Hyperbolic Space

Machine learning has achieved great success by embedding objects into Euclidean space, recent some exciting work [1,2,3,4,5] proposed embeddings in hyperbolic space.

Hyperbolic space is a maximally symmetric, simply connected Riemannian manifold with a constant negative sectional curvature.

Hyperbolic space contains more space for embeddings: Area (Volume) of a disk (ball) in the space increases exponentially over the radius (polynomially in Euclidean space).

Standard models:
- Poincare ball model: \(\mathbb{B}^n_r \), \(\mathbb{B}^n = \{ x \in \mathbb{R}^n : \| x \| < 1 \} \), \(g_B(x) = \left(\frac{2}{1 - \| x \|^2} \right) x \), where \(g_B \) is the Euclidean metric.
- Lorentz hyperboloid model: \((C^n, g_C) = \{ x \in \mathbb{R}^n : x^t g_C x = -1, x_n > 0 \} \), \(g_C = \frac{1}{x_n} \delta_{II} + \frac{x_n}{x_n^2} g_{C,0} \).
- Poincare half-space model: \(\mathbb{H}^n \), \(\mathbb{H}^n = \{ x \in \mathbb{R}^n : x_n > 0 \} \), \(g_H(x) = \frac{x^2}{x_n^2} \).

The NaN Problem

Hyperbolic embeddings are limited by numerical issues when the space is represented by floating-points.

- Computing the distance produces NaNs as points get far from the origin.
- The NaN Problem happens in standard models when the embeddings are far from the origin and affects the embedding performances.

An Everywhere-Accurate Solution?

- A potential solution: BigFloats, floating-points with a large quantity of bits. However:
 - The numerical issues still happen for points sufficiently far away from the origin.
 - No amount of bits are sufficient to accurately represent points everywhere in hyperbolic space [3].

- A solution in the Euclidean plane with constant error: using the integer-lattice square tiling, represent a point \(\mathcal{X} \) in the plane with a tuple:
 1. Integer Coordinates \((i, j)\) of the square where \(\mathcal{X} \) is in;
 2. Offsets of \(\mathcal{X} \) within the square as floating-points.

- Do the same thing in the hyperbolic space: construct a tiling and represent \(\mathcal{X} \) with a tuple:
 1. The tile where \(\mathcal{X} \) is in;
 2. Offsets of \(\mathcal{X} \) within that tile as floating-points.

Tiling ↔ Isometries

- How to identify a tile in the tiling of the hyperbolic space? (↔ Isometries)
 - Each tile can be mapped onto the central tile \(F \) with a unique isometry \(g^{-1} \).
- Isometries of the 2-dimensional Lorentz model: \(g \in \mathbb{R}^{2x2} \), \(g' g g^{-1} = g \).
- Construct a subgroup \(G \) of the set of isometries: \(G = \{ g | g = L^{-1} Z L, Z \in \mathbb{Z}^{2x2} \} \), where \(Z \) is in a group generated by \(g_2 = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, g_0 = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \) and \(L = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).
- Represent \(\mathcal{X} \) with a tuple \((Z, x^t)\) (L-tiling model):
 - Exact integer matrix \(Z \)
 - \(x^t \in F: x^t g \mathcal{X} = -1 \). Where \(g \mathcal{X} \) is in floating-points and \(F \) is unbounded.
- Higher dimensions:
 - Problem: Deriving a tiling induced by a subgroup is impossible in higher dimensions!
 - Construct an ensemble of isometries in the Poincare half-space model:
 - \((f, p) = (p(g + k), (j,k) \in Z \times \{ \pm 1 \})\)
 - Guarantees: Numerical error to represent \(\mathcal{X} \) and the relative numerical error to compute distance and its gradient is \(O(\epsilon_{tile}) \).

Applications:

- Compression: Represent hyperbolic embeddings in tiling-based models with way fewer bits than standard models using BigFloat on the WordNet dataset.
- L-tiling model can accurately represent an embedding to 2% (7.13 MB) of its original size (372 MB), while at least 81 MB is required for any accurate baseline model using BigFloat.
- Learning: Compute efficiently using integers in tiling-based models and learn high-precision embeddings without using BigFloats.
- On the largest WordNet-Nouns dataset, tiling-based model outperforms previous standard floating-points implementations.
- Numerical issue occurs happens in standard models when the embeddings are far from the origin and affects the embedding performances.

References: