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Hyperbolic Space An Everywhere-Accurate Solution? Applications:
Machine learning has achieved great success by embedding objects into 1 A potential solution: BigFloats, floating-points with a large quantity of bits. However: -1 Compression:
Euclidean space,recent some exciting work [1,2,3,4,5] proposed > The numerical issues still happen for points sufficiently far away from the origin. Represent hyperbolic embeddings in tiling-based models with way tewer
embeddings in hyperbolic space. > No amount of bits are sufficient to accurately represent points everywhere in bits than Sta”dHey‘prgbor“T:gifLﬁsUSi”9 BigFloat on the WordNet dataset.
-> Hyperbolic space is a maximally symmetric, simply connected hyperbolic space [3] il
Riemannian manifold with a constant negative sectional curvature. d A solution in the Euclidean plane with constant error: using the mteger-lattlce square R _ '« Models size (MB) bzip (MB)
- Hyperbolic space contains more space o Growth of Area w.r.t. Radius tiling, represent a point 2 in the plane with a tuple m ¥ P 379 119
for embeddings: Area (Volume) of a all 'E*zf”e(;‘zgch?s'ik 1. Integer Coordinates (z, 7) of the square where I is in; ‘;; . t o Poincaré 87 21
disk (ball) in the space increases ~ 10 2. Offsets of r within the square as floating-points. - : to::a"rr:ti * o  Lorentz 396 171
exponentially over the radius I 10 Proved: Numerical error to represent &z and the relative numerical ® Poincare y | L-llmg SR 1
(polynomially in Euclidean space). 1(1)0 | error to compute distance and its gradient is O(¢,, ). (ixjf L N N ,
Standard models: e d Do the same thing in the hyperbolic space: construct a tiling and 1 Under the Sa*;;‘fe"eg;j‘;;em error, L-tiing model uses 2/3 less bits to
-1 Poincare ball model: - represent with a tuple: store per node compared to that of Lorentz and Poincare models
(B™, g,) : B"={zeR":|z| <1} , go(x ( ) 1. the tile where I Is in; 2. Offsets of & within that tile as floating-points. . .
where ¢. is the Euclidean metric. “EHz T : SIS Sigrioat .
3 Lorentz hyperboloid model '—O 8 Tiling 4—> Isorngtnes_ | | | 1 L-tiling model can accurately represent an embedding to 2% (7.13
(L™, ) : LM = {x e R" : el g = —1,20 > 0} | How to identify a tile in the tiling of the hyperbolic space? ( < Isometries) MB) of its original size (372 MB), while at least 81 MB is required for
1 Poincare half-space model: 8 8 " 8 — Each tile can be mapped onto the central tile /' with a unique isometry g“l any accurate baseline model using BigFloat.
U™, g.) UM = {z R 15, > 0} , gulz) = %2 1 Isometries of the 2-dimensional Lorentz model: ¢ € R3*3 s.t. ¢' g;9 = g;. J Learning: - o
1 Construct a subgroup ¢ of the set of isometries: G = {g| g = LZL',Z € 733} Compute efficiently using integers in tiling-based models and learn
The NaN Problem where Z is in a group generated by &, high-precision embeddings without using BigFloats.
Hyperbolic embeddings are limited by numerical issues when the space Is 2 1 07 2 -1 07 V3 0 0 v “" - On the largest Wcl)rdNet-Nouns datgset, tiI-irg-lloased model
represented by floating-points. Ja = g g —01 , Ob = _03 (2) —01 , and.L = 8 (1) (1) . d— ; ’ l‘; outperform§ previous standard floating-points implementations.
Jd Computing the distance produces NaNs as points get faNrqug(r:BEtrEre origin. 1 Represent o \;wth a tuple (Z, z) (L-tiling modél)' _ ’ ‘: J rl:l:g;eerr:c;ailn|ss~:':fdard DIMENSION MODELS : MAPOO - MRO :
_ . ; ' "A o POINCARE 0.124+0.001 A3E0.2
Asmple lasi: e . - Bractniegel malfx 2 A, 8- models when the > TG 0413:0.007 15264057
1. Start from the origin Z | — o | | EI T E F T qIT — 1, where m s Iin floating-points and [’ is bounded. embeddings are far e T
2. Move in a direction 2 | o - Higher dlmen§|9ns: - ' from the origin and 5 LORENTZ 0.865+0.005 3.70+0.12
for a distance : Problem: Deriving a tiling induced by a | TILING 0.869+0.001  3.70+0.06
e I B B subgroup is impossible in higher dimensions! affects the embedding " AR o
Proved: If the space is represented with floating-points (ﬂ() W(ij’([?ior)nachine d Construct an ensemble of isometries in the performances. TILING 0.888+0.004  3.22+0.02
epsilon ¢,,, ) in standard models, the worst case representation error is Poincare half-space model: —) 0. '_*?fl\‘/*lrel\';‘_cisf N e o0
d(wa ﬂ(.’,lt)) — Q<€m €XPp (d(ma O))) the worst case relative numerical error {f ‘ f(])) - 2] (p r k) <J k) € L X (Zn l “ {O})} IIEHHH!!!I.IEHHHEEIII I\/I: N:ngI th: L;)Iarlﬁianrg (elr:ntienucl):gsSH?erraer?::i“er;ginIt?wrearI_Corlgitzrel\il)cr)ZSeelr:)fl-llcx)/gz.rboelil::r(;eomet&. ICML 2018.

to compute the distance d(x, y) and its gradient is Q(e,,, exp (d(z, O) + d(y, O))) Guarantees: Numerical error to represent I and the relative numerical error to compute
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distance and its gradient is O(e,,, ). -
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