
Stylizing 2.5-D Video

Noah Snavely
University of Washington

C. Lawrence Zitnick
Microsoft Research

Sing Bing Kang
Microsoft Research

Michael Cohen
Microsoft Research

Figure 1: Non-photorealistic rendering of a 2.5-D video (only one frame shown here). From left to right: color input, depth input, hatching
style, and painterly rendering.

Abstract

In recent years considerable interest has been given to non-
photorealistic rendering of photographs, video, and 3D models for
illustrative or artistic purposes. Conventional 2D inputs such as
photographs and video are easy to create and capture, while 3D
models allow for a wider variety of stylization techniques, such as
cross-hatching. In this paper, we propose using video with depth
information (2.5-D video) to combine the advantages of 2D and
3D input. 2.5-D video is becoming increasingly easy to capture,
and with the additional depth information, stylization techniques
that require shape information can be applied. However, because
2.5-D video contains only limited shape information and 3D corre-
spondence over time is unknown, it is difficult to create temporally
coherent stylized animations directly from raw 2.5-D video. In this
paper, we present techniques for processing 2.5-D video to over-
come these drawbacks, and demonstrate several styles that can be
created using these techniques.

Keywords: non-photorealistic rendering, video, depth maps, com-
puter vision.

1 Introduction

While computer graphics research has traditionally focused on
methods for generating realistic images, non-photorealistic render-
ing (NPR) has recently attracted a lot of attention. NPR can be used
to enhance an image in an illustrative yet concise way, or to give an
image greater impact through an artistic style. Gooch and Gooch’s
book [2001] has an excellent survey of NPR techniques.

Automatic NPR techniques have generally been classified based on
the type of input they operate on. One class of techniques uses 2D
images as input, either stills or videos. These methods operate in
image space, placing primitives such as paint strokes on a virtual
canvas. A second class uses 3D models as input. They may apply
primitives to a virtual canvas or directly to the surface of the 3D
model. The placement of the primitives is often based on shape
information, such as curvature.

Both 2D and 3D inputs have their advantages and disadvantages.

Capturing images or video of complex scenes is relatively easy.
However, these inputs are impoverished in that they usually lack
strong depth cues. Some illustrative styles, such as cross-hatching,
depend heavily on knowledge of the object’s shape for guiding the
placement of rendering primitives. Such styles require additional
3D information for effective rendering.

On the other hand, 3D models contain perfect shape information,
so a wider variety of NPR techniques can be applied to them. Fur-
thermore, correspondence between points on an animated model is
often known, making temporal coherence easier to achieve. How-
ever, creating and animating 3D models of complex objects is diffi-
cult and time-consuming.

In this work, we combine the benefits of 2D and 3D inputs for styl-
ization by using a different kind of input: video with depth infor-
mation at each pixel, or 2.5-D video. (The term 2.5-D video is used
because only the 3D locations of the parts of the scene visible to
the camera are known.) Capturing 2.5-D video is potentially easier
than constructing complex 3D models, while at the same time con-
taining enough information about shape to allow for a wider variety
of artistic styles. High quality depth information can be acquired in
several ways. ZCams1 for capturing depths are commercially avail-
able, and recent systems have been developed for capturing high
spatial and temporal resolution shape using off-the-shelf compo-
nents (e.g., the space-time stereo system of Zhang et al. [2003]).

Unfortunately, in raw 2.5-D videos of complex scenes, objects are
not segmented, depths are typically noisy, and 3D correspondence
over time is unknown. As a result, techniques for rendering 3D
models cannot be directly applied to raw 2.5-D videos. In this
paper, we present methods for converting raw 2.5-D video to a
stylization-friendly form. This work has several technical contri-
butions. First, we present a method for finding correspondence
information appropriate for NPR from a noisy sequence of depth
maps. Second, we describe a technique for defining a smoothly
varying directional field that is meaningful for stylization over a
time-varying surface, which builds on existing techniques for static
meshes. Third, we show how we can apply two styles, cross-
hatching and painterly rendering, to the processed 2.5-D video.

1http://www.3dvsystems.com/products/zcam.html

Figure 2: System overview. First, a set of input videos is captured,
and a 2.5-D video is created by using stereo to estimate depth. The
video is then processed to prepare it for stylization. Finally, a styl-
ized video is created.

2 Prior work

Many automatic algorithms for NPR fall into two categories: those
that operate on images or video, and those that operate on 3D mod-
els. There is a history of work on stylizing images and video for an
artistic or illustrative effect. One area of research has focused on
automatically processing images with parameterized style filters.
Hertzmann [1998] uses curved brush strokes applied at several dif-
ferent scales to render still images in styles such as impressionism
and pontillism. This work was extended to video by Hertzmann and
Perlin [2000], which uses optical flow to update brush strokes over
time. Hays and Essa [2004] present a system which also uses op-
tical flow, but which improves temporal coherence by constraining
brush stroke properties over time.

While these systems rely on image gradients to guide stroke place-
ment, Salisbury et al. [1997] present a different technique in which
a directional field is supplied by the user. Given a reference image,
this can be used to create pen-and-ink illustrations from images. In
contrast, in our work, the directional field is automatically gener-
ated from the input depth maps.

Wang et al. [2004] transform a video into a spatio-temporally coher-
ent animation. Their system is semi-automatic, requiring a user in-
teraction to extract semantically meaningful objects before an NPR
style can be applied. Agarwala et al. [2004] combine user-specified
contours with edge and shape preserving functions to facilitate ro-
toscoping (after which the video can be stylized).

In [Raskar et al. 2004], a camera with multiple flashes is used to
locate depth discontinuities in images. These depth discontinuities
could then be used for different stylization operations, such as en-
hancing silhouettes. In our work, we assume that depths are known
for each pixel, giving us information which can be used to create an
even greater range of effects.

There has been a separate body of work on creating stylized ren-
derings from 3D objects. Hertzmann and Zorin [2000] presented
a techniques for creating line-art illustrations from 3D models, and
Praun et al. [2001] demonstrate a hatching style that can be applied
in real time. We draw on these techniques for our stylization al-
gorithms, extending them to work for surfaces where the complete
geometry is unknown and where the shape is deforming over time.

There has also been work on constructing models of static and an-
imated objects from range data, both from sparse scans and from
video. An effort that stood out involves constructing 3D models of
many large statues from range data [Levoy et al. 2000]. In [Zhang
et al. 2003], an animated face model was created by fitting a tem-
plate to range data. In our work, we do not construct an explicit
model of objects from the 2.5-D video; instead, we intend our tech-
nique to be used for scenes that are difficult to model, and only

estimate correspondences between points in neighboring frames.

3 Outline of approach

Our system for processing and rendering 2.5-D video consists of
three main stages, shown in Figure 2. We first capture multiple
videos of a scene using the stereo rig of Zhang et al. [2004]. We
then use spacetime stereo [Zhang et al. 2004] to estimate depths
from the videos. This results in a sequence of color video frames
with depth information for each pixel (except for holes due to er-
rors in the stereo estimation and where points were occluded in one
view). We assume that the video was captured with calibrated cam-
eras, so that given an image location (x,y), and a depth z, we can
compute the 3D location of the corresponding point in space.

Second, we process the video to prepare for stylization. There are
four parts to this processing stage. We start by segmenting the 2.5-D
video into foreground and background layers. Next, we process the
depth maps by filling in holes and smoothing to reduce noise (for
our results on synthetic scenes, we omit the segmentation and pro-
cessing steps). We then estimate a dense correspondence between
the foreground layers of each pair of successive video frames, and
simultaneously define a spatially and temporally smooth directional
field over the video.

Finally, a stylization algorithm is selected, and a stylized animation
is created using the processed video.

4 2.5-D video processing

In this section, we describe the processing stage of our system,
which consists of four parts: segmenting the video into objects,
processing the depth maps to get them into a more useful form, es-
timating correspondences between the shape of the objects in neigh-
boring frames, and creating a time-varying directional field to guide
stroke placement.

4.1 Video segmentation

Video segmentation can be a very difficult task. Wang et al. [2005]
and Li et al. [2005] have developed effective semi-automatic sys-
tems for extracting semantically meaningful objects from video. In
our work, we simplify the segmentation problem by filming objects
in front of a black background, and using color and depth thresh-
olding to segment the foreground layer.

4.2 Processing the depth maps

The depth maps that are produced by active stereo often suffer from
holes and noise. We process the depth maps to make them more
useful for stylization, and also compute differential information that
is useful for the following stages of our system. First, we fill holes
in the foreground layer by simply interpolating information from
the hole boundary into the hole. Second, we apply a bilateral filter
to each depth map independently to reduce noise while preserv-
ing depth discontinuities. Finally, we estimate surface normals and
the directions of principle curvatures and their magnitudes at every
pixel in the foreground layer, using the technique of Hameiri and
Shimshoni [2002].

Figure 3: Result of depth processing. From left to right: raw input depth from the hand video, thresholded and smoothed depth, needle map
(computed surface normal distribution). Note that both depth maps are rendered with a light source for clarity.

Figure 4: Result of estimating correspondence. The computed 3D
flow between the two successive frames of the hand sequence (su-
perimposed on the color image), shown as a needle map.

After processing, the representation of the 2.5-D video that is vis-
ible to the rest of the system is a set of video frames, each with a
foreground mask. In addition to color, each pixel in the foreground
layer stores a depth, a surface normal, and the principle curvatures
and their directions.

4.3 Estimating shape correspondence

The next step is to compute a dense correspondence between suc-
cessive video frames, which is necessary for creating temporally
coherent animations. For 2D video input, this correspondence is
known as optical flow. For 2.5-D or 3D input, this correspondence
is between 3D points, and is called scene flow [Vedula et al. 1999].

A number of algorithms have been proposed for computing cor-
respondences between 3D shapes. Some, such as those proposed
in [Allen et al. 2003] and [Sumner and Popović 2004], are useful
for estimating correspondences between shapes which have similar
structure but which are otherwise quite different. These methods
typically require a set of manually chosen correspondences. Our
method is more similar to that of [Zhang et al. 2004], except that we
compute correspondences between video points themselves without
the use of a base or template mesh, and we do not explicitly use op-
tical flow to constrain the scene flow—instead, color consistency is
an implicit component of our optimization.

To compute the scene flow between a pair of successive depth maps,
we consider them as two 3D points sets, Si and Si+1. First, we
estimate a rigid transform between Si and Si+1 using the iterated
closest point algorithm [Besl and McKay 1992], obtaining a rota-
tion R and a translation t. Second, for each point v j ∈ Si we esti-
mate a displacement vector d j that minimizes an energy function

E = Eprox +λEsmooth (we set λ to 16 in all our experiments). Eprox
measures the proximity in distance, normal, and color between the
displaced points in Si and the points in Si+1:

Eprox = ∑
v j∈Si

ρ
(

min
vk∈Si+1

{

D(v j,vk)
}

)

D(v j,vk) = ||vk −d j(v j)||
2 + γ||n̂k −Rn̂ j||

2 +ζ ||ck − c j||
2

where || · || is the L2 norm, d j(v j) = Rv j + t + d j, n̂ j and n̂k are
the original unit normals associated with v j and vk, and c j and ck
are vertex colors represented as RGB triplets (where r,g,b ∈ [0,1]).
The weights γ and ζ control the influence of the normal and color
distances; in our experiments, we set γ to 4 and ζ to 10 for the face
videos (described in Section 6), and to zero for the other videos.
The normal and color terms in D help to constrain the flow and
reduce the “swimming” of points on the surface.

To improve the robustness of the correspondence estimation to oc-
clusions, we use Tukey’s robust estimator (ρ(x) in the equation for
Eprox. In addition, we treat points of Si that, upon displacement, are
occluded by a point of Si+1 as special cases; these points contribute
a small constant to Eprox. This modification helps keep occluding
objects (such as the arms of the dancer in the samba video) from
“pushing” occluded points around.

To evaluate Eprox efficiently, we use the approximate nearest neigh-
bor package of Arya et al. [1998].

Esmooth expresses our assumption that the objects we capture de-
form in a continuous way, i.e., that the displacement field varies
smoothly over the object, while respecting depth discontinuities:

Esmooth = ∑
(v j ,vk)

||d j −dk||
2

||v j −vk||2

with v j and vk being 4-connected neighbors in Si. To find a mini-
mum of E, we initialize the displacements to zero vectors, and use
the LBFGS-B gradient descent algorithm described in [Zhu et al.
1997].

4.4 Defining a directional field

Most automatic NPR systems that apply brush strokes as a render-
ing primitive must define a directional field on their input domain in
order to guide the orientation of the strokes. A directional field over
a domain D is a function f from D to the set of directions, and is
different from a vector field in that additive inverses v and −v rep-
resent equivalent directions. In cases where it is desirable to avoid
singularities in directional fields, directional fields with 90 degree

symmetry are used. In this section, we describe our method for
defining a directional field over the time-varying extracted objects.

For image stylization, the directional field is often defined in terms
of the image intensity gradient. In Hertzmann’s work on painterly
rendering [Hertzmann 1998], the directional field is defined to be
orthogonal to the image gradient, while in the work of Hays and
Essa [2004], a smooth field is produced using radial basis functions
to interpolate the field from strong gradients. In the system pro-
posed by Salibury et al. [1997], the user supplies a direction field
to guide the stylization of the input image.

In our case, we define the directional field over the foreground pix-
els in the 2.5-D video, but derive the field automatically in terms
of shape, rather than color, following the work of Hertzmann and
Zorin [2000]. In that work, it was argued that for pen-and-ink style
illustrations, it is desirable that the directional field follow the di-
rections of principle curvature where the curvature is high in one
direction, and be approximately geodesic elsewhere. These guide-
lines were also used in Praun et al. [2001]. We adopt similar prin-
ciples in using shape to constrain the field direction; however, we
extend this work to deformable scenes.

4.4.1 Constraining the direction of the field

To address the issue of creating a directional field over a single
2.5-D video frame, we use a similar optimization framework as in
[Hertzmann and Zorin 2000]. At each pixel p of the depth map,
we define a shape strength ws(p) and shape direction vs(p). The
shape strength ws(p) is set to the difference between the principle
curvatures κ1 and κ2 of the surface at p: ws(p) = |κ1(p)−κ2(p)|.
The shape direction vs(p) is set to the tangent vector where the
magnitude of the curvature at p is largest.

To find the desired field, we solve for an angle θ (p) at each fore-
ground pixel p by minimizing an energy function with two terms:
E = Efield +αEshape (α is set to 4 in our work). In [Hertzmann and
Zorin 2000], an energy term for smooth fields was defined:

Efield = − ∑
all edges (p,q)

cosn((θ (p)−φpq)− (θ (q)−φqp)),

where φpq is the direction of the projection of the edge (p,q) onto
the tangent plane at p (the angles θ and φ are all with respect to
an arbitrary reference direction in the tangent plane fixed for each
point), and n is set to 4 to solve for a field with 90 degree symmetry.
We use the same expression for our Efield term, using n = 2 or n = 4,
depending on whether 180 or 90 degree symmetry is desired.

The Eshape term assign a cost to differing from the field vs weighted
by the shape strength, i.e.,

Eshape = − ∑
all points p

ws(p)cosn(θ (p)−ψs(p)),

where the angle ψs(p) is the direction of vs(p) with respect to the
reference direction at p, and n is set as with Efield.

4.4.2 Creating a temporally coherent field

If we were to apply the above optimization independently to each
frame in the 2.5-D video, the result would likely lack temporal co-
herence, because the directional field is very weakly constrained
at points that are far from high-curvature areas of the surface. To
achieve temporal coherence, for all frames i > 1, we add a third

term Etime to the energy function E described in Section 4.4.1,
which acts to smooth the field with that of the previous frame:

Etime = −∑
p(t)

cosn(f (θ (p(t−1)))−θ (p(t))).

p(t−1) is the point corresponding to pt in the previous time step, and
f (θ (p(t−1))) is the new direction of θ (p(t−1)) after the warp from
frame t − 1 to t. The new energy function becomes E = Efield +
αEshape +βEtime; β is set to 1 in our work.

5 Rendering algorithms

The final stage of our system uses the information derived in the
processing stage to produce a stylized rendering. Currently, we sup-
port two styles: cross-hatching and painterly rendering.

5.1 Hatching

Hatches can be used in pen-and-ink illustrations to suggest tone and
form, by controlling hatch density, intensity, and direction. Hatch-
ing has been explored for static 3D models (e.g., by Hertzmann and
Zorin [2000] and Praun et al. [2001]). We extend previous work to
2.5-D video.

For this style, we make the hatch the fundamental rendering unit;
we represent each individual hatch as a “particle” in 3D, and track
each hatch through the depth map sequence. As in [Praun et al.
2001], we create a set of discrete levels of hatches, each with a
different density, and render the appropriate level at each surface
patch based on lighting intensity. Each level has a base hatch spac-
ing which defines the approximate distance in image space between
neighboring hatches in that level.

One desired property of a hatch animation algorithm is that approx-
imately the same image space density of hatches in each level is
maintained throughout the animation. If we were to simply create
a set of hatches in the first frame and track them through the video,
this property would not hold, since regions of surface might ex-
pand, contract, or become foreshortened, and previously occluded
regions might appear. Alternatively, if we created an entirely new
set of hatches for each frame, this property would hold, but tempo-
ral coherence would be lost.

Instead, for each level, we create two sets of hatches in each frame:
a new set Hnew with the desired density, and the set of hatches
tracked from the previous frame (Htrack). We then merge Hnew and
Htrack into a single set of hatches. The idea behind the merging step
is that we want to keep as many of the hatches from Htrack as pos-
sible to maintain temporal coherence, while removing enough and
filling in the gaps with new hatches to maintain a uniform density.

To do the merging, we assign each hatch in Hnew to zero or one
hatches in Htrack based on proximity. Each assigned hatch of Hnew
is then moved to the location of its corresponding hatch in Htrack,
and each unassigned hatch of Hnew that is too close to one of the
assigned hatches (where the distance threshold is based on the den-
sity of hatches at the current level) is removed. The assignment
is computed greedily: the closest pair of hatches are added to the
assignment (and removed from the candidate pool) until the dis-
tance between the closest pair reaches a threshold (in order to keep
hatches in Hnew from straying too far from their original locations).
This approach results in small local variations in the hatch density,
and in the appearance and disappearance of hatches, but we observe
that the results look fairly natural.

To render the hatches, the user sets the desired hatch width and
length, as well as the lighting direction. Then, for each hatch, we
use Euler’s method to integrate the directional field at that point and
“grow” a curve. This resulting set of points is rendered as a piece-
wise linear line segment. The intensity of a hatch depends on its
level and the dot product between the surface normal at the hatch
point and the light direction. As in [Praun et al. 2001], the intensity
is computed in such a way that the densest level of hatches are ren-
dered with full intensity in the darkest surface regions, and that the
sparsest level in the brightest regions, and transitions between each
hatch level are smooth.

5.2 Painterly rendering

Painterly rendering has been explored largely for stylizing im-
ages and video. We have created a painterly rendering technique
that closely follows that of [Hertzmann 1998], using curved brush
strokes applied at different resolutions, but we use the shape, rather
than color, to guide the placement of brush strokes. The rendering
primitive we use for this style is a stroke, which contains a set of
control points, a radius, a color, and an alpha value.

To create a painterly rendering of a video, the user first defines a
style by setting the number of brushes to be applied and the radius
and maximum length of each brush. The canvas is then painted in
layers, from coarsest to finest, with curved brush strokes, as in the
technique of [Hertzmann 1998]. We use the color image blurred
with a Gaussian kernel whose standard deviation is proportional to
the stroke radius as the reference image for each layer, and finer
strokes are only used to fill in detailed regions that were not accu-
rately rendered in the coarser layers.

Rather than creating a new set of strokes for each new image in the
video, we achieve more temporal coherence (as in [Hertzmann and
Perlin 2000] and [Hays and Essa 2004]) by using the correspon-
dence information to track the control points of each stroke from
one frame to the next. Next, we search for strokes that can be re-
moved, either because they have become two small or too stretched
over the course of the tracking, or because the coarser levels of the
canvas now accurately render the area of that stroke. Last, we add
strokes to each layer where the canvas and the blurred reference
image for that layer disagree. We follow the technique of Hays and
Essa [2004] in improving temporally coherence by gradually fad-
ing strokes in and out. For rendering, we also use their technique of
treating a texture as a height map with which lighting computations
can be performed.

6 Results

We have tested our algorithm on several data sets, both synthetic
and real. The synthetic data sets demonstrate the accuracy of our
correspondence and directional field estimation, while the real data
sets show the reliability of our system given noisy data.

We created two synthetic 2.5-D videos, samba, a video of a samba
dancer and face, a video of an animated face, by generating a set
of depth maps from two animated 3D models viewed from a fixed
viewpoint. Color information was unavailable for the samba se-
quence, so we did not use the color channel of the 2.5-D samba
video. We also captured two real 2.5-D videos, hand, a video of
a flexing hand, and milk, a video of milk being poured into a cup.
Figure 1 shows an example frame from the milk video.

Figure 5 shows sample frames from animations created from the
samba, hand, and milk videos, created using the hatching rendering

style. Figure 6 show frames from the hand and face videos ren-
dered in a painterly style. The full animations can be seen in the
accompanying video.

7 Discussion

Our system has a few limitations. First, it currently does not distin-
guish between different objects in the scene, so the correspondence
and directional fields of two objects can become correlated in un-
natural ways. It would be more desirable to allow the user to seg-
ment the video into multiple objects and treat each independently.
Second, unlike with a 3D model, which can be viewed from any
direction, the viewpoint of a stylized rendering of 2.5-D video must
be the same as the one that was captured. Similarly, it is difficult
to edit the captured motion. These limitations are shared by normal
video. Finally, 2.5-D video is currently somewhat difficult to cap-
ture, requiring either expensive equipment or a complicated setup.
However, we predict that advances in stereo algorithms and capture
technology will reduce this difficulty in the future.

8 Summary

In this paper, we have described our system for taking a raw 2.5-
D video, processing it to create a more useful representation, and
creating a stylized output video. In addition to the system itself, our
contributions include a method for deriving a directional field over
a time-varying depth map and algorithms for applying several NPR
effects to 2.5-D video. Our system illustrates that even though 2.5-
D video lacks complete shape information and correspondence, 2.5-
D video can be used to create stylized animations depicting shape
without the use of explicit 3D models.

We showed that a combination of depth map processing, temporal
correspondence, and temporally coherent directional field is key to
making seamless stylization of 2.5-D video possible. As part of
future work, we would like to use both color and shape to estimate
the directional field and provide tools to the user for editing the
fields. In addition, we plan to apply more NPR styles, such as line
drawing, to 2.5-D video.

References

AGARWALA, A., HERTZMANN, A., SALESIN, D., AND SEITZ, S. 2004. Keyframe-
based tracking for rotoscoping and animation. In SIGGRAPH Conference Proceed-
ings, 584–591.

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2003. The space of all body shapes:
Reconstruction and parameterization from range scans. In SIGGRAPH Conference
Proceedings, 587–594.

ARYA, S., MOUNT, D. M., NETANYAHU, N. S., SILVERMAN, R., AND WU, A. Y.
1998. An optimal algorithm for approximate nearest neighbor searching fixed di-
mensions. Journal of the ACM 45, 6, 891–923.

BESL, P. J., AND MCKAY, N. D. 1992. A method for registration of 3-D shapes.
IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 2, 239–256.

GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Rendering. A K Peters, Ltd.

HAMEIRI, E., AND SHIMSHONI, I. 2002. Estimating the principal curvatures and the
Darboux frame from real 3D range data. In IEEE Inter. Symp. on 3D Data Proc.
Visual. Trans., 258–267.

HAYS, J. H., AND ESSA, I. 2004. Image and video-based painterly animation. In
Symposium on Non-Photorealistic Animation and Rendering (NPAR), 113–120.

HERTZMANN, A., AND PERLIN, K. 2000. Painterly rendering for video and inter-
action. In Symposium on Non-Photorealistic Animation and Rendering (NPAR),
7–12.

Figure 5: Sample frames from hatched renderings of the samba, hand, and milk videos.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. In SIGGRAPH
Conference Proceedings, 517–526.

HERTZMANN, A. 1998. Painterly rendering with curved brush strokes of multiple
sizes. Computer Graphics 32, Annual Conference Series, 453–460.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,
L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J., SHADE, J., AND
FULK, D. 2000. The Digital Michelangelo Project: 3D scanning of large statues.
In SIGGRAPH Conference Proceedings, 131–144.

LI, Y., SUN, J., AND SHUM, H.-Y. 2005. Video object cut and paste. SIGGRAPH
Conference Proceedings 24, 3, 595–600.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001. Real-time hatch-
ing. In Proceedings of ACM SIGGRAPH 2001, 579–584.

RASKAR, R., TAN, K., FERIS, R., YU, J., AND TURK, M. 2004. Non-photorealistic
camera: Depth edge detection and stylized rendering using multi-flash imaging. In
SIGGRAPH Conference Proceedings, 679–688.

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND SALESIN, D. H. 1997.
Orientable textures for image-based pen-and-ink illustration. In SIGGRAPH Con-
ference Proceedings, 401–406.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer for triangle meshes.
ACM Transactions on Graphics 23, 3, 399–405.

VEDULA, S., BAKER, S., RANDER, P., COLLINS, R., AND KANADE, T. 1999.
Three-dimensional scene flow. In Int’l Conf. on Computer Vision (ICCV), vol. 2,
722–729.

WANG, J., XU, Y., SHUM, H.-Y., AND COHEN, M. F. 2004. Video tooning. In
SIGGRAPH Conference Proceedings, 574–583.

WANG, J., BHAT, P., COLBURN, R. A., AGRAWALA, M., AND COHEN, M. F. 2005.
Interactive video cutout. SIGGRAPH Conference Proceedings 24, 3, 585–594.

ZHANG, L., CURLESS, B., AND SEITZ, S. M. 2003. Spacetime stereo: Shape recov-
ery for dynamic scenes. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 367–374.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M. 2004. Spacetime faces:
High-resolution capture for modeling and animation. In SIGGRAPH Conference
Proceedings, 548–558.

ZHU, C., BYRD, R. H., AND NOCEDAL, J. 1997. Algorithm 778: L-BFGS-B, FOR-
TRAN routines for large scale bound constrained optimization. ACM Transactions
on Mathematical Software 23, 4, 550–560.

Figure 6: Sample frames from painterly renderings of the hand and face videos.

