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Abstract
Microfacet models have proven very successful for modeling light reflection from rough surfaces. In this paper we
review microfacet theory and demonstrate how it can be extended to simulate transmission through rough surfaces
such as etched glass. We compare the resulting transmission model to measured data from several real surfaces
and discuss appropriate choices for the microfacet distribution and shadowing-masking functions. Since rendering
transmission through media requires tracking light that crosses at least two interfaces, good importance sampling
is a practical necessity. Therefore, we also describe efficient schemes for sampling the microfacet models and the
corresponding probability density functions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Keywords: Refraction, Microfacet BTDF, Cook-Torrance Model, Global Illumination, Monte Carlo Sampling

1. Introduction

Transmission into or through refractive media is an impor-
tant component in the appearance of many materials, includ-
ing both largely transparent media, such as glass or water,
and translucent media, such as skin or marble. When the
boundary of a medium is smooth, then transmission is easily
modeled using Snell’s law of refraction. However, when the
boundary is rough, there is a lack of physically based and
verified models for use in computer graphics.

In this paper we first review microfacet theory and show
how, using a generalization of the half vector, it can be used
to model both reflection and refraction at rough boundaries
between media. This provides a complete analytic BSDF
model that can be used to simulate rough transmissive mate-
rials such as the etched glass globe shown in Figure 1. One of
our goals is to serve as a complete, self-contained reference
for implementors, so we provide all the necessary equations
and discuss practical issues such as choices of distributions,
shadowing-masking, and importance sampling. Since trans-
mitted light must cross at least two interfaces, good impor-
tance sampling is crucial for efficient rendering.

We also validate the microfacet model by comparing it to
measured transmission data from four real surfaces. Rough
transmission shows several interesting behaviors (e.g., see
Figure 2) such as the strong shift in the peak away from the
smooth refraction direction towards grazing angles (similar
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to off-specular peaks in rough reflection), and the microfacet
models are able to successfully predict such effects. We also
introduce a new microfacet distribution, which we call GGX,
that provides a closer match for some of our surfaces than the
standard Beckmann distribution function.

Next we will discuss related work, and then review gen-

Figure 1: Glass sphere with etched map of the world, simu-
lated using our microfacet refraction model (Beckmann dis-
tribution with roughness modulated by a texture map).
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Figure 2: Measured transmission ( ft(i,o,n) |o ·n|) for a
rough surface (ground glass) at 0, 30, 60, and 80 degrees
incidence angle. Dashed lines are the refracted directions
predicted by Snell’s law for a smooth surface. Note that
the transmitted lobe grows broader as the incidence angle
increases and is shifted significantly towards grazing com-
pared to refraction through a smooth surface.

eral microfacet theory in Section 3. Appropriate expressions
for the microsurface (smooth) reflection and refraction are
developed in Section 4. We then give the rough surface
reflection and refraction models in Section 5 and discuss
choices for the microfacet distribution and related functions.
Section 6 describes our measurement apparatus and com-
pares our measurements to the fitted microfacet models. Ap-
pendix A reviews the Smith shadowing-masking approxima-
tion for arbitrary microfacet distributions.

2. Previous Work

Microfacet models were introduced to graphics by Cook and
Torrance [CT82], based on earlier work from optics [TS67],
to model light reflection from rough surfaces. Many varia-
tions have been proposed (e.g., [vSK98,KSK01,PK02]). Mi-
crofacet models are widely used in graphics and have proven
effective in modeling many real surfaces [NDM05].

Ward [Lar92] introduced a simplified version of the
Cook-Torrance model and extended it to reflections from
anisotropic materials. He also introduced a method for sam-
pling his model, and Beckmann distributions in general, but
see [Wal05] for the correct sampling weights. An alternative
sampling method using fitted separable approximations was
proposed by Lawrence et al. [LRR04].

Schlick [Sch94] used rational approximation to create a
cheaper approximation to the Cook-Torrance model includ-
ing a widely adopted approximation to the Fresnel formula.

Ashikhmin and Shirley [AS00] introduced an anisotropic
reflection model using a Phong microfacet distribution
including correct importance sampling. [APS00] created
energy-conserving reflection models from arbitrary micro-
facet distributions, though this formulation involves numeri-
cally estimating integrals without closed form solutions.

i Direction from which light is incident
o Direction in which light is scattered
n Macrosurface normal
m Microsurface normal
D Microfacet distribution function
G Bidirectional shadowing-masking function
G1 Monodirectional shadowing function
F Fresnel term

fr , f m
r Reflectance (BRDF) for macro and microsurface

fs, f m
s Scattering (BSDF) for macro and microsurface

ft , f m
t Transmittance (BTDF) for macro and microsurface

hr Half-direction for reflection
ht Half-direction for transmission
−→hr ,−→ht Unnormalized half vectors

ρ Fraction of incident energy scattered in a mode
δ Dirac delta function∥∥∥ ∂a
∂b

∥∥∥ Jacobian of the transform between a and b
ηi Index of refraction of the media on the incident side

ηo, ηt Index of refraction of media on the transmitted side
pm(m) Probability of choosing microsurface normal m
po(o) Probability of choosing scattered direction o
χ+(a) Equal to one if a > 0 and zero if a≤ 0

sign(a) Sign function (1 if a≥ 0 and -1 if a < 0)
ξ1,ξ2 Uniform random numbers in [0,1)

Figure 3: Table of symbols.

The closest work to ours is Stam [Sta01], who derived a
microfacet model for refraction as part of his layered model
for the reflectance of skin, and also derived the Jacobian
for refraction. Unlike the present work, however, Stam did
not provide importance sampling or verify his model against
experimental data. He also omitted the shadowing-masking
term and used a non-standard Beckmann distribution variant.

Many approximations for the shadowing-masking term
have been proposed (e.g., [TS67, San69, APS00]). We use
an approximation due to Smith [Smi67], which was orig-
inally derived for gaussian surfaces and later generalized
[Bro80, BBS02] for arbitrary microfacet distributions.

Wave optics based reflection models have been proposed
(e.g., [HTSG91]) that can simulate a wider range of surface
effects than microfacet models, but they are much more ex-
pensive to evaluate and lack good importance sampling.

Numerical simulations of transmission for various rough
surface models have also been performed and compared to
measured results [RE75, Ger03, SN91, NSSD90].

Notation. In this work we will use boldface lowercase letters
(e.g., i or v) to denote unit vectors or directions. Unnormal-
ized vectors will be written with an arrow (e.g.,−→h ) to clearly
distinguish them. Sometimes we will describe directions us-
ing spherical polar coordinates (e.g., v = 〈θv,φv〉). The po-
lar angle θ will always the angle between the direction and
the macrosurface normal n, while the azimuthal angle φ is
from some canonical direction perpendicular to n (which can
be chosen arbitrarily for the isotropic cases we discuss). Al-
though we describe the BSDF in terms of radiance (i.e. light
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Figure 4: Micro vs. macro surface.

flow), the equations are identical when handling its dual, im-
portance (i.e. tracing from cameras [Vea96]).

3. Microfacet Theory

A BSDF (Bidirectional Scattering Distribution Function) de-
scribes how light scatters from a surface. It is defined as the
ratio of scattered radiance in a direction o caused per unit
irradiance incident from direction i, and we will denote it
as fs(i,o,n) to emphasize its dependence on the local sur-
face normal n. If restricted to only reflection or transmission,
it is often called the BRDF or BTDF, respectively, and our
BSDF will be the sum of a BRDF, fr, and a BTDF, ft , term.
Since we want to include both reflection and transmission,
we will take care that our derivations and equations can cor-
rectly handle directions on either side of the surface.

In microfacet models, a detailed microsurface is replaced
by a simplified macrosurface (see Figure 4) with a modi-
fied scattering function (BSDF) that matches the aggregate
directional scattering of the microsurface (i.e. both should
appear the same from a distance). This assumes that micro-
surface detail is too small to be seen directly, so only the
far-field directional scattering pattern matters. Typically ge-
ometric optics is assumed and only single scattering is mod-
eled, to simplify the problem. Wave effects and light that
strikes the surface twice (or more) are ignored or must be
handled separately.

Rather than working with a particular micro-surface con-
figuration, it is assumed that the microsurface can be ade-
quately described by two statistical measures, a microfacet
distribution function D and a shadowing-masking function
G, together with a microsurface BSDF f m

s .

3.1. Microfacet Distribution Function, D

The microfacet normal distribution, D(m), describes the sta-
tistical distribution of surface normals m over the microsur-
face. Given an infinitesimal solid angle dωm centered on m,
and an infinitesimal macrosurface area dA, D(m)dωm dA
is the total area of the portion of the corresponding micro-
surface whose normals lie within that specified solid angle.
Hence D is a density function with units of 1/steradians. A
plausible microfacet distribution should obey at least the fol-
lowing properties:

• Microfacet density is positive valued:

0≤ D(m)≤∞ (1)

m
i

o

Visible VisibleBlocked
Figure 5: Shadowing-masking geometry: Three points with
the same microsurface normal m. Two are visible in both the
i and o directions, while one is blocked (in i in this case). By
convention, we always use directions which point away from
the surface.

• Total microsurface area is at least as large as the corre-
sponding macrosurface’s area:

1≤
Z

D(m)dωm (2)

• The (signed) projected area of the microsurface is the
same as the projected area of the macrosurface for any
direction v:

(v ·n) =
Z

D(m)(v ·m)dωm (3)

and in the special case, v = n:

1 =
Z

D(m)(n ·m)dωm (4)

Equations for particular microfacet distributions are dis-
cussed in Section 5.2.

3.2. Shadowing-Masking Function, G

The bidirectional shadowing-masking function G(i,o,m)
describes what fraction of the microsurface with normal m is
visible in both directions i and o (see Figure 5). Typically the
shadowing-masking function has relatively little effect on
the shape of the BSDF, except near grazing angles or for very
rough surfaces, but is needed to maintain energy conserva-
tion. Some important properties that a plausible shadowing-
masking function should obey are:

• Shadowing-masking is a fraction between zero and one:

0≤ G(i,o,m)≤ 1 (5)

• It is symmetric in the two visibility directions:

G(i,o,m) = G(o, i,m) (6)

• The back surface of the microsurface is never visible from
directions on the front side of the macrosurface and vice-
versa (sidedness agreement):

G(i,o,m) = 0 if (i ·m)(i ·n) ≤ 0
or (o ·m)(o ·n) ≤ 0 (7)

The shadowing-masking function depends on the details
of the microsurface, and exact expressions are rarely avail-
able. More typically, approximations are derived using vari-
ous statistical models and simplifying assumptions. See Sec-
tions 5 and Appendix A for more discussion.
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3.3. Macrosurface BSDF Integral

The macrosurface BSDF is designed to match the aggregate
directional (single) scattering behavior of the microsurface.
We can compute it by integrating (i.e. summing) the con-
tributions over all visible corresponding parts of the micro-
surface, each of which scatters light according to the micro-
surface’s BSDF, f m

s . The product of the D and G gives the
corresponding visible area of the microsurface for each mi-
cronormal m. We also need to apply correction factors to
first transform incident irradiance onto the microsurface and
then transform the scattered radiance back to the macrosur-
face, because both irradiance and radiance are measured rel-
ative to a surface’s projected area. The resulting integral for
the macrosurface BSDF is:

fs(i,o,n) =
Z ∣∣∣∣

i ·m
i ·n

∣∣∣∣ f m
s (i,o,m)

∣∣∣
o ·m
o ·n

∣∣∣G(i,o,m)D(m)dωm

(8)
To apply this integral, we need equations for D, G, and
f m
s . We will assume that the microsurface is locally smooth

so that f m
s is a sum of terms for ideal (mirror) reflection

and ideal (Snell’s law) refraction, with relative strengths de-
scribed by a Fresnel term F . The appropriate expressions for
f m
s will be derived in the next section.

4. Microsurface Specular BSDFs

While any BSDF could be used for the microsurface BSDF,
most microfacet models assume ideal specular reflection
where the microsurface acts like a collection of tiny flat mir-
rors (i.e. the microfacets). In this work we include both ideal
reflection and ideal refraction terms.

A generic specular BSDF scatters a fraction ρ of the inci-
dent energy from direction i into a single specular direction
s, (where ρ and s are functions of i and the local surface nor-
mal). We can write such a specular BSDF as:

f m
s (i,o,m) = ρ δωo(s, o)

|o ·m| (9)

where δωo(s,o) is a Dirac delta function whose value is in-
finite when s = o and zero otherwise. Mathematically delta
functions are not functions, but rather generalized functions.
They always have an associated measure (e.g., dωo, the solid
angle measure for o) and are defined by their integral with
respect to this measure:

Z

Ω
g(o)δωo(s,o)dωo =

{
g(s) if s ∈Ω

0 otherwise
(10)

for any function g().

To use such a BSDF in Equation 8, we need to express it
in terms of microsurface normals and their associated solid
angle measure. Let us assume that for any given incident
and outgoing directions, there is at most one microsurface
normal that scatters energy from i to o, and that we can com-

pute that normal as h(i,o), which we call the half-direction†.
We can then rewrite the BSDF in terms of a delta func-
tion between h and m. However, because a delta function
is defined with respect to an integral, changing its associated
measure requires an appropriate correction factor to preserve
the value of the integral. Using the change of variables theo-
rem, the equivalent of Equation 9 is:

f m
s (i,o,m) = ρ(i,m)

δωm(h(i,o), m)
|o ·m|

∥∥∥∥
∂ωh
∂ωo

∥∥∥∥ (11)

where
∥∥∥ ∂ωh

∂ωo

∥∥∥ is the absolute value of the determinant of the
Jacobian matrix for the transform between h and o (using
solid angle measures). For brevity, the latter is often simply
called the Jacobian.

The Jacobian describes the magnitude relationship be-
tween small perturbations in the two spaces. We can com-
pute it by creating a small perturbation in the solid angle
of o, which we will denote as dωo, and finding the induced
solid angle perturbation in h, which we will denote as dωh
The Jacobian is defined as:

∥∥∥∥
∂ωh
∂ωo

∥∥∥∥ = lim
dωo→0

dωh
dωo

(12)

in the limit of infinitesimal perturbations. Solid angle corre-
sponds directly to area on a unit sphere and such infinites-
imal areas can be treated as approximately planar. This al-
lows us to compute the reflection and refraction Jacobians
geometrically in Figures 6 and 7. We create an infinitesimal
solid angle perturbation dωo around o which is equivalent
to an infinitesimal area on the unit sphere about the base of
o. We then project this area onto the the unit sphere about
the base of h which is then equivalent to the induced solid
angle perturbation dωh about h, and the ratio between these
infinitesimal solid angles is equal to the Jacobian. The Jaco-
bians can also be computed algebraically from the equations
relating h and o as in [Sta01].

4.1. f m
r , Ideal Reflection

For ideal reflection, we denote the half-direction as hr and
its unnormalized version, the half-vector, as −→hr (we will use
ht for the transmission case). We use the standard formula
for −→hr , except that we modulate it by the sign of (i · n) so
that our equations will work for directions on either side of
the surface (i.e. front or back). The reflection half-direction
lies midway between i and o, and it and its Jacobian are:

hr = hr(i,o) =
−→hr

‖−→hr‖
where −→hr = sign(i ·n) (i+o) (13)

∥∥∥∥
∂ωhr

∂ωo

∥∥∥∥ =
|o ·hr|
‖−→hr‖2

=
1

4|o ·hr|
(14)

† The name comes from reflection where h is the direction halfway
in between i and o, but its definition is different for refraction.
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Figure 6: Geometry for ideal reflection with half-vector−→hr = i + o and normalized half-direction hr = −→hr /‖−→hr‖. To
compute the Jacobian we compute the solid angle perturba-
tion in the normalized half vector, dωh, induced by an in-
finitesimal solid angle perturbation, dωo, in o. Solid angle
is directly proportional to area on the corresponding unit
spheres. Only the 2D incidence plane slice through the full
3D space is shown.

A geometric derivation of the Jacobian is illustrated in Fig-
ure 6. We have also used the facts that ‖−→hr‖ = (−→hr · hr)
and (o · hr) = (i · hr). The half-direction is undefined when
i = −o, which is never a valid reflection configuration. For
reflection we set ρ equal to the Fresnel factor F (see Sec-
tion 5.1). Using Equation 11, the reflection microsurface
BRDF is:

f m
r (i,o,m) = F(i,m)

δωm(hr,m)
4(i ·hr)2 (15)

for reflection from either side of the surface. Due to the Ja-
cobian term, f m

r increases as |i ·hr| decreases, and this is a
principal cause of the off-specular reflection peaks predicted
by microfacet models and observed in real surfaces.

4.2. f m
t , Ideal Refraction

In the case of transmission we need the indices of refraction
on either side of the surface. Let us denote the indices as
ηi and ηo for the incident and transmitted sides of the sur-
face, respectively. Ideal refraction then follows Snell’s law
for finding the refracted direction o corresponding to any in-
cident direction i. Snell’s law can also be expressed using a
half-direction ht defined as:

ht = ht(i,o) =
−→ht

‖−→ht ‖
where −→ht =−(ηii+ηoo) (16)

The magnitudes of the components of i and o perpendicular
to m are equal to the sin of the angles between them and m.
For refraction directions, by Snell’s law, these components
will exactly cancel in ht, and the resulting direction will be
colinear with m. If we exclude the cases where i and o lie
on the same side of the surface, then we will have ht = m
if and only if i and o obey Snell’s law for refraction when
using m as the surface normal. The negative sign in −→ht is
because we use the convention that surface normals point
into the medium with the lower index of refraction (e.g., air).
We assume that the two sides of the surface have different

-nii

ht
i

o

ht

Surface Refraction

-noo

dωo

 = dωh

no dωo
2

|o.ht|
||ht||

2no dωo
2

ht

Figure 7: Geometry for ideal refraction with half-vector−→ht = −ηii − ηoo and normalized half-direction ht =−→ht /‖−→ht ‖. We compute the Jacobian by taking a infinitesimal
solid angle perturbation dωo in o, projecting into a pertur-
bation in −→ht and then onto the unit sphere for ht. Only the
2D incidence plane slice through the full 3D space is shown.

indices of refraction; otherwise ht becomes ill-defined. The
corresponding Jacobian (see Figure 7) is:

∥∥∥∥
∂ωht

∂ωo

∥∥∥∥ =
η2

o|o ·ht|
‖−→ht ‖2

=
η2

o |o ·ht|
(ηi(i ·ht)+ηo(o ·ht))2 (17)

We assume no light is absorbed at the interface so the ρ
for refraction is one minus the fresnel factor F . Using Equa-
tion 11, we can write the microsurface refraction BSDF as:

f m
t (i,o,m) = (1−F(i,m))

δωm(ht,m) η2
o

(ηi(i ·ht)+ηo(o ·ht))2 (18)

Note that this BTDF does not obey reciprocity, instead we
have f m

t (i,o,m)/η2
o = f m

t (o, i,m)/η2
i . This is a well-known

property of refractive interfaces [Vea96]‡ and if desired we
can restore reciprocity by tracking radiance/η2 instead of ra-
diance (sometimes called basic radiance). As in reflectance,
the BTDF increases towards grazing angles due to the Jaco-
bian term which similarly causes off-specular peaks in the
refracted lobe.

5. BSDF for Rough Surfaces

Using the microsurface BSDFs for reflection and refraction
together with Equation 8, we can now write the equation for
the macrosurface reflection and refraction BSDF fs, which
is sum of BRDF and BTDF terms:

fs(i,o,m) = fr(i,o,m)+ ft(i,o,m) (19)

The reflection term is:

fr(i,o,n) =
F(i,hr) G(i,o,hr) D(hr)

4 |i ·n| |o ·n| (20)

‡ While Veach correctly points out that refractive BTDFs are not
reciprocal, he incorrectly claims they are not self-adjoint. In fact the
equations are same whether transporting radiance (from lights) or
importance (from cameras).
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This is exactly the same as the Cook-Torrance BSDF except
that we have a factor of 4 in the denominator instead of π.
However, the original paper used a different normalization
for D. Other more recent papers agree with our constant of
four (e.g., [Sta01]).

The corresponding refraction term is:

ft(i,o,n) =
|i ·ht| |o ·ht|
|i ·n| |o ·n|

η2
o (1−F(i,ht))G(i,o,ht)D(ht)

(ηi(i ·ht)+ηo(o ·ht))2

(21)
We don’t get as much nice cancellation of terms in the re-
fraction component, but it is still easily implemented and
evaluated. This completes our derivation of the basic BSDF
equations for the microfacet model of reflection and trans-
mission through rough dielectric surfaces.

5.1. Choosing F , D, and G

Using Equations 20 and 21, requires appropriate choices for
the F , D, and G, terms. The Fresnel term is the best under-
stood, and exact equations are available in the literature. The
Fresnel term is typically small at normal incidence (e.g., 0.04
for glass with ηt = 1.5) and increases to unity at grazing an-
gles or for total internal reflection. A convenient exact for-
mulation for dielectrics with unpolarized light is [CT82]:

F(i,m) =
1
2

(g− c)2

(g+ c)2

(
1+

(c(g+ c)−1)2

(c(g− c)+1)2

)
(22)

where g =

√
η2

t
η2

i
−1+ c2 and c = |i ·m|

Note that if g is imaginary, this indicates total internal reflec-
tion and F = 1 in this case. Cheaper approximations for F
are also sometimes used [CT82, Sch94].

A wide variety of microfacet distribution functions D
have been proposed. In this paper, we discuss three different
types: Beckmann, Phong, and GGX. The Beckmann distri-
bution arises from Gaussian roughness assumptions for the
microsurface and is widely used in the optics literature. The
Phong distribution is a purely empirical one developed in the
graphics literature; however, with suitable choices of width
parameters it is very similar to the Beckmann distribution.
The GGX distribution is new, and we developed it to better
match our measured data for transmission. Equations for the
three distribution types and related functions are given at the
end of this section.

The shadowing-masking term G depends on the distribu-
tion function D and the details of the microsurface, so ex-
act solutions are rarely possible. Cook & Torrance used a G
based on a 1D model of parallel grooves that guarantees en-
ergy conservation for any distribution D, but we do not rec-
ommend using it because it contains first derivative discon-
tinuities and other features not seen in real surfaces. Instead
we will use the Smith shadowing-masking approximation
[Smi67]. The Smith G was originally derived for Gaussian
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Figure 8: Left: Beckmann (red), Phong (blue), and GGX
(green) distribution functions D(m) with αb = 0.2, αp = 48,
and αg = 0.2 respectively. Beckmann and Phong are nearly
identical while GGX has a narrower peak with stronger tails.
Right: Smith shadowing-masking term G1(v,n) for same
Beckmann (red) and GGX (green) distributions. G1 is near
one except at grazing angles and GGX has more shadowing
due to its stronger tails.

rough surfaces, but has since been extended to handle sur-
faces with arbitrary distribution functions [Bro80, BBS02],
though in some cases (e.g., Phong), the resulting integrals
have no simple closed form solution.

The Smith G approximates the bidirectional shadowing-
masking as the separable product of two monodirectional
shadowing terms G1:

G(i,o,m)≈ G1(i,m)G1(o,m) (23)

where G1 is derived from the microfacet distribution D
as described in [Smi67, Bro80, BBS02] and Appendix A.
Smith actually derived two different shadowing functions:
one when the microsurface normal m is known, and another
averaged over all microsurface normals. Although the latter
is more frequently used in the literature (e.g., [HTSG91]), in
microfacet models, where we know the microsurface normal
of interest, the former is more appropriate and we use it in
this paper.

5.2. Specific Distributions and Related Functions

Below we give the equations for the Beckmann, Phong, and
GGX distributions D (see Figure 8), along with their associ-
ated Smith shadowing functions G1, and sampling equations
to generate microsurface normals from two uniform random
variables ξ1 and ξ2 in the interval [0,1). The probability of
generating any m using the given sampling equations is:

pm(m) = D(m) |m ·n| (24)

Note that θm is the angle between m and n, θv between
v and n, and χ+(a) is the positive characteristic function
(which equals one if a > 0 and zero if a ≤ 0). These are
all heightfield distributions (i.e. D(m) = 0 if m ·n≤ 0), and
anisotropic variants exist but will not be discussed here.

Beckmann Distribution with width parameter αb:

D(m) =
χ+(m ·n)

πα2
b cos4 θm

e
− tan2 θm

α2
b (25)
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G1(v,m) = χ+
(v ·m

v ·n

) 2
1+ erf(a)+ 1

a
√

π e−a2 (26)

with a = (αb tanθv)−1

In the G1 equation, the first factor enforces sidedness agree-
ment (i.e. v must be on same side of the macro and micro-
surfaces). Because it involves the error function, erf(x) =

2√
π

R x
0 e−x2

dx, this equation can be expensive to evaluate.
Schlick [Sch94] proposed using a cheaper rational approxi-
mation, but based it on a different shadowing-masking equa-
tion. Instead, we provide the following rational approxima-
tion to the Smith G1 equation above with relative error of
less than 0.35%.

G1(v,m)≈ χ+
(v ·m

v ·n

)





3.535a+2.181a2

1+2.276a+2.577a2 if a < 1.6

1 otherwise
(27)

The equations for sampling D(m) |m ·n| are:

θm = arctan
√
−α2

b log(1−ξ1) (28)

φm = 2πξ2 (29)

Phong Distribution with exponent parameter αp:

D(m) = χ+(m ·n)
αp +2

2π (cosθm)αp (30)

Note that if we set αp = 2α−2
b − 2, then the Phong and

Beckmann distributions are very similar, especially for nar-
row widths (see Figure 8), and this may help explain the
longevity of the purely empirical Phong distribution. In
graphics applications, it is reasonable to choose between
them based on computational convenience. Unfortunately
the integrals to compute the Smith G1 have no closed form
solution for the Phong distribution. Based on its similarity
to Beckmann and some numerical testing, we recommend
instead using Equation 27 with a =

√
0.5αp +1/(tanθv)

for the G1 term for Phong. The equations for sampling
D(m) |m ·n| are:

θm = arccos
(

ξ
1

αp+2

1

)
(31)

φm = 2πξ2 (32)

GGX Distribution with width parameter αg:

D(m) =
α2

g χ+(m ·n)
πcos4 θm (α2

g + tan2 θm)2 (33)

G1(v,m) = χ+
(v ·m

v ·n

) 2

1+
√

1+α2
g tan2 θv

(34)

The GGX distribution has stronger tails than the Beckmann

and Phong distributions and thus tends to have more shad-
owing. The equations for sampling D(m) |m ·n| are:

θm = arctan

(
αg

√
ξ1√

1−ξ1

)
(35)

φm = 2πξ2 (36)

5.3. Sampling and Weights

To sample the BSDF, we assume that we are given a di-
rection i and we want to generate scattered directions o in
a pattern that closely matches fs(i,o,n) |o ·n|. In general, a
microfacet BSDF cannot be sampled exactly. Our approach
will be to first sample a microsurface normal m, and then use
it to generate scattered directions o. To compute the weights
for the corresponding samples, we also need to compute the
probability density po of the sample directions. The resulting
weights will be:

weight(o) =
fs(i,o,n) |o ·n|

po(o)
(37)

where we want to choose the sampling to minimize the vari-
ance in the resulting weights.

If we choose the microfacet normal m with some prob-
ability pm and invert the half-direction formulas (i.e. Equa-
tion 13 or 16) to generate the corresponding scattered direc-
tion o, then the resulting probability will include the Jaco-
bian of the half-direction transform (e.g., see [Wal05]):

po(o) = pm(m)
∥∥∥∥

∂ωh
∂ωo

∥∥∥∥ (38)

Using the sampling equations from Section 5.2, we can
generate sampled microfacet normals m according to the
probability pm(m) = D(m) |m ·n|. We can then evaluate the
Fresnel term F(i,m) and use it to select between reflection
and refraction, thus also folding the Fresnel term into the
probability. For reflection, the scattered direction or is:

or = 2 |i ·m| m − i (39)

and for transmission the scattered direction ot is:

ot =
(

ηc− sign(i ·n)
√

1+η(c2−1)
)

m − η i

with c = (i ·m) and η = ηi/ηt (40)

And in either case the resulting weight for the scattered di-
rection is:

weight(o) =
fs(i,o,n) |o ·n|

po(o)
=

|i ·m|G(i,o,m)
|i ·n| |m ·n| (41)

At normal incidence (i.e. |i ·n| ≈ 1) this is a nearly perfect
sampling. At grazing angles, it is still a good sampling but it
is possible to produce sample weights as high as hundreds to
millions depending on the choices and parameters for D and
G. While such high weights are unlikely (worst for retrore-
flection at grazing where fs is very small), they can cause
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Figure 9: Measurement setup: We bonded a glass hemi-
sphere to the back of our samples, to allow us to observe
transmission even at grazing angles.

problems for methods that assume such high weights never
occur (e.g., most particle tracing methods). We can greatly
reduce the maximum weight by modifying the sampling dis-
tribution slightly. For example, with the Beckmann distribu-
tion, we can instead sample a slightly widened distribution
given by α†

b = (1.2−0.2
√

|i ·n|)αb. This reduces the maxi-
mum sample weight to roughly four, a significant reduction.

6. Measurements

In order to validate our scattering model, we made mea-
surements of transmission through several different types
of rough glass surfaces. This measurement cannot be made
simply by illuminating a plate of rough-surfaced glass and
measuring the scattered light, because the light cannot be di-
rectly observed inside the glass, and internal reflection will
prevent light that scatters into relatively grazing directions
from escaping to where it can be measured. At the same
time, the large amount of internally reflected light will re-
illuminate the rough surface from the inside, producing an
unacceptable amount of stray light.

In order to directly observe the transmitted light, we elim-
inate the second interface by cementing a plano-convex
lens that is nearly a hemisphere to the back of the sam-
ple (Figure 9). This configuration was inspired by the work
of [NN04]. The sample is illuminated from the rough surface
and viewed from a range of angles through the spherical sur-
face, with the center of rotation of the apparatus aligned with
the center of the spherical surface so that the view direction
is always perpendicular to the surface. This way, the scat-
tered light exits the surface with minimal loss due to Fresnel
reflection. Also, relatively little light is reflected back onto
the area near the center of the sample, since the reflection
paths off the hemisphere are nearly perpendicular to the sur-
face. This greatly reduces the stray-light problem compared
with a flat sample.

In our setup, a 100mm square sample is cemented using
index-matched adhesive§ to a 75mm diameter, 75mm focal

§ All the samples are soda-lime glass (the commercial samples are

length plano-convex lens, which is nearly a hemisphere. For
samples of about 6mm thickness, the center of the lens’s
spherical surface is on the rough surface. However, our sam-
ples are of varying thickness, so the method must tolerate a
distance of a few mm between the surface and the center.

The sample is illuminated from the rough side by the end
of a 6mm circular fiber optic light guide at a distance of 610
mm (illumination solid angle: .000076 sr). The light source
was a DC regulated fiber illuminator, providing stable and
flicker-free illumination over the entire sample surface. The
transmitted light was sensed by a cooled CCD camera view-
ing the sample from the hemispherical side from a distance
of 885 mm through a 35mm imaging lens at f/5.6 (receiv-
ing solid angle: .000039 sr). The measurement was made by
averaging the pixel values in a fixed rectangle in the camera
image corresponding to an area on the spherical surface up
to approximately 3mm x 10mm.¶

Because the measured area is defined by a fixed area in
the image, the measurements are proportional to the radi-
ance observed by the camera. Since radiance is preserved
(up to a constant factor) under refraction, this arrangement
produces a signal proportional to the BTDF times the cosine
of the incident angle. It is important to illuminate from the
front and view from the back to have this property; if the
sample was flood-illuminated from the hemispherical side,
the lens would focus the light into a nonuniform distribution
of irradiance that would make the system sensitive to exact
alignment between the sphere center and the surface.

We measured four samples of glass with rough surfaces
generated by different processes. One was commercially
produced ground glass created by sandblasting soda-lime
glass with 120 abrasive (ground, 1/16 inch thickness). One
sample was prepared in our lab by acid-etching one side of
a plate of soda-lime glass (etched, 3/16 inch thickness). The
last two are less well characterized: commercially available
frosted glass (frosted, 1/8 inch thickness) and commercially
available antiglare glass for picture framing (antiglare, 1/16
inch thickness). All samples had flat polished surfaces on the
reverse side except the antiglare glass, which was rough on
both sides; we assume that the adhesive fills in the surface
so that the extra rough interface is not relevant (and in fact,
there is no visible evidence of an air layer).

The measurements consistently show a clear shift in the
peak of the scattered lobe away from the expected refrac-
tion direction. When the roughness is low, as in the antiglare
glass, the peak is near the ideal refraction angle, but for the
rougher samples it is substantially shifted toward grazing.

assumed to be), with refractive index around 1.51. The spherical
lenses are BK7 optical glass, with refractive index 1.52, and the
cured adhesive has specified refractive index 1.50. The slight dif-
ference in index creates only negligible reflection over the range of
angles we measured.
¶ Smaller areas were used for less-diffusing samples, in order to
ensure the signal was relatively constant over the measured area.
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Figure 10: Ground glass sample. Top is BTDF fit and bottom
is the fit to the empirical microfacet distribution D. Red line
is Beckmann fit and green is GGX fit.

For this reason many of the features of these rough-surface
BTDFs are difficult to observe directly in a flat plate. As we
show next, our microfacet models predict this behavior well.

6.1. Sample Results

For each of our four samples we fitted our microfacet BTDF
to our measured transmission data for normal incidence us-
ing both the Beckmann and GGX distributions (see Fig-
ure 12). For all samples we assumed an index of refraction
of 1.51. This gives us two free parameters to fit: the distribu-
tion width parameter (αb or αg) and an overall scaling factor
to map our measurements to an absolute scale.

To test our BTDF model, we show two plots for each sam-
ple. The first shows ft(i,o,n) |o ·n| as a function of the trans-
mitted angle θo. We show both the normal incidence case
(θi = 0), where we performed the fitting, and three additional
incidence angles (θi = 30,60,80◦) to test the models ability
to extrapolate to these angles.

The second plot directly estimates points in the micro-
facet distribution function D from the data. Since the G
term is close to one except at grazing angles, if we only
use data points far from grazing (i.e. where |i ·n| > 0.5 and
|o ·n| > 0.5), and assume G(i,o,m) = 1 for these points, we
can solve Equation 21 for the corresponding values of D(ht).
We also excluded points with very low measured values as
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Figure 11: Frosted sample. Top is BTDF fit and bottom is
the fit to the empirical microfacet distribution D. Red line is
Beckmann fit and green is GGX fit.

these are easily affected by stray light. If the data fits a mi-
crofacet model, then these points should all lie close to a
curve which is the surface’s microfacet distribution function.
Note that in both plots the models have been scaled by the
fitted scaling factors to enable comparison with the relative
measured data.

The data and model fits for the ground glass sample are
shown in Figure 10. We can see that the GGX distribution
provides an excellent fit to the data and is much closer than
the Beckmann fit. The only significant differences occur at
near-grazing angles where the microfacet assumptions of ge-
ometric optics and single scattering may be less valid. We

Beckmann Fit GGX Fit
Sample scale αb scale αg

ground 0.542 0.344 0.755 0.394
frosted 0.629 0.400 0.861 0.454
etched 0.711 0.493 0.955 0.553

antiglare 0.607 0.023 0.847 0.027

Figure 12: Fitted coefficients for our four samples. We fit-
ted the measured data for normal incidence to our BTDF
using both the Beckmann and GGX microfacet distributions.
In each case we fit both the distribution width parameter and
an overall scaling factor (because we have relative rather
than absolute measurements).
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Figure 13: Etched sample. Top is BTDF fit and bottom is
the fit to the empirical microfacet distribution D. Red line is
Beckmann fit and green is GGX fit.

developed the GGX distribution specifically to fit this sam-
ple after we discovered that the Beckmann distribution did
not match the inferred microfacet distribution as shown in
the bottom plot.

The plots for the frosted glass and etched glass samples
are shown in Figures 11 and 13. For both samples, both the
Beckmann and GGX fits do a reasonable job of matching
the measured transmission pattern, but neither is able to ex-
actly match the empirical microfacet distribution functions
as shown in the lower plots. Most likely we could get even
better matches by finding distribution functions with behav-
ior somewhere between that of Beckmann and GGX.

The antiglare glass has a much lower surface roughness
than the other samples and consequently a much narrower
lobe as shown in Figure 14. Because its so narrow, we get
relatively few samples within the lobe and had more trouble
in estimating its width. In this case both the Beckmann and
GGX fits perform equally well.

Using our BTDF model and sampling techniques, we have
rendered simulations of the antiglare, ground, and etched
samples in Figure 15. These images do a good job of du-
plicating their different appearances, and their ability to ob-
scure patterns and diffuse light. A simulation of an pattern-
etched glass globe is shown in Figure 1.
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Figure 14: Antiglare sample. Top is BTDF fit and bottom is
the fit to the empirical microfacet distribution D. Red line is
Beckmann fit and green is GGX fit.

7. Conclusions

In this paper, we have provided a comprehensive review of
microfacet theory and shown how it can be extended to han-
dle transmissive materials with rough surfaces. We have vali-
dated the resulting BTDF models against measured data and
shown that they can predict the refraction behavior of real
surfaces. We developed a new microfacet distribution func-
tion (the GGX distribution) and shown that at least for some
surfaces it provides a closer match to the measured data than
the standard Beckmann distribution. We have also described
how to efficiently importance sample the microfacet model
which is essential when rendering transmitted light. We be-
lieve these techniques can prove useful in enabling simula-
tion of a wider range of materials including improved mod-
els of translucent materials such as skin, marble, and paint.
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Appendix A: Deriving the Smith Shadowing, G1

This appendix briefly reviews deriving the Smith shadow-
ing function G1 from the microfacet distribution D; see the
references for more details. Originally created for Gaussian
random surfaces [Smi67], the Smith G1 has been generalized
to other microfacet distributions [Bro80, BBS02].

Let us assume we can represent the microsurface as a
random heightfield relative to the macrosurface character-
ized by two probability distributions: P1(ξ) for height ξ, and
P22(p,q) for the microsurface 2D slopes p and q, measured
perpendicular and parallel to the incidence plane respec-
tively. P1 can be any probability function without changing
the result. The 2D slope probability P22 can be computed
from D using the relation:

P22(p,q) = D(m) cos4 θm (42)

where the cosine factors are due to the change of measure
(solid angle vs. slopes) and projection onto the macrosur-
face. For the Beckmann distribution, it is easily shown that
(using the relation tan2 θm = p2 + q2) P22 is just a standard
2D Gaussian. The 1D distribution of slopes q in the inci-
dence plane, P2, is:

P2(q) =
Z ∞

−∞
P22(p,q)d p (43)

Let S(ξ0,µ) be the probability that a random point on
the microsurface with height ξ0 is visible from direction v,
where µ is the slope of the visibility ray (see Figure 16):

µ = |cotθv| (44)

Parameterizing the ray by its projected distance τ on the
macrosurface, the ray’s height at τ is ξ0 +µτ. Let g(τ)∆τ be
the fraction of previously unoccluded rays that first intersect
the microsurface in the interval [τ,τ+∆τ], so that:

S(ξ0,µ) = e−
R∞

0 g(τ)dτ (45)

where g acts similarly to the attenuation coefficient in vol-
ume rendering. To compute g, we assume that the surface
height and slope distributions are independent and that g can
be approximated as: what fraction of the rays that start the in-
terval above the surface are below the surface at the end of it

n

vMicrosurface

Macrosurface

ξ0

∆ττ

θv

ξ

q∆τ
ξ0+µτ

Visibility 
Ray

Figure 16: Geometry for Smith shadowing-masking G1 for
direction v, corresponding to a visibility ray has starting
height ξ0 and slope µ. At distance τ (measured along macro-
surface), the microsurface has height ξ and slope q.

(and hence intersected the surface somewhere in [τ,τ+∆τ]).
If ξ and q are the height and slope of the surface at τ, then
the ray is above the surface at τ if ξ0 +µτ > ξ and below the
surface at τ+∆τ if (q−µ)∆τ > (ξ0 +µτ)−ξ. Thus we get:

g(τ) =

R∞
µ (q−µ)P1(ξ0 +µτ)P2(q)dq

R ξ0+µτ
−∞ P1(ξ)dξ

= Λ(µ)
µP1(ξ0 +µτ)

f (ξo +µτ) (46)

where f (z) is the probability z is above the surface, and Λ is:

f (z) =
Z z

−∞
P1(ξ)dξ (47)

Λ(µ) =
1
µ

Z ∞

µ
(q−µ)P2(q)dq (48)

We can solve Equation 45 by noting that the numerator in
Equation 46 is the derivative of its denominator to that:

S(ξ0,µ) = eΛ(µ) log f (ξ0) = f (ξ0)
Λ(µ) (49)

and then we integrate over all starting heights ξ0 to find S(µ),
the average visibility over all starting microsurface heights:

S(µ) =
Z ∞

−∞
S(ξ0,µ)P1(ξ0)dξ0 =

1
1+Λ(µ)

(50)

where we used the fact that the derivative of f (ξ0) is P1(ξ0).

Finally we add a term to check that v started on the correct
side of the microsurface (i.e. sidedness agreement) to get the
Smith monodirectional shadowing term:

G1(v,m) = χ+
(v ·m

v ·n

)
S(µ) = χ+

(v ·m
v ·n

) 1
1+Λ(µ)

(51)

Using these equations we can derive G1 for any micro-
facet distribution D (though the integral in Equation 48 has
no closed form solution for some D) and together with
Equation 23 find the corresponding bidirectional shadowing-
masking term.

Often another integration over all m is performed to get an
average shadowing over the whole microsurface, but this is
neither needed nor desirable for use with microfacet models.
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