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Abstract. We present a new method for taking an urban scene reconstructed from
a large Internet photo collection and reasoning about its change in appearance
through time. Our method estimates when individual 3D points in the scene ex-
isted, then uses spatial and temporal affinity between points to segment the scene
into spatio-temporally consistent clusters. The result of this segmentation is a
set of spatio-temporal objects that often correspond to meaningful units, such
as billboards, signs, street art, and other dynamic scene elements, along with
estimates of when each existed. Our method is robust and scalable to scenes with
hundreds of thousands of images and billions of noisy, individual point observa-
tions. We demonstrate our system on several large-scale scenes, and demonstrate
an application to time stamping photos. Our work can serve to chronicle a scene
over time, documenting its history and discovering dynamic elements in a way
that can be easily explored and visualized.
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1 Introduction

In the last few years, our ability to model the world around us in 3D has greatly increased,
due to the availability of vast numbers of photographs from sources such as Flickr,
Facebook, and Picasa, as well as new reconstruction algorithms that can run on Internet-
scale collections [1, 2]. Indeed, the concept of “Internet-scale” now encompasses the
scale of the world, as planet-sized reconstructions are now being built [3]. Once every
stone has been turned to a point in a point cloud, does that mean the problem of 3D
reconstruction is complete? While we often refer to scenes reconstructed via methods
such as structure from motion (SfM) as being “static,” in reality many urban scenes
are quite dynamic over time scales of even a few years. Signs, lights, decorations, and
street art are examples of such dynamism—they are often reconstructable with current
methods, but transient in a longer-term view. Such visual elements provide opportunities
for us to reconstruct and visualize our ever-changing world.

However, state-of-the-art 3D reconstruction methods remain largely agnostic to the
time domain. While some systems work out of the box when applied to dynamic scenes,
they usually provide an output model devoid of any temporal information, where points
from different time spans simply co-exist. Other systems actively prune multiple points
that occupy the same spatial location, which for time-varying scenes leads to broken
reconstructions, veritable chimeras of different objects or appearances conflated in time.

Our aim is to bring temporal meaning back to these reconstructions. We propose a
simple approach by which output from an existing 3D reconstruction method can be
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Fig. 1. A montage of a planar region of the 5 Pointz dataset, showing how this region has changed
over time as different pieces of art have been overlaid atop one another.

taken as input and segmented into distinct space-time objects, each with a specific extent
in time. This method takes the web of observations and untangles it into temporally
consistent components. Our approach not only augments a reconstruction with temporal
information, but also leverages the time dimension as a unique signal for segmenting
scenes into meaningful objects; just as object motion is an important cue for video
segmentation, temporal structure is a useful cue for segmenting scenes.

Our method works by analyzing two key pieces of information: (1) the visibility
relationship between images and points in a reconstruction, and (2) the timestamps on
the images themselves. However, due to noise, it is difficult to use this raw information
to directly reason about time. Incorrect timestamps, registration failures, uncontrolled
illumination, photographer bias, sporadic temporal sampling, and photo manipulation all
make temporal reasoning a challenging task. Our work in inspired by previous methods
on temporal inference on 3D scenes [4, 5], but our approach differs especially in scale
and granularity—our method is designed for handling tens to hundreds of thousands
of images sampled relatively densely in time. When reasoning about time in image
collections, every observation has something to say, and so we focus on methods that are
simple and highly scalable to the billions of individual observations in our datasets.

We demonstrate our method on several large-scale datasets, including dynamic city
scenes, such as Times Square, as well as 5 Pointz, an outdoor street art exhibit space
in NYC. Figure 1 shows a region of our 5 Pointz dataset, demonstrating the output we
produce—extracted regions, sometimes overlapping in space, each with a temporal span.
We use these results in two applications: a system for visualizing scenes over time, and a
method for timestamping a new photo based on its contents. More broadly, we believe
that our system can be used as the basis for temporal visual discovery—allowing one to
automatically chronicle the rich visual appearance of a scene over time leveraging the
wealth of online imagery, and to explore and visualize the results.

2 Related Work

Dynamic scene analysis. Scenes can be dynamic at many different time scales—seconds,
minutes, years, decades. At video-rate time scales, there has been significant work on re-
construction of moving objects, spanning problem domains including motion capture [6],
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non-rigid SfM [7], scene flow methods [8, 9], and video browsing [10]. Recent work
has also sought to automatically sequence unstructured images captured over short time
scales, based on motion constraints [11]. Somewhat longer time scales can be captured
with time-lapse video, which only captures a single viewpoint but is especially useful
for studying changes due to illumination [12, 13] or long-term motions of objects [14].
Our domain of dynamic reconstruction methods from unstructured imagery at the scale
of several years has received relatively little attention, but is becoming more and more
feasible as the number of available images of scenes grows ever larger (imagine a future
scenario where 100 years’ worth of densely sampled imagery is available for any scene!)

There are a few systems that operate on unstructured imagery over large time scales.
Notably, Schindler and Dellaert [5] build probabilistic temporal reconstructions of
scenes from historical photo collections. By analyzing occluder-occludee relationships
of buildings and considering timestamps of varying precision, they formulate a graphical
model and perform joint inference to determine the most likely temporal ordering for a
set of photographs, a set of improved timestamps, and temporal extents for the observed
buildings. Our work differs in several key respects. First, their analysis was conducted
on photo collections containing hundreds of photos, and performs an inference involving
potentially expensive steps, such as an occlusion-test subroutine. In contrast, a key goal
of ours is to scale to very large collections (our largest input set includes over 1 million
photos). Second, we focus on more fine-grained temporal reasoning, involving photos
sampled densely in time over the last ten years. We also focus primarily on changes in
appearance (e.g., one billboard changing to another), rather than changes in geometry.
Finally, their work performs an initial object segmentation based on proximity and a
simple camera co-visibility metric. In our work, we integrate time-based reasoning
directly into the scene segmentation, avoiding hard segmentation decisions early on.

Change detection. A related field is that of change detection, where the goal is to
identify differences between two or more 2D images or 3D scenes. Pollard and Mundy
proposed a change detection method for 3D scenes observed from an aerial vehicle [15].
By building a model of occupancy and appearance over a voxel grid, they can determine
if a new view was generated either by the background model or by some change. Other
related work proposes geometric change detection by comparing 3D reconstructions
built from video [16, 17]. However, these formulations only produce differences between
two points in time. Our work provides a full temporal model across a large timespan.
Fard et al. proposed a method for using unstructured photo collections to monitor
the progress of a building under construction by comparing 3D reconstructions to 3D
building specifications [18]. In our case, however, we have no a priori scene model.

3 Overview

Our overall goal is to build a dense 3D point cloud with appearance information, e.g.,
using methods such as PMVS, and then to segment this reconstruction into a set of
temporally coherent geometric components (corresponding to signs, billboards, store-
fronts, etc.), as well as estimate a time range [tmin, tmax] for each component defining its
temporal extent. We use the timestamps on images for this task. However, due to noise
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in timestamps and in our estimates of point visibility, this task is difficult to perform
robustly. In addition, due to the scale of our data, we require very efficient algorithms.

Assumptions and Scene Representation. Our method makes several assumptions about
the input scene. First, we apply a standard SfM and multi-view stereo (MVS) pipeline
(with a few modifications) to derive an initial reconstruction from a set of photos. Hence,
even for a dynamic scene, we assume we can reconstruct accurate cameras and points
using SfM. This assumption relies on there being sufficient scene content that is constant
over time, or at least there being sufficient continuity in a scene from one time to the
next. Second, we assume that the geometry of the scene is largely static, but that the
appearance can change dramatically from one time to the next. Such appearance changes
are a key source of dynamism in scenes like Times Square, where storefronts, billboards,
and other ads are changing, often from one week to the next. Finally, because we focus
on urban scenes, we assume that the scene geometry can be well-approximated with a
set of planes, as in other work on urban reconstruction [19, 20].

This last assumption leads to our choice of output scene representation. We assume
that the components we segment the scene into can be approximated as (not necessarily
axis-aligned) planar facets—i.e., at any given time, the 3D scene is approximated by
2D planes. Further, as in Schindler et al. [5], we assume that unique objects come into
existence at some time, exist for a while, then are removed or replaced permanently.
Hence, each object exists for a single, contiguous span of time. If we consider a dynamic
scene as a 4D space-time volume, then our planar objects form 3D space-time “cuboids”
in this volume—2D in space, 1D intervals in time. Hence, our output representation
consists of a set of such objects, which we refer to as “plane-time cuboids.”

Space-time Reconstruction System. Our overall pipeline is illustrated in Figure 2. We
take a large collection of Internet photos of a scene, and generate a dense 3D point cloud
reconstruction (Fig. 2(1)), which initially is the union of all points across time. Next, we
reason about which cameras observe which points (2), and use the observation profile of
each 3D point to reason about the time interval in which it existed (3). We then segment
the scene into sets of points that are spatio-temporally coherent ((4) and (5)), from which
we can render visualizations of each part of the scene over time (6). We now describe
our space-time reconstruction and segmentation algorithm in detail.

4 Method

4.1 Dense 3D Reconstruction

Our input is a large set of photographs (tens of thousands to millions) downloaded from
the Web using targeted keyword searches such as times square. We restrict our
download to photos with timestamps (e.g., for Flickr, photos that have a datetaken
field). Using a random subset of 20,000 photos, we build an initial SfM reconstruction
using Bundler to obtain camera parameters and a sparse 3D point cloud [21]. We then use
2D-to-3D matching techniques to register the remaining photos to the reconstruction [22].
This process results in a set of reconstructed images I , camera parameters for each image,
and a sparse set of 3D points. Finally, we use CMVS to factor the reconstruction into
smaller components [23], then use a modified version of PMVS to generate a dense 3D
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(1) 3D Reconstruction (2) Observation Generation (3) Interval Estimation (4) Under-segmentation

2003 2009 2011

(5) Plane-Time RANSAC (6) Texture Mapping and Rendering

Fig. 2. System pipeline. Given a dense 3D reconstruction (1), we expand a visibility graph (2), and
then use that graph to estimate per-patch time intervals (3). Using spatial and temporal cues, we
construct a spatio-temporal graph and perform an undersegmentation (4). Then we fit plane-time
cuboids to this graph (5) and generate texture maps for visualization (6). This example shows an
exploded view of several billboards at the same location over time.

point cloud [24]. PMVS contains a number of geometric filters that disallow two 3D
points from occupying the same (or very similar) spatial location. We modify PMVS to
remove this restriction on output geometry, as detailed in the supplemental material. The
result of CMVS+PMVS is a dense set of 3D patches P . Each patch p ∈ P is represented
with a 3D position, a surface normal, and a set of images VPMVS(p) ⊆ I in which p is
deemed to be visible (as determined by high photoconsistency with a reference patch for
p). One of these views is selected as a reference view.

4.2 Computing the Visibility Graph

Our system relies on a good initial estimate of the visibility of each patch p in the set of
cameras, as visibility (along with timestamps on images) provides strong information
about when in time a patch existed. The visibility sets VPMVS produced by PMVS are
very approximate, and so we expand these sets into a richer representation of visibility.
We distinguish between two notions of visibility in our work, which we call projection-
visibility and photoconsistent-visibility:
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– A patch p is projection-visible in view v ∈ I if p is in front of v, p projects inside
the field of view of v, and p passes an occlusion test with other patches.

– A patch p is photoconsistent-visible in view v ∈ I if p is projection-visible in view
v and further p satisfies a photoconsistency criterion in view v.

We use these definitions to further define notions of “positive” and “negative” observa-
tions of a patch p in an image v, encoded as a visibility graph. The visibility graph V
is a bipartite graph (I,P, E) with edges e ∈ E connecting views to patches. V has two
types of edges. A positive observation edge eij+ encodes a temporal event where pj is
photoconsistent-visible view vi. A negative observation edge eij− encodes a temporal
event where view vi should have observed pj under projection-visibility (i.e., pj is
projection-visible to vi), but pj is not photoconsistent-visible to vi. Negative observa-
tions can occur for several reasons, including dynamic occlusion and misregistration,
but more importantly, they occur when a patch does not exist at a particular point in
time. These observations help us narrow down exactly when a patch does exist. Note
that observations that are not projection-visible are treated as providing no information.

CMVS+PMVS typically produces only a small subset of possible positive obser-
vations VPMVS(p) for each patch p, for reasons of efficiency; only a few views are
necessary for computing a well-conditioned estimate of a point’s location, not the hun-
dreds or thousands of potential views available for that patch. In our work, however, we
want as much information as possible (as well as both positive and negative observations)
to precisely estimate tmin and tmax for each patch (i.e., answering the question “when
did this patch exist?”). Therefore, we perform a visibility graph expansion step.

To do so, for each image v ∈ I, we generate a depth map by projecting all recon-
structed patches into v’s image frame using a z-buffering algorithm. Each patch adds
a 3-pixel radius contribution to the depth map. After generating this depth map, we
project each patch p once more into the image; if p projects inside v’s field of view and
satisfies a soft depth test against this depth map, we deem p projection-consistent. We
then compute a photoconsistency score by comparing a reference patch for p extracted
from p’s reference view (computed according to PMVS’s patch extraction method) to the
projection of the same oriented planar patch in v. If the normalized cross-correlation of
both windows is above a threshold τpos, then a positive observation is recorded. Similarly,
if the normalized cross-correlation is below a threshold τneg, then a negative observation
is recorded. For all experiments, we set τpos = 0.8 and τneg = −0.2.

4.3 Initial Time Interval Estimation

The set of observations for a given patch p gives us useful information about when in
time p existed, via the timestamps on images that observe p. For the segmentation step of
our pipeline, we require an approximate initial time span [tmin(p), tmax(p)], which we
compute from the associated image timestamps. A natural algorithm is to simply take the
minimum (earliest) and maximum (latest) positive observation timestamps as the time
interval. However, this algorithm doesn’t work well due to false positive observations and
incorrect timestamps; surprisingly, even in a time when many cameras are networked,
there are many reasons why timestamps can be wrong. We also tried ordering positive
observations by time and trimming off the bottom and top k-percentile. However, because
our observations are very non-uniform samples in time (with some times much more
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Fig. 3. Time profiles (right), for two different appearances of the same wall (left). Green (red)
marks on the timeline indicate positive (negative) observations. Dark gray intervals indicate the
shortest interval with the maximal F1 score. Any interval with endpoints contained within the light
gray regions will have the same F1 score. Note the false positive red marks inside the gray intervals
and the false negative green marks outside the gray intervals, as well as the very non-uniform
distribution of observations, which highlight the need for robust methods.

densely sampled than others), we found that this approach also performed poorly. In
general, we found that considering only positive observations was insufficient to compute
robust time bounds for a patch, and we must also use negative observations.

We found it effective to formulate this problem is in terms of classification, where
we wish to select a single time interval that classifies observations as being positive
(inside the interval) or negative (outside the interval), with the goal of achieving both
good precision and recall. Here, precision is the ratio of positive observations inside the
interval to the total number of observations in the interval. Similarly, recall is the ratio
of the number of positive observations in the interval to the total number of positive
observations across all of time. One common way to balance these measures is to use
the F1 score, which is the harmonic mean of these two terms:

Precision =
#TP

#TP+#FP
Recall =

#TP

#TP+#FN
F1 =

2 · Precision · Recall
Precision + Recall

For each patch p, we search over all possible start and end times tmin(p) and tmax(p)
(where we can limit the search to only consider the discrete set of timestamps corre-
sponding to our observations of that patch), and select the pair defining the time interval
with the maximum F1 score. This can be computed very quickly using dynamic pro-
gramming. Note that in general there is a family of intervals with the same F1 score for
a set of discrete observations, as we can vary the endpoints continuously between two
consecutive observations without changing the score. Therefore, we record four scalar
values per patch, the range of best start and end times for the beginning of the interval,
tmin(p), and the start and end times for the end of the interval, tmax(p). Figure 3 shows
several patches with their estimated time intervals.
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4.4 Spatio-Temporal Graph

Now that we have patches with initial time intervals, we have the information we need
to segment the scene into a set of plane-time cuboids. Section 4.5 describes our repeated
RANSAC procedure for segmenting the scene based on geometric and temporal cues.
First, however, our scenes are quite large, with millions of patches, and for such scenes
segmentation methods built on random sampling (e.g., RANSAC) can be difficult to
scale. To address this problem, we take an approach inspired by GroupSAC [25], and
preprocess our data to under-segment it into more manageable chunks where RANSAC
is more likely to quickly find good hypotheses. To do so, we build a graph on the set of
patches where pairs of patches are connected if they have high spatio-temporal affinity—
if they are proximate in space and time—and then compute connected components of
this graph. This method is related to the object segmentation in [5], but considers time as
well, and serves as a preprocess to our final segmentation algorithm.

We connect two patches p and q if they satisfy the following criteria:
– Spatial proximity. p and q are within a 3D distance δd, and have normals that differ

by no more than an angle δθ.
– Temporal overlap. p and q have time observations with a high degree of overlap.
– Common view. p and q are seen by at least one common camera from the original

PMVS reconstruction (|VPMVS(p) ∩ VPMVS(q)| > 0).
For the temporal overlap criterion (item 2), we could use the degree of overlap in the time
intervals for p and q estimated in Section 4.3 above. Instead, we found a somewhat stricter
notion of temporal overlap to be useful, in particular, we use the positive observations for
each patch to form an observation profile. For each positive observation for a patch p, we
pad it by ±1 week to form a time interval. Overlapping time intervals for a single patch
are aggregated into larger time intervals. The final set of (not necessarily contiguous)
time intervals forms the observation profile for p. To measure the temporal overlap of a
pair of patches (p, q), we compute the size of the intersection divided by the size of the
union of the two observation profiles (where here “size” means the total time mass in the
intersection or union of two observation profiles). This gives us a single scalar temporal
affinity score. If this score is greater than a threshold δt, then the pair (p, q) satisfies the
temporal overlap criterion.

To efficiently evaluate the three criteria above, for each patch p, we use FLANN [26]
to find spatial neighbors within a 3D distance δd, then prune these potential candidate
neighbors by the surface normal, temporal overlap, and common view criteria. The
surviving edges define a graph Gst whose connected components form a rough initial
undersegmentation into objects, as illustrated in Figure 2(4). For all experiments, we
use δθ = 60◦, δt = 0.75, and we manually select a per-reconstruction δd equal to
roughly 1-2 meters. Note, an alternative to manually selecting δd is to geo-register the
reconstruction so that it is to metric scale.

4.5 Plane-Time Clustering

Finally, we further segment each component of Gst from the initial spatio-temporal
segmentation into a set of plane-time cuboids that represent coherent objects in the
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scene. We perform the segmentation by greedily and repeatedly running a special “Plane-
Time RANSAC,” on each component, after each round removing the induced subgraph
given by the RANSAC inliers from Gst to form G′st, and recursively applying the same
procedure to the connected components ofG′st. We terminate the recursion if a connected
component does not contain some minimum number of vertices or if we are unable to
find any valid RANSAC hypotheses after some fixed number of iterations. This process
is run in parallel on each connected component.

Plane-Time RANSAC combines a standard plane-fitting inlier criterion with a new
time interval hypothesis criterion. In particular, the algorithm samples three patches at
random from the component and fits a plane to the three samples. It also computes a
time interval hypothesis by taking the union of the patches’ time intervals as estimated
in Section 4.3. Thus a hypothesis is a combination of a plane and a time interval. A patch
is considered an inlier to this hypothesis if (1) it is within some spatial distance of the
hypothesis plane, (2) its normal is within some cosine distance of the hypothesis plane,
and (3) its time interval has a high degree of overlap with the hypothesis time interval.
Once again, we define overlap of two time intervals to be the size of their intersection
divided by the size of their union. Because the estimated patch time interval is really a
family of intervals with endpoints that are allowed to vary slightly, we select the unique
patch time interval that maximizes the overlap between the patch and the hypothesis.
Note that when generating a hypothesis, three non-collinear points uniquely define a
plane, but the normals and time intervals of the sample points themselves may not satisfy
the inlier criterion for the hypothesis. We check for such cases and discard the hypothesis
if any sample is not an inlier to its own hypothesis. In our experiements, RANSAC was
allotted 1000 attempts to generate a hypothesis, but was limited to 100 valid hypotheses.

At termination, we have a set of plane-time cuboids (associated with each cluster),
and each patch has either been assigned to a cluster or has been discarded (as not
belonging to a large enough cluster). The time interval associated with each plane-time
cuboid can then be transferred back to the individual patches in the cluster to obtain
refined per-patch time intervals, since we assume the object represented by the cluster
appears and disappears as one unit. The distance, normal, and time overlap thresholds
used in all RANSAC runs are identical to their analogous counterparts in Section 4.4.

5 Experiments and Results

Datasets. We ran our pipeline on three highly dynamic datasets of urban environments
from photos taken over a span of several years. TimesSquare in Manhattan contains
a quarter million registered photos exhibiting a wide variety of change in appearance in
terms of billboards, signs, and building facades. Akihabara in Tokyo offers a related
setting where most of the dynamic content is localized to billboards and signs. However,
Akihabara also contains dramatic instances where entire buildings change appearance.
Finally, 5Pointz in Queens, NYC, served for several years as an outdoor art exhibit
space for graffiti artists, and offers a visually rich experience involving many pieces
of art over time. In this last case, our method can be seen as a step towards automatic,
distributed, art documentation. Table 1 shows the scale of these datasets.
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Dataset Photos Retrieved Photos Registered Patches Positive Obs. Negative Obs.
Times Square 1,222,792 246,218 13,590,341 5,274,437,797 12,347,622,570

5 Pointz 48,375 12,777 12,263,640 635,602,574 821,189,516
Akihabara 171,469 13,946 1,732,784 132,520,809 254,624,878

Table 1. Dataset statistics.

5.1 Viewing and Rendering

Our plane-time cuboid representation provides a simple yet effective way to explore the
evolution of a scene through space and time. We have created an interface where a user
can explore the scene using standard 3D navigation controls, but can also move back and
forth in time using a slider control.1 At any selected time, we can render a snapshot of the
scene as a point cloud using the patches that existed during that time, or can additionally
render each cuboid as a texture mapped “quad.” To do so, for each plane-time cuboid
proxy, we generate a bounding 3D rectangle with one axis perpendicular to the scene’s
estimated up vector. For each camera that observes at least six patches associated with
the cuboid, we apply the homography mapping image space to the quad’s texture space.
To enable clean blending between multiple cameras despite transient occlusions and
geometric misregistration, we generate an alpha matte using Gaussian splats of uniform
size centered at the projections of the positive patch observations. Examples of these
quads are shown in Figures 2, 4, and 7.

Our plane-time cuboids qualitatively represent meaningful semantic units. Figure 4
shows a birds-eye view of 5Pointz at two distant, visually distinct points in time.
Throughout time, segments come in and out of existence, sometimes in synchrony,
sometimes independently. It is not until the whole collection is analyzed that the behavior
of the scene becomes clear. For these sorts of scenes, it would be difficult for an expert to
manually analyze each photo to determine the scene’s temporal structure over the span of
several years. However, we can achieve our results fully automatically. Please refer to the
video on our project webpage for a rich visualization of the evolution of all three scenes.
Figure 7 shows a number of interesting examples of automatically recovered space-time
cuboids. Of particular interest are examples with temporal cues contained within the

1 Please visit http://www.cs.cornell.edu/projects/chronology/ for videos and other visualizations.

14 November 20134 June 2011

Fig. 4. A texture mapped rendering of 5Pointz at two different points in time. Please refer to
the project webpage for a video exploring all three datasets.
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Dec 12 - Nov 13

April 13 - Nov 13

Dec 12 - Nov 13
June 13 - Nov 13

Oct 11 - Nov 13
Feb 09 - Dec 13

Feb 05 - Dec 13Percentile F 1+ F 1± RANSAC+ RANSAC±
25 0.649 0.630 0.587 0.551
50 2.58 2.57 2.57 2.58
75 6.90 6.47 7.44 7.05

Fig. 5. 5Pointz timestamp prediction results. Positive and negative observations provide clues
as to when a photo was taken. Left: histogram and statistics of errors in timestamping. Right:
positive observations for a sample photo are shown in green. Several components of this scene are
well-localized in time and can be used to build a timestamp scoring function. The timestamp with
the highest score is marked on the timeline. We predict this photo was taken on July 25, 2013; the
photo metadata indicates it was taken on August 10, 2013.

image. For example, a poster advertising the 2008 US presidential election is estimated
to exist during the election period. Anime ads found in Akihabara advertise products with
recent release dates. Graffiti in 5Pointz can be matched with coarse-grained databases
found online. Each of these examples gives us clues about the world’s appearance at a
given point in time. While it is difficult to evaluate results quantitatively, subjectively we
achieve segmentations with close correspondence to temporal objects in each scene.

5.2 Timestamp Prediction

Another application of our system is for the task of predicting the date of a photo, in
case a date is missing or incorrect. Our time-stamping algorithm analyzes what portions
of our time-varying reconstruction are observed in a query photo, what portions are not
observed, and determines a date that best fits that information.

Given a new query photo registered to the model (e.g., using 2D-to-3D matching),
we use the same observation generation procedure as described in Section 4. However,
we select a more conservative τneg = −0.5 to obtain more confident observations. Given
the positive and negative patch observations, we use a voting scheme to determine a time
interval where the positive observation time intervals overlap, but where the negative
time intervals do not. For each observation, we generate a start event and an end event;
each event carries a vote. For a positive observation, the start event carries a vote of +w
and the end event carries a weight of −w where w is a tunable weight, w = 10 in our
experiments. For a negative observation, the start event carries a vote of −1 and the end
event carries a weight of +1. The score for each time subinterval is computed by sorting
all events by timestamp and then stepping along the timeline, accumulating the vote
carried by each event. The subinterval with the maximal score is then found. To generate
a single predicted timestamp, we select the midpoint of this interval.

In practice, we found that we had to consider the effect of unmodeled occlusions
and its impact on negative observations. By unmodeled occlusion, we mean the effect of
holes in the depth buffer used to determine projection-visibility of a point due to parts
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April 2007 - 2008/2009March 2008 - Late 2007 January 2005 - Early/Mid 2007

Fig. 6. Retimestamped photos. The timeline indicates our timestamp scoring function with the
given timestamp indicated in blue and our predicted timestamp indicated in pink. The originally
recorded date and estimated date range as determined by manual inspection are provided above.

of the scene geometry not being reconstructed. While this is not as much of a concern
when aggregating observations at each patch since this effect is more or less random
for a given patch, it is very consistent for aggregating observations for each camera.
Therefore, we only include a negative observation if at least one positive observation is
in close 3D spatial proximity. This implies that we could see the surface geometry at one
point in time, but we do not currently see a certain appearance in the query photo.

To evaluate this method, we conducted a timestamping experiment on 5Pointz.
We selected a random 10% of registerable photos as a test set and ran our pipeline as a
training stage on the remaining 90%. The test set was selected such that no photographer
overlaps between training and test sets, to prevent any bias a single photographer might
introduce. Note that while we measure distance to the original timestamps as ground
truth, these contain noise, and so our results should be interpreted with this in mind.

We present four variations on the algorithm described above. Methods denoted F1

use the per-patch time estimates obtained by our F1 interval procedure before Plane-
Time RANSAC segmentation is performed. Methods denoted RANSAC use per-cluster
time estimates obtained via Plane-Time RANSAC. Methods denoted + use only positive
observations while those denoted± use both positive and negative observations. Figure 5
shows our results as a histogram of distances between predicted and original timestamps.
We observe improvement with both the F1 and RANSAC methods after we introduce
negative observations, achieving a median distance of around 2.5 months, with 25%
of images having about 0.5 month distance (quite low given that all the only cue we
are using is changing scene appearance). However, there is an increase in error for the
75th percentile when we move to the RANSAC methods from the F1 methods. One
explanation is that by clustering the points, we might be losing some precision in our time
estimates; another is that we are seeing effects from noise in the original timestamps.

We also applied our timestamping method to photos from TimesSquare. Figure 6
shows examples of images that we believed to have incorrect timestamps based on the
content in the scene (i.e. ads, weather, clothing), and for which our method predicted
timestamps that more closely matches our belief of when these photos were taken. In
general for this dataset, applying RANSAC ± resulted in a 25-50-75 percentile errors
of 1.22, 5.47, and 20.1 months, respectively, indicating that this is a harder dataset for
timestamping than 5Pointz.
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Fig. 7. An assortment of plane-time cuboids from TimesSquare (blue), Akihabara (green),
and 5Pointz (red) with texture maps and estimated time intervals produced by our system.



14 Kevin Matzen and Noah Snavely

6 Discussion and Conclusion

Our system has several limitations, some common to traditional 3D reconstruction
systems and some unique to the 4D reconstruction problem. One key issue is that photo
misregistration can prevent accurate timestamp estimation. If several photos are localized
incorrectly in 3D due to some repeated structure in the scene, then all of the timestamps
associated with those photos will contaminate their associated geometry. Since these
photos themselves are in photoconsistent agreement, our system maybe decide to merge
them into a single, potentially long-lasting segment. Another issue is that many structures
in the real world cannot be approximated accurately using planar segments. In that case,
our system often oversegments these regions into several smaller facets. An improvement
would be to extend the set of models available in the RANSAC segmentation routine, or
to have a more flexible geometric model that uses time as a strong segmentation cue.

Even in the scenes we studied, there were examples of changes in the physical
structure of the buildings which violate our static geometry assumption. In 2009 a
staircase at 5Pointz collapsed and our reconstruction captures this in its segmentation.
However, since the z-buffer used in our system is time-agnostic, the projection-visible
test culls potential positive observations that became visible after the staircase’s removal.

The assumption that objects come into and leave existence only once can be violated.
The 5Pointz dataset has at least one example where graffiti was covered up and then later
restored. Both the original graffiti as well as its protective surface were reconstructed as
two separate segments and the reappearance of the graffiti was suppressed.

Finally, timespan estimation is much more precise for segments that are clearly
limited to some range of time in the middle of the dataset’s timeline. Segments that occur
very early (pre-2005) or very late (post-2013) often have no negative observations to
help limit either their starting or ending points.
Conclusion. Point observations over time can play an important role in the semantic
segmentation of 3D point clouds. We introduce the first fully automatic and Internet-
scalable system for segmenting 3D point cloud reconstructions for scenes containing
largely static geometry, but changing appearance. By leveraging a simple classification
accuracy statistic, we are able to robustly estimate time intervals for each point in a
reconstruction by considering both positive and negative observations, despite severe
noise. Our method then leverages spatial, temporal, and co-visibility cues to segment
points into spatio-temporally consistent components that we call plane-time cuboids.
The segments produced by our system often are natural units (signs, facades, art, etc.),
and are useful for both visualization and time stamping applications.

Future work will involve extending state-of-the-art image-based rendering techniques
into the time domain for immersive photo exploration through space and time using the
plane-time cuboid proxies generated by our system. In addition, we hope to integrate our
appearance-based method with modeling of larger-scale geometric changes, as well as
more general types of visual changes over time [27].
Acknowledgements. This work was funded in part by NSF grants IIS-1111534 and
IIS-1149393, by support from the Intel Science and Technology Center for Visual
Computing, and by support from Amazon Web Services in Education.
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