

An Everywhere-Accurate Solution?

- □ A potential solution: BigFloats, floating-points with a large quantity of bits. However: \succ The numerical issues still happen for points sufficiently far away from the origin. \succ No amount of bits are sufficient to accurately represent points everywhere in
- hyperbolic space [3].
- □ A solution in the Euclidean plane with constant error: using the integer-lattice square tiling, represent a point \boldsymbol{x} in the plane with a tuple
- 1. Integer Coordinates (i, j) of the square where x is in;
- 2. Offsets of x within the square as floating-points. **Proved**: Numerical error to represent \boldsymbol{x} and the relative numerical error to compute distance and its gradient is $O(\epsilon_m)$.
- □ Do the same thing in the hyperbolic space: construct a tiling and represent \boldsymbol{x} with a tuple:
 - 2. Offsets of x within that tile as floating-points. 1. the tile where \boldsymbol{x} is in;

Tiling \longleftrightarrow Isometries

- How to identify a tile in the tiling of the hyperbolic space? (\leftarrow Isometries)
- \Box Isometries of the 2-dimensional Lorentz model: $g \in \mathbb{R}^{3 \times 3}$ s.t. $g^T g_l g = g_l$.
- \Box Construct a subgroup G of the set of isometries: $G = \{g \mid g = LZL^{-1}, Z \in \mathbb{Z}^{3 \times 3}\}$ where Z is in a group generated by

$$g_a = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & -1 \\ 3 & 2 & 0 \end{bmatrix}, \ g_b = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 0 & -1 \\ -3 & 2 & 0 \end{bmatrix},$$

- \Box Represent \boldsymbol{x} with a tuple $(Z, \boldsymbol{x'})$ (L-tiling model):
- \Box Exact integer matrix Z

 $\Box x' \in F : x'^T g_l x' = -1$, where x' is in floating-points and F is bounded. Higher dimensions:

Problem: Deriving a tiling induced by a subgroup is impossible in higher dimensions!

Construct an ensemble of isometries in the Poincare half-space model:

 $\{f \mid f(p) = 2^{j}(p+k), (j,k) \in \mathbb{Z} \times (\mathbb{Z}^{n-1} \times \{0\})\}$

distance and its gradient is $O(\epsilon_m)$.

Represent hyperbolic embeddings in tiling-based models with way fewer bits than standard models using BigFloat on the WordNet dataset.

Models	size (MB)	bzip (MB)
Poincaré	372	119
Poincaré	287	81
Lorentz	396	171
L-Tiling	37.35	7.13

Under the same numerical error, L-tiling model uses 2/3 less bits to store per node compared to that of Lorentz and Poincare models

□ L-tiling model can accurately represent an embedding to 2% (7.13) MB) of its original size (372 MB), while at least 81 MB is required for any accurate baseline model using BigFloat.

Compute efficiently using integers in tiling-based models and learn high-precision embeddings without using BigFloats.

On the largest WordNet-Nouns dataset, tiling-based model outperforms previous standard floating-points implementations.

•		•	•	
cal issue	DIMENSION	MODELS	MAP	MR
s in standard when the	2	Poincaré Lorentz tiling	$\begin{array}{c} 0.124{\pm}0.001\\ 0.382{\pm}0.004\\ \textbf{0.413}{\pm}0.007 \end{array}$	68.75±0.26 17.80±0.55 15.26 ±0.57
lings are far e origin and	5	Poincaré Lorentz tiling	$0.848 {\pm} 0.001$ $0.865 {\pm} 0.005$ $0.869 {\pm} 0.001$	4.16±0.04 3.70±0.12 3.70±0.06
he embedding ances.	10	Poincaré Lorentz tiling	$\begin{array}{c} 0.876 {\pm} 0.001 \\ 0.865 {\pm} 0.004 \\ \textbf{0.888} {\pm} 0.004 \end{array}$	$3.47{\pm}0.02$ $3.36{\pm}0.04$ $3.22{\pm}0.02$

[1] M. Nickel et al. Poincaré embeddings for learning hierarchical representations. NeurIPS 2017. [2] M. Nickel et al. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry. ICML 2018. [3] C. De Sa et al. representation tradeoffs for hyperbolic embeddings, ICML 2018.

[4] B. Chamberlain et al. Neural embeddings of graphs in hyperbolic space. KDD workshop, 2017. [5] A. Gu et al. Learning mixed-curvature representations in product spaces. ICLR 2019.