
2. Offsets of      within that tile as floating-points.

❏ Represent      with a tuple              (L-tiling model): 
❏ Exact integer matrix 
❏                                        , where      is in floating-points and     is bounded. 
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Hyperbolic Space Applications:

Tiling         Isometries

Hyperbolic embeddings are limited by numerical issues when the space is 
represented by floating-points.

Machine learning has achieved great success by embedding objects into 
Euclidean space,recent some exciting work [1,2,3,4,5] proposed 
embeddings in hyperbolic space.

➔ Hyperbolic space contains more space 
for embeddings: Area (Volume) of a 
disk (ball) in the space increases 
exponentially over the radius 
(polynomially in Euclidean space).

A simple task::
1. Start from the origin
2. Move in a direction 

for a distance

Compute efficiently using integers in tiling-based models and learn 
high-precision embeddings without using BigFloats.

❏ Compression:

❏ Under the same numerical error, L-tiling model uses 2/3 less bits to 
store per node compared to that of Lorentz and Poincare models 
using BigFloat.

❏ L-tiling model can accurately represent an embedding to 2% (7.13 
MB) of its original size (372 MB), while at least 81 MB is required for 
any accurate baseline model using BigFloat.

Represent hyperbolic embeddings in tiling-based models with way fewer 
bits than standard models using BigFloat on the WordNet dataset.

❏ Learning:

❏ On the largest WordNet-Nouns dataset, tiling-based model 
outperforms previous standard floating-points implementations.

❏ Numerical issue 
happens in standard 
models when the 
embeddings are far 
from the origin and 
affects the embedding 
performances. 

❏ Computing the distance produces NaNs as points get far from the origin. 

Proved: If the space is represented with floating-points (       with machine 
epsilon      ) in standard models, the worst case representation error is

                                                  , the worst case relative numerical error
to compute the distance              and its gradient is                                         .  .

➔ Hyperbolic space is a maximally symmetric, simply connected 
Riemannian manifold with a constant negative sectional curvature.

Standard models:
❏ Poincare ball model:

❏ Lorentz hyperboloid model:

❏ Poincare half-space model:

where     is the Euclidean metric.

❏ Construct an ensemble of isometries in the 
Poincare half-space model:

❏ Isometries of the 2-dimensional Lorentz model: 

❏ Higher dimensions:
Problem: Deriving a tiling induced by a 
subgroup is impossible in higher dimensions!

How to identify a tile in the tiling of the hyperbolic space?  ( ← Isometries)
← Each tile can be mapped onto the central tile     with a unique isometry        .

❏ Construct a subgroup     of the set of isometries:
where     is in a group generated by 

Guarantees: Numerical error to represent     and the relative numerical error to compute 
distance and its gradient is            .

❏ A potential solution: BigFloats, floating-points with a large quantity of bits. However: 
➢ The numerical issues still happen for points sufficiently far away from the origin. 
➢ No amount of bits are sufficient to accurately represent points everywhere in 

hyperbolic space [3].
❏ A solution in the Euclidean plane with constant error: using the integer-lattice square 

tiling, represent a point      in the plane with a tuple
1. Integer Coordinates          of the square where      is in;
2. Offsets of     within the square as floating-points.
Proved: Numerical error to represent     and the relative numerical 
error to compute distance and its gradient is            .

1. the tile where      is in;

❏ Do the same thing in the hyperbolic space: construct a tiling and 
represent     with a tuple:
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