
Declarative Processing for Computer Games

Walker White
Cornell University

wmwhite@cs.cornell.edu

Benjamin Sowell
Cornell University

sowell@cs.cornell.edu

Johannes Gehrke
Cornell University

johannes@cs.cornell.edu

Alan Demers
Cornell University

ademers@cs.cornell.edu

Abstract

Most game developers think of databases as nothing more than
a persistence solution. However, database research is concerned
with the wider problem of declarative processing. In this paper we
demonstrate how declarative processing can be applied to computer
games. We introduce the state-effect pattern, a design pattern that
allows game developers to design parts of their game declaratively.
We present SGL, a special scripting language which supports this
design pattern and which can be compiled to a declarative language
like SQL. We show how database techniques can process this de-
sign pattern in a way that improves performance by an order of
magnitude or more. Finally, we discuss some design decisions that
developers must make in order to adopt this pattern effectively.

CR Categories: D.3.2 [Programming Languages]: Language
Classifications—[Specialized application languages]

Keywords: Games, Scripting, Databases

1 Introduction

Scalability is a fundamental problem in the development of com-
puter games. Players constantly demand more — be it more poly-
gons, more physics particles, more AI behaviors, or, in the case of
massively multiplayer online games (MMOs), more players.

Scalability has long been a focus of the database community. How-
ever, the game development industry has done little to exploit
database research in this area. Most developers think of databases
as a persistence solution, designed to store and read game objects
from disk. As such, almost all database usage in games design has
been within the development of MMOs.

However, the advantages of databases are not limited to persistence.
It is true that commercial databases focus on persistence, but that
is because this is what their customers have demanded. Database
research has dealt with the much larger issue of processing declara-
tive languages. Declarative languages, such as SQL, transform one
collection of data to another without specifying the exact side ef-
fects in-between. Because the query optimizer is free to process the
transformation however it wants, operations written declaratively
can be highly optimized and parallelized, often with orders of mag-
nitude improvement in performance.

It would be both difficult and unnatural to write all of a game in a
declarative language. However, there are large subsystems of com-
puter games that are amenable to being processed declaratively. For
example, game developers have designed algorithms to parallelize

physics simulations with GPUs [Nguyen 2007]. Much of this work
involves custom pipelines that are very similar to techniques devel-
oped decades ago by the database community. However, instead of
a general pipeline model that can be reused over and over again,
game developers come up with a distinct solution every time they
encounter a new algorithm. With a more principled approach, the
time spent engineering this pipeline could be freed up for more time
improving game play.

Declarative processing opportunities are not just limited to physics
algorithms. The authors have published work demonstrating how
declarative processing can improve the computational performance
of scripted character AI by an order of magnitude [White et al.
2007]. We believe there are many other possibilities for declara-
tive processing in games. By providing game developers with tools
to design declaratively, we can help them overcome many of the
difficulties in game scalability.

The aim of this paper is to introduce our work on declarative pro-
cessing to the game design community. In doing so, we explore the
design decisions necessary to adequately leverage this processing
model. In this paper, we make the following contributions:

• In Section 2 we show how declarative processing can be ap-
plied to games using a novel design pattern, which we call the
state-effect pattern.

• In Section 3 we present SGL, a custom scripting language for
the state-effect pattern. SGL allows designers to benefit from
database-style optimizations without any knowledge of SQL
or other query languages.

• In Section 4 we provide an overview of the optimization tech-
niques that a query processor can apply to the state-effect pat-
tern. These techniques can result in orders of magnitude im-
provement in performance.

• In Section 5 we identify and discuss some of the challenges
that designers may face in adopting the state-effect pattern.

In Section 6 we give an overview of related work. Finally, we con-
clude with some directions for future work in Section 7.

2 The Declarative Processing Model

One of the main ways in which declarative processing achieves per-
formance gains is by intentionally limiting expressiveness. In other
words, some declarative languages are not as expressive as tradi-
tional programming languages, but they can be more efficiently op-
timized.

A canonical example of this is the relational algebra, a popular
declarative language implemented by SQL. The relational algebra
does not support arbitrary iteration: it does not have for or while
loops and does not support recursion. The only type of iteration that
it does support is the for-each loop, which iterates through the
elements in a list. This specialized type of iteration — called a
“join” in the database literature — has been heavily researched and
highly optimized. As we show throughout this paper, this weaker
form of iteration is still capable of expressing a wide range of com-
plex and interest behavior. Furthermore, restricting ourselves to this
form of iteration can result in substantial performance benefits.



To provide games with these performance benefits, we need to iden-
tify and separate joins from arbitrary iteration in the game logic.
In general, this is a very difficult problem. A better solution is to
identify design patterns that are adaptable to our optimizations and
to provide tools for processing these patterns. In this section we
present a basic design pattern that allows for extensive declarative
optimizations. In addition, we illustrate this pattern with several
examples showing its wide range of applicability.

2.1 The State-Effect Design Pattern

We call our design pattern the state-effect pattern. In practice, this
pattern is applied to part or all of the game simulation loop (i.e.
the part of the game that processes object behavior and updates the
game state). In this pattern, we separate the attributes of the game
objects into two disjoint types: states and effects. Naively, states
are values that change only at the end of the simulation time step,
but which remain constant during the main computational phase.
Effects, on the other hand, are ephemeral values that can change
within the simulation loop as the object interacts with other objects
in the game. In addition to separating states and effects, we put
restrictions on how these two types of object attributes can interact
with one another.

Before we outline the pattern in detail, we first consider an example
that is already familiar to most game developers: a particle system.
In its simplest form, the attributes of an object of a particle system
are mass, volume, position, velocity and (possibly) acceleration.
In addition, during a single simulation time step, each particle has a
force attribute which represents the interactions with all of the other
objects in the particle system. The simulation loop computes this
force attribute, and uses it to update the other particle attributes in
the following way:

(1) It sums up all of the forces acting upon each particle.

(2) From these forces, it computes the new acceleration and/or
velocity for each particle.

(3) It tentatively moves the particles each to their new position
according to the acceleration and/or velocity.

(4) Finally, it searches for any collisions that occurred during the
process, and backs them out as necessary.

Ignoring for now the collision detection and resolution phase in step
(4), we can easily separate this process into states and effects. The
force attribute is an effect that is computed from interactions with
other objects. It can be computed using a join, as we just loop over
all the other game objects with a for-each and sum the results
together. The other attributes — position, velocity, acceleration —
are only updated at the end of the loop and therefore may be clas-
sified as state. Furthermore, state values are updated using only
a simple mathematical calculation from the force attribute and the
existing state values; no further iteration is required.

A powerful feature of this design is that, because the state is not up-
dated until the end of the simulation loop, the force calculations can
all be isolated from one another. We can evaluate the game objects
in any order, or even in parallel, and still get the same answer. This
feature has been heavily utilized by game engineers to parallelize
physics computations on modern GPUs [Nguyen 2007]. The abil-
ity to do order-independent processing is the crucial property that
allows us to optimize this calculation with database techniques.

Given the particle system as our motivation, we now outline the
state-effect pattern in more detail. It consists of the following parts:

• Separation of object attributes into states and effects.
State attributes remain unchanged for the majority of a sim-
ulation time step, only changing at the end. Effect attributes,

on the other hand, support intermediate computation. They
can change within the simulation loop, but are “reset” at the
beginning of every time step. In those cases where we want an
attribute to be both a state and an effect, we make a separate
attribute for each role.

In the particle system example, force is an effect while all
other attributes are state.

• Rules for combining effects within a single time step.
Intuitively, effects represent actions that a game object can
perform either on itself or on other objects. These effects can
include actions from intelligent agents, such as the result of
a magic spell, or actions from inanimate objects, such as the
force exerted by one particle on another. As all actions in a
single time step are applied simultaneously, we need order-
independent rules for combining these effects to produce a
single net effect.

In our particle system example, summation is the rule for
combining individual force effects. This rule is independent
of order since summation is associative and commutative.

• (Query Phase) Specification of object interactions.
For each game object, we need instructions specifying what
effects it either generates or incurs. If we were to use a
scripting language to implement our pattern, these instruc-
tions would be scripts attached to the individual game objects.
These instructions have one major restriction; the query phase
may not have any form of iteration other than a join (e.g. a
for-each loop).

In our particle system example, the query phase consists of the
mathematical formulae computing the force between pairs of
particles.

• (Post-processing Phase) Specification for updating state.
At the end of the simulation loop, we need instructions for
how to compute the new state from the effects that we have.
For efficiency, we would prefer that the instructions be simple
calculations done in straight-line code. However, to make it
easier to integrate this pattern into the rest of the game, we
place no restrictions on this part of the pattern; it may even
include instructions that cannot be computed declaratively.

In our particle system example, steps (2) and (3) are examples
of simple post-processing which updates the state from the
effect. Furthermore, since there are no restrictions on what
we do in the post-processing phase, we can include step (4),
which may involve unsafe iteration.

The names “query phase” and “post-processing phase” are chosen
to reflect the ways in which we process these steps. Suppose that
each of our game objects were a row in a database table. Because of
our restrictions on the query phase, we could process it as a single
database query that returns a new table of effects on each of these
objects. The post-processing phase then uses a standard program-
ming model to update these objects using the values in this effect
table. As we show in Section 4, the benefits of using traditional
database techniques to speed up the query phase can be enormous.

The primary difficulty with this design pattern is that we have to be
careful with what we put in the post-processing step; it can easily
become a “catch-all” step for parts that are hard to separate. There
is little advantage for our pattern in the post-processing phase, as
it is handled normally without declarative optimizations. Hence, if
we put too much in this phase, the cost of this phase can dominate
the optimizations described in Section 4. We discuss this issue in
more detail in Section 5.2.



2.2 An Illustrative Example

While particle systems is a natural example of the state-effect pat-
tern, the pattern is by no means restricted to physics applications.
For a more sophisticated example, we consider the case of scripted
character AI. We apply the state-effect pattern to design a real-time
strategy game in which every unit is individually scripted.

First we define the state and effects. While our units have many
attributes, the important ones for our example are as follows:

• State: player, unit type, health, x position, y position

• Effects: damage, healing, x velocity, y velocity,

We use sum as our rule to combine the damage effects. That way,
if the unit is attacked by multiple opponents, all the damage effects
stack on on another. Similarly, we use sum as the combination rule
for the velocity components. On the other hand, we use a different
rule for healing. which we model after the healing auras from War-
craft III. These auras do not stack with one another; at each time
step, a unit receives healing only from the active aura of the great-
est power. Hence our combination rule for healing is maximum,
not sum. This gameplay feature illustrates why we separated dam-
age and healing into two separate effects, even though they are both
used to update the health state.

Next we specify the query phase. To keep our example simple, we
limit ourselves to two unit types, healers and archers. We assign
them the following simple behavior as part of the query phase:

• If the unit is an archer, search for the weakest enemy unit (e.g.
the one with the least health) within firing range.

– If no such unit is found, set the velocity effects to move
towards some predefined location (e.g. the enemy base,
the mouse click location, etc.).

– If a unit is found, assign some fixed amount of damage
to the enemy unit.

• If the unit is a healer, apply a fixed amount of healing to all
units in range of the healing aura.

Finally our post-processing stage updates the game state in the ob-
vious way. That is, we add the velocity to the position to get the
new position. Furthermore, we subtract the total damage from the
health, but add the healing.

Because we have used the state-effect pattern, we can express the
query phase as a database query. Figure 1 illustrates how to repre-
sent our simple example as a nested query in SQL (for this example,
DIST() and IN RANGE() are predefined functions introduced to
simplify the query).

This query demonstrates a serious issue with our design pattern: the
query is unreadable to anyone without extensive SQL experience.
Moreover, the SQL query expresses the behavior for all types of
units, making it difficult for the game developer to program indi-
vidual character behavior. In order to use this design pattern ef-
fectively, game designers will need tools to specify character and
object behavior individually, but then compile all this behavior into
a single declarative expression for optimization.

3 The SGL Scripting Language

The simplest type of tool that we can provide to game developers
is a scripting language. Developers have a long history of creating
highly specialized and restricted scripting languages. Sometimes
these restrictions are imposed to make processing efficient, such
as Microsoft’s rule specification language in Age of Kings [Ensem-
ble Studios 2000]. Other times limitations are imposed in order to

SELECT U.PLAYER, U.TYPE, U.HEALTH, U.X, U.Y,
SUM(E.DAMAGE), MAX(E.HEAL), SUM(E.VX), SUM(E.VY)

FROM Units U,
(SELECT T.KEY, 0 as DAMAGE, HAMOUNT AS HEAL,

0 as VX, 0 as VY
FROM Units T, Units H
WHERE H.TYPE="Healer" AND H.PLAYER = T.PLAYER

AND IN_RANGE(T,H)
UNION
SELECT T.KEY, 0 as DAMAGE, 0 as HEAL,

(GOAL_X-T.X)/DIST(T.X,GOAL_X) AS VX,
(GOAL_Y-T.Y)/DIST(T.Y,GOAL_Y) AS VY

FROM Units T, Units A
WHERE NOT EXISTS (SELECT *

FROM Units T
WHERE IN_RANGE(T,A)
)

UNION
SELECT MIN(T.KEY), DAMOUNT as DAMAGE,

0 as HEAL, 0 as VX, 0 as VY
FROM Units T, Units A
WHERE IN_RANGE(T,A) AND A.TYPE = "Archer"

AND A.PLAYER <> T.PLAYER
AND T.HEALTH = ANY(SELECT MIN(S.HEALTH)

FROM Units S
WHERE IN_RANGE(S,A) AND

A.PLAYER != S.PLAYER
)

) as E
WHERE U.KEY = E.KEY
GROUPBY U.KEY

Figure 1: SQL Expression for the RTS Query Phase

keep designers from introducing unsafe behavior: Cryptic Studios
removed iteration from one of the scripting languages for City of
Heroes/City of Villains after designers repeatedly introduced infi-
nite loops into the game [Posniewski 2007]. In our case, the script-
ing language is introduced to help the game engine recognize uses
of the state-effect pattern and optimize them accordingly.

We call our scripting language the Scalable Games Language
(SGL), because of its ability to process large numbers of game ob-
jects. SGL consist of two types of files — data files and script
files. The data files define the data types (“classes”) in our lan-
guage, while the script files define the behavior for a given data
type during the query phase.

Every game object accessed by a script must have an associated
data file in order to make its attributes accessible. The list of at-
tributes need only include those that are accessed by the scripting
language; game objects may have other attributes that are used by
the game engine proper, but are not visible to the scripting language.
Figure 2 shows an example of a data file for the RTS example in
Section 2.2. The format is similar to a C++ class. The data type
comprises several fields, which are explicitly separated into states
and effects. While later versions of SGL will support a wider array
of field types, currently a field may either be a number, another data
type specified by a data file, or an (unordered) set of values (e.g.
Set〈Unit〉).

For state fields, the data file specifies initial values for new objects
allocated by the script. Effect fields, on the other hand, specify
only a combination function. Currently SGL supports only built-
in combination rules: sum, minimum, maximum, and average for
numbers, and union for set types. Object types are combined by
priority functions, which take a set of objects and select a unique
element from the set according to specified rules.

The most basic priority function is priority; this function uses
an opaque priority value built into the system. Custom priorities are
introduced using the functions argmin and argmax. These func-



class Unit {
state:
number player = 0;
number type = 0;
number x = 0;
number y = 0;
number health = 0;
Unit target = null;

effects:
number vx : avg;
number vy : avg;
number damage : sum;
number healing : max;
Unit acquired : priority;

update:
x = x + vx;
y = y + vy;
health = health - damage;
target = (acquired != null ? acquired : target);

}

Figure 2: Sample Datatype Declaration

tions take an expression 〈EXP〉 and a set of objects. The expres-
sion is evaluated on each object in the set, and the function returns
the one with the minimum (or maximum) value. For example, we
could use argmin to chose the enemy unit that is closest to our
character; we simply provide the expression computing distance to
the function argmin. In those cases where there is more than one
minimum (or maximum), these functions use the built-in priority
value to break ties.

In addition to attributes, the data file also specifies update rules.
The update rules are expressions defined in terms of the effect and
state fields. They are used to define the new value of each state
field at the end of the post-processing stage. For example, in Fig-
ure 2, the update rules use the velocity effects to adjust the position
state. Therefore SGL can handle very simple post-processing in-
structions, like steps (2) and (3) in our particle system example.

For more complicated post-processing operations, we rely on the
integration between SGL and the game engine. The game engine
invokes SGL by calling a function which processes a single step
of the query phase, followed by an application of the update rules.
The game engine is free to do whatever operations it wants to the
game objects before invoking the script again. Thus we can safely
ignore more complex post-processing examples such as step (4) in
our particle system example.

The script files are structured to look like an imperative program-
ming language, even though they are processed declaratively. This
is intended to make the scripting language more accessible to de-
signers who have no experience with declarative languages. Each
script file is associated with a data type, and all of the fields of that
data type may be accessed in that script without a dot. In addition,
fields of other objects are accessed using the traditional “dot selec-
tion” found in most object-oriented languages. For example, in a
script associated with a unit type, “x” is the x position of the unit
executing the script, while “target.x” is the x position of the current
combat target of the script executor.

The scripting language has many features common to scripting lan-
guages, such as if-else conditionals. Furthermore, it has ex-
pressions for manipulating numbers, objects, and sets of objects.
For brevity, we focus on the most important parts of the script.

The primary purpose of the script is to assign values to the effect
fields. A script may assign a value to an effect field of the object
executing the script, or to an effect field of another object. In order
to process the script as efficiently as possible, there is no guarantee
on the order in which the values are assigned to the effect fields;

let (number dist = (x-target.x)*(x-target.x)+
(y-target.y)*(y-target.y)) in {

if (dist < ATTACK_RANGE) {
// If in range, attack.
target.damage <- DMG_AMOUNT;

} else {
// Else move closer (use unit velocity)
vx <- (target.x-x)/dist;
vx <- (target.y-y)/dist;

}
}

Figure 3: Assigning Effect Values

if more than one value is assigned to an effect value, then these
values are combined using the rules specified in the data file. Addi-
tionally, in order to prevent hazardous side effects such as reading
effects assigned out of order, effect fields may never be read — they
are write-only. In essence, our effect fields work like the aggregate
variables found in Sawzall, Google’s highly parallelizable data pro-
cessing language [Pike et al. 2005]. Indeed, our notation for writing
to an effect field, “<-”, is the same as Sawzall’s.

SGL provides local variables to store and access the results of inter-
mediate computation. However, as in a functional language, these
variables may never be reassigned after they are defined. As long
as there is no iteration in the script, this does not actually place any
restrictions on the designer. Furthermore, since we handle itera-
tion specially, we believe this is an acceptable trade-off in language
expressiveness to make processing simpler.

To introduce an intermediate variable in a SGL, we use the syntax
let 〈TYPE〉 〈identifer〉 = 〈EXP〉 in { 〈BLOCK〉 }

The scope of this variable is the code block surrounded by the
braces. Figure 3 shows the use of a let declaration to represent
a unit choosing between two actions, depending on the distance
between it and its combat target. SGL supports multiple variable
assignments in a single let statement; they must all be part of a
comma-separated list.

In addition to let statements, SGL supports a limited form of iter-
ation. Again, in order to improve our ability to optimize the execu-
tion of a script, we wish to avoid variables that can be both read and
written arbitrarily. Therefore, our design of this iteration loop itself
follows the state-effect pattern. We call our iteration accum-loops,
and they have the syntax
accum 〈TYPE〉 〈identifier〉1 with 〈COMBINATOR〉

over 〈TYPE〉 〈identifier〉2 from 〈EXP〉 {
〈BLOCK〉1

} in {
〈BLOCK〉2

}
Naively, this loop uses the first code block, 〈BLOCK〉1, to iterate
over the elements in the set 〈EXP〉, and then makes the results of
that iteration available to the second code block, 〈BLOCK〉2. Within
the first code block, the variable 〈identifier〉1 is treated as an effect
field. We make no guarantees on the order in which the accumu-
lation loop is processed; the elements in 〈EXP〉 can be processed
in any order, or even in parallel. Therefore, within 〈BLOCK〉1, the
variable 〈identifier〉1 may never be read, and values are assigned to
it using the same “<-” operator as effect fields.

At the completion of 〈BLOCK〉1, the accum-loop combines all of
the values assigned to 〈identifier〉1 using the combination func-
tion 〈COMBINATOR〉. This combinator function can be any of the
functions we used for effect fields. Once these values are com-
bined, they may be read from the variable in the second code block,
〈BLOCK〉2. As with a let statement, the variable 〈identifier〉1 may
never be reassigned in 〈BLOCK〉2; it is read-only.



// Compute the minimum health of a possible target
accum number healthvalue with min

over Unit u from UNIT {
let (number dist = (x-u.x)*(x-u.x)+

(y-u.y)*(y-u.y)) in {
// Only select enemies in range
if (u.player != player && dist < ARCHER_RANGE) {

healthvalue <- u.health;
}

} in {
// Find the unit with that health.
accum Unit weakest with priority

over Unit w from UNIT {
let (number dist = (x-w.x)*(x-w.x)+

(y-w.y)*(y-w.y)) in {
// Be sure to select with same rules
if (w.player != player && dist < ARCHER_RANGE

&& w.health = healthvalue) {
weakest <- w;

}
}

} in {
if (weakest != null) {

acquired <- weakest;
}

}
}

Figure 4: Accum-Loop Specification of Target Acquisition

Figure 4 illustrates the use of two accum-loops to specify the target
acquisition behavior of our archers in Section 2.2. The first accum-
loop finds the minimum health of an acceptable target in range, and
the second searches for a target with that health. This is not the most
efficient way to express this particular behavior — a more efficient
way would use the argmin priority function — but it is a simple
example showing how accum-loops can be coordinated to produce
interesting behavior. Furthermore, a typical query optimizer can
recognize that these two accum-loops have similar structure and
combine them automatically.

All of our language structures have been designed so that they can
be compiled into the relational algebra, the declarative language
used by SQL. As a result, the SGL compiler can gather all of the
script files and compile them into a single database query. As we
show in the next section, this allows us to improve script perfor-
mance by orders of magnitude. Thus while SGL does have some
very unusual language features — such as the accum-loops — the
performance enhancements make their adoption worthwhile.

4 Advantages of Declarative Processing

The advantage of representing the query phase by a database query
is that we can apply query optimization technology to process it
efficiently. While no commercial query optimizer is targeted at pre-
cisely the kind of workload found in computer games, there is a
substantial body of research on in-memory databases [Boncz and
Kersten 1995; Bohannon et al. 1997], and more recent research has
focused on optimizing queries over streams of data [Carney et al.
2002; Motwani et al. 2003; Demers et al. 2007]. When combined
with traditional database query optimization techniques, this work
can be directly applied to game processing.

In this section we explain a few ways in which known database
technology can be used to process the state-effect design pattern ef-
ficiently. These techniques are not new; indeed, one of the strengths
of the state-effect pattern is that we have so many existing optimiza-
tion techniques to choose from. We present them here just to give
the reader a sense of the advantages of adopting this pattern.

4.1 Aggregate Indexing

A well-known difficulty encountered in the design of computer
games is the “n2-problem”. This occurs when one game object
needs to iterate over most or all of the other game objects in order
to determine its behavior. For example, suppose we want to design
a game character that runs in fear if it encounters a large number of
marching skeletons. The probability that the character runs is deter-
mined by the number of skeletons it sees, so the character needs to
count skeletons. In a naive implementation, the game engine would
take each character and enumerate all the game objects visible to
that character, incrementing a counter for each skeleton encoun-
tered. If a character can see most of the other game objects, this
process requires Ω(n) steps. Thus, in a situation where there are
Ω(n) skeleton-phobic characters, each of which can see most of the
other game objects, the total processing time is Ω(n2). This cannot
be remedied by computing the number of skeletons only once, as
different characters may have different fields of vision resulting in
different skeleton counts.

Examples like this arise frequently in practice. Military simula-
tions, in particular, often encounter cases in which “everyone sees
everyone else” [Kruszewski and van Lent 2007]. Database tech-
nology can help us here. In the state-effect pattern, enumeration
is done using accum-loops, and at the end of an accum-loop the
effect results are combined into a single value using an aggregate
function like sum or max. Databases have developed aggregate pro-
cessing techniques that are often much faster than the naive Ω(n)
per query. One common solution is the aggregate index, which ef-
fectively pre-computes the aggregate on subsets of the data in such
a way that the result for any query can be computed by combining a
small number of the pre-computed aggregates. In many instances,
an aggregate index can reduce the cost of our accum-loop compu-
tation from Ω(n2) to O(n log n).

A good query optimizer can usually infer when to use an aggre-
gate index by static analysis of a database query. Thus, the game
designer does not need to worry about building and maintaining a
custom index for each new application; the query optimizer handles
it automatically.

In an early prototype of SGL, the authors developed a battle simula-
tion in a simple RTS that demonstrated the advantages of aggregate
indexing [White et al. 2007]. The simulation was designed to
have very complex behavior, with each unit interacting with large
numbers of other units. For example, armies of archers continually
polled the locations of both enemy units and allied knights, so that
they were always able to hide behind the knights for cover. In addi-
tion, healing units distributed themselves among allied units so that
their healing auras had maximum effectiveness. A large number
of aggregate indices were required to implement this behavior. For
exact details, we refer the reader to our original paper.

Timing results for this simulation are shown in Figure 5. This graph
plots the number of simulated units against total processing time for
500 simulation steps, comparing the naive algorithm to the use of
aggregate indexing.

Figure 5 clearly demonstrates the value of aggregate indexing. The
overhead of building and maintaining all the aggregate indices is not
noticeable even when the number of units is small; and the indices
enable the system to scale to an order of magnitude more units using
a reasonable simulation time step of 100 ms.

4.2 Dynamic Optimization

Aggregate indexing is not always the most efficient way to process
iteration. If it is not true that “everyone sees everyone else,” it may



0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

Number of Units

0

20

40

60

80

100

120

140

160

To
ta

l T
im

e

Naive Algorithm
Optimized Algorithm

Figure 5: Comparison of Naive Processing versus Indexing

0 100 200 300 400 500

Simulation Tick

0

0.05

0.1

0.15

0.2

0.25

0.3

Se
co

nd
s 

to
 P

ro
ce

ss

Indexing
Pruning

Figure 6: Comparison of Aggregate Indexing versus Pruning

be better just to prune the search space and iterate over the pruned
objects normally. This solution is commonly used in games, and it
often yields excellent results.

The problem is that the choice between aggregate indexing and sim-
ple pruning depends on the current state of the game. For example,
consider a game in which we want to distribute healers for max-
imum effectiveness. A simple algorithm assigns to each healer
a “healing priority.” At each time-step, each healer searches its
visible range for wounded allies whose health is below this prior-
ity. With uniformly distributed priority values, this algorithm drives
healers to congregate in areas with the most wounded. Obviously,
if there are few wounded units, we can process this behavior very
efficiently by just pruning out the healthy allies. However, in a
pitched battle with large numbers of wounded, we need a different
technique (like aggregate indexing) to avoid the n2 problem.

Figure 6 shows the results of simulating the healer behavior de-
scribed above over several hundred time steps. This simulation
uses the same prototype as the previous aggregate index simula-
tion [White et al. 2007], but we have isolated the performance to
the healer behavior only. The graph compares the cost of building
and maintaining an aggregate index to that of simple pruning.

The simulation begins at the end of major battle. All allied units
are wounded, and so pruning is not very effective. Over time,
the wounded allies are gradually healed until eventually no more
wounded remain. As the number of wounded decreases, the cost of
pruning decreases, overtaking the cost of the aggregate index and
eventually outperforming it by another order of magnitude.

Ideally, we would like to keep statistics that enable us to predict
which of pruning or aggregate indexing will be more efficient on

the current game state, so we can switch between these query plans
as necessary. This technique is called dynamic query optimization.
There has been substantial research on dynamic query optimization,
particularly on streaming data [Zhu et al. 2004]. In a simulation
environment, we can theoretically achieve the performance of the
optimal query plan at each time step with a constant (multiplicative)
overhead. In practice we can often do much better than this.

4.3 Other Optimizations

While our early work on SGL has focused on index optimization,
there are other other known optimization techniques that should ap-
ply to the state-effect pattern. Two that are of particular interest
for games are pipelining and parallelization. While we have not
applied these techniques specifically to SGL, there has been some
recent work on adapting them to in-memory systems.

Pipelining in database processing works much the same way that
it does in computer graphics. A database query plan consists of a
number of simple operators connected together in a graph. With
pipelined evaluation, rather than materializing the entire output re-
lation of each operator and storing it in memory, we instead gen-
erate output values incrementally, “on demand.” This can greatly
reduce the amount of memory required for query processing: in-
stead of allocating memory for all intermediate results, we provide
only small input and output buffers for each operator. Large mem-
ory blocks are required only for aggregate indices and for certain
“blocking” operators (such as sorting). This is particularly useful
for effect fields, which exist only during the query phase and update
rules, and thus need to be materialized only in the input and output
buffers of the pipeline.

Game designers sometimes develop custom streaming algorithms
such as pathfinding [O’Brien and Stout 2007; Dunki 2008] or GPU
physics simulations [Nguyen 2007]. In our approach, pipelining
comes for free when we compile the query phase into a declara-
tive format. Thus the game developer can focus on designing the
behavior without having to construct custom pipelines.

Another class of optimizations relevant to games is parallelization.
Because database queries have no side effects (they take streams
of data as input and produce new streams of data as output) they
are embarrassingly parallel [Dewitt et al. 1990; Stonebraker et al.
1988]. Indeed, there has even been recent work on processing
database queries with GPUs [Govindaraju et al. 2004]. In the case
of SGL, it is obvious how to parallelize our query phase. As effect
variables can never be read, we can isolate the objects in the query
phase from one another and process them separately. We can also
parallelize any accum-loop for exactly the same reason.

5 Game Design Issues

While the state-effect pattern provides several performance advan-
tages, it is unusual and does require that the game designer structure
the game logic appropriately. While our formalization of the state-
effect pattern is still very new, we have already identified two major
design challenges from our initial prototypes.

5.1 Designing Effects

The most obvious challenged is the design of effects. Very often,
games update the state of an object in the middle of the simulation
loop. In order to take advantage of the state-effect pattern, the game
developer must design effects that appropriately delay the update
until the end of the simulation loop.

Fortunately, game designers already do work with effects. They
are particularly common in RPGs; these games have paralyzation



effects, poison effects, performance enhancing effects, and so on.
Designing a single effect is usually straightforward. The game de-
signer introduces a field for the effect, and specifies rules for han-
dling those cases when the effect is produced more than once in a
single time step. While this may result in a large number of fields,
the pipelining process mentioned in Section 4.3 can minimize the
amount of memory necessary to process them.

A greater challenge is managing the interplay between different ef-
fects. For game balance purposes we may not want certain effects
to stack with one another. For example, we may want a character
to receive a strength enhancement effect or a speed enhancement
effect, but not both. One way to implement this would be to model
strength and speed enhancements as separate effect fields, but write
update rules so that only one of them is used at a time. However,
this becomes unwieldy as we introduce more incompatible effects.

An alternate solution is to use an object to represent a performance
enhancement effect. Then, in order to choose the single effect
that takes effect, we use a priority function, — such as argmin
or argmax — to choose among them. For example, in model-
ing performance enhancement, we may want an object with three
fields: the enhancement type, the enhancement strength, and the
rank of that enhancement, where enhancements of higher rank are
give higher priority over those of lower rank. When we assign an
enhancement to a character via an effect field, we use argmax to
select the enhancement of greatest rank.

Another interesting example is the use of effects for object acqui-
sition. In Section 3 our unit type had a field to represent its cur-
rent combat target, and we used an object effect field with a pri-
ority function to update this value. Another example would be the
use of an object effect to assign loot to characters after a success-
ful boss kill. Loot assignment presents an interesting challenge,
since we want to ensure that only one character gets the object.
Typically this is not an issues, as the game processes each player
separately in turn. However, when we use the state-effect pattern,
players may processed simultaneously, so we cannot check whether
another player has received the loot in the same time step.

The solution to this problem is to understand what our semantic
constraints are. While players may have multiple items of loot, each
loot may have only one player. Because the uniqueness constraint
applies to the loot and not the player, the correct design in this case
is to make the owner an effect field in the loot object. That way
the loot has a priority function for choosing its unique owner in
the case of ties. Once the owner has been determined, the object
can be added the character’s inventory either by the update rules
(SGL supports expressions for manipulating sets of objects) or in a
subsequent iteration of the update loop.

With some practice, our current formulation of the state-effect pat-
tern can express a wide range of effect interactions. As we continue
to explore the uses of this pattern, we may find ways to extend it
to other types of effect interactions. This is an interesting area for
future work.

5.2 Integrating the State-Effect Pattern

Another challenge with the state-effect pattern is in integrating it
with other parts of the game engine. First of all, we must iden-
tify what parts, if any, of the game engine are amenable to the
state-effect pattern. Some subsystems are very easy to model in
this framework, while others cannot be modeled at all. The most
significant limitation is that we cannot use this pattern search over
the transitive closure of a graph. This means that it cannot support
pathfinding algorithms like A? which crawl over a terrain graph.
On the other hand, steering algorithms [Reynolds 1999] are similar

to force calculations in a particle systems and are quite amenable to
the state-effect pattern.

The first step in the design process is to identify all instances of iter-
ation, such as for-loops or while-loops. Any iteration which can
be expressed as a for-each loop, or unrolled as a constant num-
ber of iterations, is a candidate for the query phase. However, we
must also examine the variable assignments within each iteration
loop. These assignments must all be expressible as effect variables;
otherwise they will be lost when the iteration is done. Obviously we
can do this when the iteration is simple aggregation (e.g. summing,
averaging, building up sets of objects). With greater proficiency in
effect design, we are capable of doing more.

For cases such as pathfinding, which cannot be modeled by this
pattern, we still may be able to improve performance through more
sophisticated use of the state-effect pattern. The state-effect pattern
assumes that it is part of the main simulation loop. However, there
is nothing preventing us from embedding the state-effect pattern in
other iteration loops as well. In SGL, a call from the game engine
only performs a single query phase and update, allowing us to po-
sition it where ever we want. Thus we can apply the state-effect
pattern to the internals of these algorithms, and then iterate over
this pattern externally in the game engine.

However, this type of design may require that we reorder the ap-
plication of iteration. For example, pathfinding iterates over all of
the characters searching for a path, and, for each character, uses
A? to perform a search of the terrain graph. The outside iteration
is acceptable, while the inner iteration is not. We can extend our
state-effect pattern to pathfinding if we swap the order of iterations.
In this case, we use the query phase to pipeline the processing of all
of the characters at once, and iterate over the steps in the A? algo-
rithm outside in the post-processing phase. It is not clear whether
this gives any performance benefit over existing high-performance
algorithms, but it does illustrate the basic principle.

An alternative to this extension of the state-effect pattern, is to sim-
ply separate troublesome calculations and integrate them into the
post-processing phase. Once again, pathfinding is an excellent ex-
ample, as most game engines implement it in a separate subsystem
which communicates the set of computed waypoints to the steering
algorithms [O’Brien and Stout 2007]. As SGL supports set fields,
we can easily pass this information from the pathfinding system to
the steering algorithms in the query phase. Furthermore, as it is a
separate subsystem, we can either process the pathfinding during
the post-processing phase, or asynchronously in a separate thread.

The right design choice in each of these instances depends upon the
application. While we should always be reluctant to move work out
of the declarative query phase, sometimes it is the right thing to do.
Again, as we develop more proficiency with the state-effect pattern,
we will begin to learn more about the appropriate design choices in
this case.

6 Related Work

There has been some work in the academic community on special
purpose scripting languages for games, such as the ScriptEase lan-
guage [McNaughton et al. 2004]. However, much of this work has
focused on tools that make design accessible to inexperienced pro-
grammers. The work in this paper is different in that our scripting
language is developed for the sole purpose of processing complex
game behavior efficiently. While there are other special purpose
languages designed for improving game performance, such as Sim-
bionic [Fu et al. 2003] or Naughty Dog’s GOAL [Liebgold 2008],
our approach is the first one to leverage database processing tech-
niques.



Some of the work presented in this paper, particular the optimiza-
tions in Section 4, have been presented previously in the context
of early SGL prototypes [White et al. 2007]. These prototypes sup-
ported only one type of game object and could not perform iteration
without some working knowledge of SQL. The purpose of this pa-
per has been present a much more advanced version of SGL that
does not require SQL. In addition, our aim has been to make this
material accessible to a non-database audience, as well as to discuss
some of the issues that arise when attempting to use our design pat-
tern for developing games.

7 Conclusions

The state-effect pattern is a very powerful technique for efficiently
scaling the interactions between game objects. It allows game de-
signers to use a design pattern already familiar to them, albeit infor-
mally, to leverage decades of research in declarative processing and
optimization. It removes the burden of designing custom pipelines
and optimization, as this is all handled by the compiler, and allows
the developer to focus more on the design process.

In addition to the obvious research opportunities in game-specific
database processing, the state-effect pattern offers many interesting
research opportunities in design. SGL is still a fairly simple script-
ing language because the authors have focused their research on
formalizing the semantics and optimizing the query phase [White
et al. 2007; Albright et al. 2008]. Higher level design tools would
make it easier to visualize the design process and leverage this de-
sign pattern. The design of effects and their combination rules are
interesting even by themselves. As we showed in Section 5.1, we
can use them to enforce semantic constraints like “each loot object
has one owner”. Since cheats in MMOs are often some violation
of semantic constraints, we would like to develop tools that allow
game designers to specify other types of constraints.

Declarative processing in games presents an excellent opportunity
for database researchers and the game designers to collaborate with
one another. We believe that continued work in this area will greatly
enrich both communities, and allow us to create more complex and
immersive worlds.

Acknowledgements

This work is supported by the National Science Foundation under
Grant IIS-0725260, the Air Force under Grant FA9550-07-1-0437,
and a grant from Microsoft Corporation. Any opinions, findings,
conclusions or recommendations expressed herein are those of the
author(s) and do not necessarily reflect the views of the sponsors.

References

ALBRIGHT, R., DEMERS, A., GEHRKE, J., GUPTA, N., LEE, H.,
KEILTY, R., SADOWSKI, G., SOWELL, B., AND WHITE, W.
2008. SGL: A scalable language for data-driven games (demon-
stration paper). In Proc. SIGMOD.

BOHANNON, P., LIEUWEN, D., RASTOGI, R., SILBERSCHATZ,
A., SESHADRI, S., AND SUDARSHAN, S. 1997. The archi-
tecture of the Dalı́ main-memory storage manager. Multimedia
Tools Appl 4, 2, 115–151.

BONCZ, P., AND KERSTEN, M. 1995. Monet: An impressionist
sketch of an advanced database system. In Proc. BIWIT.

CARNEY, D., ÇETINTEMEL, U., CHERNIACK, M., CONVEY, C.,
LEE, S., SEIDMAN, G., STONEBRAKER, M., TATBUL, N.,
AND ZDONIK, S. 2002. Monitoring streams — a new class

of data management applications. In Proc. VLDB.

DEMERS, A., GEHRKE, J., PANDA, B., RIEDEWALD, M.,
SHARMA, V., AND WHITE, W. 2007. Cayuga: A general pur-
pose event monitoring system. In CIDR, 412–422.

DEWITT, D., GHANDEHARIZADEH, S., SCHNEIDER, D.,
BRICKER, A., HSIAO, H., AND RASMUSSEN, R. 1990. The
gamma database machine project. IEEE Trans. on Knowledge
and Data Engineering 2, 1, 44–62.

DUNKI, Q. 2008. Streaming open world pathfinding. In Proc.
GDC.

ENSEMBLE STUDIOS. 2000. Computer Player Strategy Builder
Guide, AI Expert Documentation for Age of Empires II: The Age
of Kings. Ensemble Studios.

FU, D., HOULETTE, R., AND JENSEN, R. 2003. A visual envi-
ronment for rapid behavior definition. In Proc. Conference on
Behavior Representation in Modeling and Simulation.

GOVINDARAJU, N., LLOYD, B., WANG, W., LIN, M., AND
MANOCHA, D. 2004. Fast computation of database operations
using graphics processors. In Proc. SIGMOD.

KRUSZEWSKI, P., AND VAN LENT, M. 2007. Not just for combat
training: Using game technology in non-kinetic urban simula-
tions. In Proc. Serious Game Summit, GDC.

LIEBGOLD, D. 2008. Adventures in data compilation and scripting
for uncharted: Drake’s fortune. In Proc. GDC.

MCNAUGHTON, M., CUTUMISU, M., SZAFRON, D., SCHAEF-
FER, J., REDFORD, J., AND PARKER, D. 2004. ScriptEase:
Generative design patterns for computer role-playing games. In
Proc. ACE.

MOTWANI, R., WIDOM, J., ARASU, A., BABCOCK, B., BABU,
S., DATAR, M., MANKU, G. S., OLSTON, C., ROSENSTEIN,
J., AND VARMA, R. 2003. Query processing, approximation,
and resource management in a data stream management system.
In Proc. CIDR.

NGUYEN, H., Ed. 2007. GPU Gems, vol. 3. Addison-Wesley.

O’BRIEN, J., AND STOUT, B. 2007. Embodied agents in dynamic
worlds. In Proc. GDC.

PIKE, R., DOWARD, S., GRIESEMER, R., AND QUINLAN, S.
2005. Interpreting the data: Parallel analysis with Sawzall. Sci-
entific Programming Journal 13, 4, 227–204.

POSNIEWSKI, S. 2007. Massively modernized online: MMO tech-
nologies for next-gen and beyond. In Proc. Austin GDC.

REYNOLDS, C. 1999. Steering behaviors for autonomous charac-
ters. In Proc. GDC.

STONEBRAKER, M., KATZ, R., PATTERSON, D., AND OUSTER-
HOUT, J. 1988. The design of XPRS. In Proc. VLDB.

WHITE, W., DEMERS, A., KOCH, C., GEHRKE, J., AND RA-
JAGOPALAN, R. 2007. Scaling games to epic proportions. In
Proc. SIGMOD, 31–42.

ZHU, Y., RUNDENSTEINER, E., AND HEINEMAN, G. 2004. Dy-
namic plan migration for continuous queries over data streams.
In Proc. SIGMOD.


