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Abstract views that maximizes the accuracy and completeness of the
resulting reconstruction while minimizing the computatio
time. Translating high level concepts likecuracy com-
letenesandrun timeinto mathematical objectives that can
[ge optimized in the context of SfM is a challenging prob-

tal subset of images, reconstructs the skeletal set, and add em. We address this problem using two approximations.

the remaining images using pose estimation. Our techniquef Irst, we opSm|zmnc?rt§|n§¥|hnstteEd of lac(:jcura<f:y, smcs :he:{h
drastically reduces the number of parameters that are con- ormer can be computed without knowiedge of ground tru

sidered, resulting in dramatic speedups, while provably ap geometry. Second, we use the number of images as a proxy

proximating the covariance of the full set of parameters. To for run tlmg, .Wh'Ch enables an algor'lthm-mdeper.\dent mea-
compute a skeletal image set, we first estimate the accuracfure. of efficiency. Completenes“s IS en sured via the con-
of two-frame reconstructions between pairs of overlapping straint that the skeletal set must “span the ful set ar_ld en-
images, then use a graph algorithm to select a subset of jm-2Ple reconstruction of all the images and 3D points in the
ages that, when reconstructed, approximates the accurac;fu” set via pose estimation and triangulation.

of the full set. A final bundle adjustment can then optionally ~ We formulate our problem by representing the joint co-

We address the problem of efficient structure from mo-
tion for large, unordered, highly redundant, and irreguiar
sampled photo collections, such as those found on Interne
photo-sharing sites. Our approach computes a sisiale-

be used to restore any loss of accuracy. variance of the full set of images as a graph, where each
image is a node and edges encode relative pose uncertainty
1. Introduction (covariance) between pairs of images. The relative pose

uncertainty between any two images is estimated by com-
bining covariance estimates along paths between the corre-
ponding nodes in the graph. The problem is then to de-
ermine askeletalsubgraph with the minimum number of
interior nodes that spans the full graph while achieving a
desired bound on the full covariance. For every pair of im-
ages, we compare their estimated relative uncertaintyein th

images on the Internet. However, the current generation ofOrlglnal graph to the uncertainty in the skeletal graph, and

unstructured SfM methods simply do not scale to thousands ¢ a4'"€ that the Iatter_ be no more the}n a fixed constant
. . times the former. While this problem is NP-complete, we
or tens of thousands of images. Furthermore, SfM scaling . .
techniques like sub-sampling and hierarchical decomposi_develop a fast approach that guarantees this constraint on
) . the covariance and in practice produces a dramatic reduc-
tion [9, 17] that work for ordered video sequences are more,. . :
oo . tion in the size of the problem.
difficult to apply to Internet collections, as the latter den _ _
to be unordered and highly oversampled in some regions Our experimental results show that the resulting ap-
(popular viewpoints) and undersampled in others. proach increases (_aff|C|ency for_ large problems by more than
Intuitively, the difficulty of reconstructing a scene shpul ~ @n order of magnitude, with little or no loss of accuracy;
depend on the complexity of the scene itself, not the numbermoreover, we reconstruct all of the images, not just the
smaller set of images may be sufficient to represent mostPutation more efficient.
of the information about the scene. If we could identify Our work is closely related to research on intelligent sub-
such a subset of viewsa-skeletal set-we could focus the  sampling of video sequences for SfM to improve robust-
reconstruction process on these skeletal images and @oducness and efficiency [9, 17, 19]. The main difference in our
truly scalable algorithms. work is that we operate on diverse, unordered sequences
The key technical problem is how to identify a subset of with more complex topology than typical video sequences.

Most famous world sites have now been captured from
thousands of viewpoints, via images available on the Inter-
net. Recent results have demonstrated [20, 4, 21, 25] that i
is possible to adapt structure from motion (SfM) methods,
originally developed for video, to operate successfully on
such unstructured collections. This exciting development
suggests the possibility of reconstructing the world from



Our work is also related to selectimgnonical viewse.g., sible to measure accuracy directly. However, it is possible
for robot localization [3]. However, SfM requires diffeten  to estimate thencertainty(covariance) in a reconstruction,
considerations than previous work on canonical views. which is a statistical estimate of the accuracy.

Many techniques for speeding up SfM exist. Afewreal-  For SfM, the covariance is rank deficient because the
time systems have been used to reconstruct urban scenescene can only be reconstructed up to an unknown simi-
from video [1, 7]. Steedly and Essa reduce the number of |arity transform. This freedom in choosing the coordinate
parameters updated during incremental bundle adjustmengystem is known as thgauge freedonj24]. Covariance
by determining the effect of new information on the recon- can only be measured in a particular gauge, which can be
struction [23]. Martinec and Pajdla describe a system for fixed by anchoring reference features, e.g., by fixing the lo-
fast, global estimation of camera parameters, but with morecation and orientation of the first camera, and constraining
controlled data sets than the ones we address here [15]. Fithe distance to the second camera to be of unit length. Co-
nally, Steedlyget al. [22], and Ni,et al. [16] partition recon-  variance is highly dependent on the choice of gauge. In the
structions in order to speed up bundle adjustment. Most ofexample where the first camera is fixed, there is no uncer-

these techniques are complementary to our work. tainty in its parameters, whereas if another, distant camer
_ was frozen instead, the uncertainty in the first camera’s pa-
2. Overview rameters could be quite large.
In this paper, aeconstructionrefers to a set of recov- For this reason, we do not measure uncertainty in a sin-

ered 3D camera and point parameters. The SfM problem isgle gauge, but rather fix each camera in turn and estimate
that of building a reconstruction using measurements @nth the resulting uncertainty in the rest of the reconstruction
form of feature correspondences) from a set of images. ourSince reconstructing the scene and measuring the actual co-
goal is to work with a smaller set of measurements, but to Variance would defeat the purpose of speeding up StM, we
still compute as high-quality a reconstruction as possible ~approximate the full covariance by computing the covari-
How do we measure the quality of a reconstruction? A ance in rgco_nstructions phirsof images aqd encodmg th|s_

few desirable properties amompletenesand accuracy information in a graph: We also only consider covariance in
i.e., a reconstruction should span all parts of the scerie vis the cameras, and not in the structure, as the number of cam-

ble in the images and should reflect the ground-truth scene®ras is typically much smaller than the number of points,
and camera positions as closely as possible. and the accuracy of the camera poses can be a good predic-

If completeness and accuracy were the only considera-{Or for accuracy of the points.
tions, SfM should use of all available measurements. How-  In particular, consider thenage graphGz, with a node
ever, efficiencyis also important. For Internet image sets, for everyimage, and two directed edges between any pair of
this tradeoff is particularly relevant. In these sets,¢heme ~ images with common features. Without loss of generality,
typically large numbers of popular, and therefore redundan We assume tha¥z is connected (in practice, we operate on
views, along with some rare, but important (for reconstruc- its largest connected component). Each etge/) has a
tion) views. If we could identify this small set of impor- matrix weightC';;, whereC';; is the covariance in the two-
tant measurements, then we could potentially reconstructframe reconstructioii/, J) of the parameters of camera
the scene much more quickly. when camerd is held fixed.C; could be a full covariance

The main question is how to choose the subset of mea-matrix with entries for both position and orientation. listh
surements to use. For simplicity, rather than considering Paper, we model only the positional uncertainty, (80 is
individual measurements, we make decisions at the level@ 3x3 matrix. Figure 1(a) shows an example image graph
of images; for each image we either include or exclude With covariance weights.
its measurements as a group. We call the set of images For any pair of cameragP, ), we can use’z to es-
selected for reconstruction trekeletal seand define our  timate the uncertainty i if P is held fixed, by chaining
problem as follows: given an unordered set of images together covariance matrices along a path betweemd
I ={L,...,I,} find asmall subsef that yields arecon- Q. To compute the exact covariance, we would need to in-
struction with bounded loss of quality compared to the full tegrate information along all paths fromto Q. However,
image set. Such a reconstruction will be an approximation the shortestpath fromP to @) gives us an upper bound on
to the full solution. Moreover, it is likely a good initiakz the true covariance. Figure 1(b) illustrates this idea.
tion for a final bundle adjustment, which, when run with all For shortest paths to be well-defined, we need scalar,
the measurements, will typically restore any lost quality.  rather than matrix, path lengths. We use the tracg?),

To make this problem concrete, we must first define of the covariances as our scalar lengths. The trace of a ma-
quality. Let us first consideaccuracy the property that the  trix is equal to the sum of the eigenvalues, so it expresses th
recovered cameras and points should be as faithful to themagnitude of the uncertainty. It is also a linear operatar an
actual scene as possible. Without ground truth, it is impos-is invariant to rotation. Thus, adding up covariance masic
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Figure 1.Modeling covariance with an image grapfa) Each node represents an image, and each edge a two-framstraction. Edge
(I, J) is weighted with a covariance matrf¥; ; representing the uncertainty in imageelative toI (the graph is directed, so edgé, I)
is weighted with a matrixC;1; only one edge is shown in the figure). (b) To estimate the relative unagrtetween two nodeB andQ),
we compute the shortest path between them by chaining up covariandaskiang the trace at the end). In this graph, the shortest path is
shown with arrows, and ellipses represent the accumulated covaemgethe path. (c) If an edge is removed (in this case, the dashed
edge), the shortest path frofto @ becomes longer, and therefore the estimated covariance grows. pa§stble skeletal graph. The
solid edges make up the skeletal graph, while the dotted edges haveebhemred. The black (interior) nodes form the skeletalssetnd
would be reconstructed first, while the gray (leaf) nodes would be adglag pose estimation aftgr is reconstructed. In computing the
skeletal graph, we try to minimize the number of interior nodes, while biogritie maximum increase in estimated uncertainty between
all pairs of nodes? and@ in the original graph.

(scaled and rotated to align adjacent models) and taking the Our approach is based on a simplified probability model.
trace at the end is equivalent to adding up the (scaled)drace In particular, we consider only positional uncertaintydan

of the individual covariances. We therefore use scalar edgeuse shortest path covariance as a bound on the full pairwise
weights,w;; = tr(Cyy), taking care to scale the weights covariance. We make these simplifications so that the cost
appropriately when computing path lengths. of making decisions is significantly smaller than the time

If we remove edges frort¥'z, the lengths of some short- saved during reconstruction [8]. These approximations pro
est paths (i.e., the estimated relative uncertainty in came duce skeletal sets that yield remarkably good reconstruc-
positions) may increase, as illustrated in Figure 1(c).l@nt tions with dramatic reductions in computation time, as we
other hand, removing edges fro6; can yield askeletal will demonstrate in our experimental results.
graph G that is more efficient to reconstruct. We estimate
this efficiency by simply counting the number iofterior Modeling higher-level connectivity. One issue with our
(i.e., non-leaf) nodes if/s, since once we reconstruct the basic approach is that the image gra@h is not a suffi-
interior nodes ofGs, the leaves can easily be added in af- ciently expressive model of image connectivity for STM. To
terwards using pose estimation, and the leaves do not affecsee why, consider three imagds B, andC, whereA and
the overall connectivity of the graph. Our objective is ther B overlap, as d@ andC, but A andC' do not. These nodes
fore to compute a skeletal graph with as few interior nodes form a connected set i6'z. However, the scale between
as possible, but so that the length of any shortest paths (e.gthe two-frame reconstructiorisl, 3) and(B, C') cannot be
the estimated uncertainty) does not grow by too much. determined, and a consistent reconstruction cannot be buil

There is an inherent trade-off in this formulation: the from these images. In order to determine the sdale3)
more edges we remove (and the more leaves we create), thand (5, C') must see at least one point in common. There-
faster the reconstruction task, but the more the estimatedore, any path passing through nodésB, C' in sequence
uncertainty will grow. We express this trade-off with a pa- is not a realizable chain of reconstructions (we call such a
rametert, called thestretch factor For a given value of, pathinfeasiblg.
the skeletal graph problem is to find the subgréghwith To address this problem, we define another graptinthe
the maximum number of leaves, subject to the constraintage pairgraphGp. Gp has a node for every reconstructed
that the distance (length of the shortest path) between anypair of images, and an edge between reconstructions that
pair of cameragP, Q) in G is at most: times longer than ~ share common feature€p is also augmented with a node
the distance betweel and@ in Gz. A subgraphG s with for every image, and is constructed so that a path between
this property is known as#@aspannei2], so our problemis  two imagesP and(@ has the same weight as the analogous
to find amaximum leaf t-spannef Gz. Our algorithm for path inGz; the only difference is that only feasible paths
solving this problem is described in Section 4. can be traversed i@». An example ofGz andGp show-

A t-spanner subsumes the property of completenessjng this construction is shown in Figure 2. This higher-leve
since if a node were to be disconnectedsig, some short-  connectivity imposes an addition constraint on the skkleta
est path would have infinite length. Furthermore, the skele-graph: it must yield a single, feasible reconstruction. One
tal graph will tend to preserve important topological fea- way to express this is to define tleenbeddingof a sub-
tures inG'z, such as large loops, as breaking such structuresgraphGs of Gz into Gp as the subgraph @¥p containing
will dramatically increase the distance between one or morethe nodes corresponding to the edge&/gf and any edges
pairs of nodes. between these nodes. The embedding/efinto G» must



be connected for the skeletal graph to be feasible. the focal length estimate can be off by several percent (and
is occasionally completely wrong), we have found that it
is usually close enough to give reasonable pairwise recon-
structions. After estimating the relative pose, we triangu
late the inlier matches and run bundle adjustment using the
SBA library [13]. If the average reprojection error of a re-
construction is too high (we use a threshold of 0.6 pixels),
we discard the reconstruction, as these are usually misesti
mated (due, for instance, to an erroneous focal length).

After a pair is reconstructed, we check whether the im-
ages are near-duplicates, i.e., whether they have veriasimi
image content, or one is subsumed by other. We consider
image J to duplicate imagd if: (a) the distanced,., be-
tween the camera centers is small compared to the median
distance,d,, between the cameras and the reconstructed
points (we usel. < 0.025d,), and (b) the set of images
overlappingJ is a subset of the images overlappihg If
both of these criteria hold, it is likely that nearly all ofeth

() geometric information in imag# is also present in image
Figure 2.Pair graph construction (a) An example image graph, I, and we removeJ from consideration (it will be added
with four images, showing the overlaps between images (1,2), back in at the very end).
(2,3), (3,4), and (1,4). (b) A possible (simplified) pair graph for (a

with a nqde for each pair of_lma_ges. All pairs of reconstrgctlons processed would be equal to the number of matching im-
overlap, i.e., share some points in common, except for pairs (2,3)

. . 9 . )
and (3,4). (c) An augmented pair graph with edge weights. This ages_, which cou]d be as high &%n") for.n |mages._ With
graph is augmented with a node for each image, and allows fordl"pl'c""te Qetectlon,_we can often avoid processmg many
computing lengths of paths between images (with the constraintPairs. For instance, in the extreme case where athages

Without duplicate detection, the total number of pairs

that an image node can only appear at the ends of a path). are the same, we will only processpairs, rather tham?.
o In practice, the total number of pairs processed depends on
3. Building Gz and G'p the order in which they are considered; if many duplicates

In this section, we describe the first step of our approach,are removed early, fewer pairs will be processed. There-
which is to create the image gragh; and the pair graph fore, observing that images that are more similar also tend
Gp. These graphs become the input to the skeletal grapht0 have more matching features, we sort the pairs by num-
algorithm described next. We compuie andG in three ber of matches, and consider those with the most matches
Stages: (1) create a two-frame reconstruction for eve“y pa| first. For the Internet collections we tested, typ|Ca”y atbo
of matching images, removing duplicate images as we go, third of the images are removed as duplicates.

(2) compute the relative covariance in camera positions for ~ Once we have reconstructed a p@lrJ), we estimate
each pair, (3) check which pairs of two-frame reconstruc- the covariances of the two camera positions. During bun-
tions overlap (and are therefore edgesqin). dle adjustment, SBA uses the Schur complement to com-

We first obtain correspondences by extracting SIFT fea- pute the Hessia/ o of the reduced camera system [24].
tures from each image [14], matching features betweenWe can estimate the covariances in the cameras by invert-
each pair of images, and forming connected components ofing H-¢ and selecting the submatrix corresponding to the
matches to produce tracks. The matching step is extremelycamera positions. Howevetc is singular because of the
time-consuming on large data sets, but researchers are malgauge freedom, so we add constraints to the reconstruction.
ing significant progress on matching [6], and we anticipate To estimate the covariance in the positionJfofwe fix po-
that much faster matching techniques will soon be available sition and orientation by constraining camérto be at the

Next, we compute a reconstruction for each matching origin with an identity rotation, and fix the scale by adding
image pair using the five-point relative pose algorithm of a weak constraint to the mean of the 3D points (after re-
Nistér [18] inside of a RANSAC loop. The five-point al- moving very distant points); in practice, we have found this
gorithm requires both cameras to be calibrated. Thereforeto work better than constraining the distance between the
we only consider images that have a focal length estimatecameras to be of unit lengthiZ-¢ is then invertible, and
encoded in their EXIF tags (true for most modern digital can be used to find’s covariance./’s covariance is com-
cameras) and assume that each camera has unit aspect ratjputed analogously by fixing cameya(in general, the two
zero skew, and a principal point at the image center. While covariances are not identical).



After computing the covariances, we construct the pair
graph Gp. Recall that every node of/p represents a

2. Add every unmarked neighbor of and the edge con-
necting it tov, to T's and color these neighbors gray.

pairwise reconstruction, and that an edge connects every 3. Select the gray nodewith the most unmarked neigh-

pair of overlapping reconstructiori$, J) and(.J, K). The

main remaining task is to decide which pairs of nodes are
connected. To do so, we consider each triple of images

(I,J, K) where(I, J) and(J, K) are reconstructions. We
find the intersection of the point sets @f, J) and (J, K),
then use absolute orientations [12], inside a RANSAC loop,
to find a similarity transforn?” between them. If there are
at least a minimum number of inliers o (we use 16), the
two edges((Z, J), (J, K)), and ((K, J),(J,I)) are added

to Gp. The scale factors;;;, andsyj; (wheres;;xsy;; = 1)

bors, and go to step 2, until all nodes are black or gray.

We first modify this algorithm to ensure that the con-
structed tree is feasible. To do so, we maintain a parent for
each node (except the first). The paré&iv) of a nodev is
the node that causadto be colored gray. In step 2 of the
algorithm, we only color a neighbar of v gray if the path
(P(v),v,u) is feasible. Similarly, in step 3, when counting
unmarked neighbors of a nodeve only consider those for
which (P(v), v, u) is feasible.

between the two reconstructions are also stored with eachtconsidering edge weights. The basic MLST algorithm
edge, so that we can properly align the scales of adjacentings a spanning tree with a large number of leaves, but ig-

reconstructions when computing shortest pathsin
Finally, we augment thé&'» with nodes and edges for
each image, as described in Section 2.

4. Computing the skeletal set

We formulate the problem of computing the skeletal set
as that of finding a maximum leafspanner of=z, called
theskeletal graphGs. Recall that the embedding 6fs in

nores the edge weights. Ideally, we want to select images
that not only have high degree, but which are also critical fo
keeping distances between nodes as short as possible. For
instance, it might be desirable to choose nodes and edges
that are on a large number of shortest paths, as removing
them may resultin large changes in distances between many
pairs of nodes. On the other hand, some edges in a graph
may not be alon@ny shortest path, and are therefore rela-

G'» must be connected. To ensure that this constraint is satfively unimportant. Therefore, we integrate some notion of

isfied, our algorithm maintains data structures for bGth
and its embedding id'». OnceGg is found, the skeletal
setS is the set of interior nodes @fs.

Unfortunately, the problem of computing a minimum

spanner for general graphs is NP-complete [5], so it is un-

likely that an exact solution to the maximum leagpanner
problem can be found efficiently. We propose an approxi-
mation algorithm for computing:s, which consists of two
steps. First, a spanning trée of Gz is constructed. The
construction ofl’s balances computing a tree with a large
number of leaves (a maximum leaf spanning tree), with
computing a tree with a small stretch factortfapanner).
Because no tree may have a stretch factaot, tfie second
step is to add additional edgesTtg to satisfy thet-spanner
property. We now describe each of these steps.

4.1. Constructing the spanning tree

We start by describing a simple, greedy approximation
algorithm for computing a maximum leaf spanning tree
(MLST) proposed by Guha and Khuller [10]. The idea be-
hind the algorithm is to grow a tree one vertex at a time,
starting with the vertex of maximum degree. We then mod-
ify this algorithm to consider the edge weights.

Basic MLST algorithm. The algorithm maintains a color
for each node. Initially, all nodes are unmarked (whitejl an
the algorithms proceeds as follows:

1. Select the node of maximum degree. Addto T’s.

how important a node or edge is into the algorithm.

There are many possible ways of measuring the impor-
tance of a node to the global connectivity of a graph. We
take a very simple, local approach: we first measure the
importance of eackdge(Z, J) by computing the length of
the shortest feasible path betwekand.J (we denote this
lengthd (I, J; G7)), and dividing it by the length off, J):

imp(r,J) = 0T Gz).

wrJj

If the edge(I, J) is itself a shortest path betwednand
J, imp(I,J) = 1. Otherwise,imp(/,J) < 1, and the
longer the edge is compared to the shortest path, the smaller
imp(Z, J) will be. Some reconstructions (edges) are nat-
urally ill-conditioned, and a much higher certainty can be
achieved via a detour through one or more other images.
Such edges receive a low importance score.

Before running the basic MLST algorithm, we remove
edges that have an importance score lower than a threshold
7. The degree of a node is then the number of incident “im-
portant” edges, and is a better predictor for how important
the node is than the raw degree.

The tradeoff when setting is that with a very small
threshold, very few edges will be pruned and the MLST
algorithm will try to maximize the number of leavesTi,
without considering the stretch factor. With a larger thres
old, more edges will be pruned, and it may be more diffi-
cult to create a tree with a large number of leaves, but the
stretch factor of the tree will likely be smaller. There is a



connection between this tradeoff and the value¢.ofAny algorithm: (1) determining which edges to remove in the
edge(I, J) with imp(I, J) < t~! will be excluded from a initial importance pruning stage, and (2) determining vahic
minimum¢-spanner, because there must be a path betweeredges must be addedT@ to achieve the stretch factor. As
I andJ in the original graph that is at leastimes shorter  noted earlier, we compute these paths in the gi@iph

thanw(I, J), by the definition of importance. Therefore, We compute shortest paths @ with a modified ver-
we can exclude all edges witinp(7, J) < t~. In all of sion of Dijkstra’s algorithm. The main difference comes
our experiments, we used a larger threshold ef 4t . from the fact that the covariance weights on the edgéssof

are derived from reconstructions in different coordingte s
4.2. From MLST to ¢-spanner tems, so the covariances are not directly comparable. Thus,

The treeT’s computed above spans the entire graph, but we use the scale factors computed when constructing the
may not be &-spanner. To guarantee that the stretch fac- pair graph to scale the edge weights as we are finding a
tor of the skeletal graph is at mostwe may need to add shortest path (the edge weights are scaled by the square of
additional edges, forming a graphs with cycles. In or- the scale factors, as the trace of a covariance matrix grows
der to determine which edges to add, we need a way to testvith the square of the scene scale). In addition, for each
whether the target stretch factor has been met. While at firstimage!, we need to make sure that all outgoing edges have
it seems that we need to compute paths between all pairs ofveights measured in the same coordinate system. There-
nodes to check this, it suffices to only check paths betweenfore, we select a reconstructi@i, J) to be the canonical
neighboring pairsI, .J). This follows from the fact that if  coordinate system faf, and align all other reconstructions
the distance between all neighboring nodes in a graph is di-(1, K') to (I, .J). Not all reconstruction$l, K') may over-
lated by at most a constant factgrthe distance between lap with (I, .7), but through transitivity most can be aligned
any two nodes must also be dilated by at most a fattor (we remove any remaining reconstructions).
because each edge on the original shortest path can be re- We can often terminate the shortest path algorithm early

placed by a new path at mastimes longer. (i.e., we do not always need to find the exact shortest path

We therefore enumerate all edges(éf not included in between two nodes). In the importance pruning stage, if at
the treel’s. For each edg€l, J), we computel; (I, J; G1) any time we find a path i’z shorter tham - w; ;, we know
andd;(I,J;Gs). If dp(I,J;Gz) < t-ds(I,J;Gs), we that (I, J) can be pruned. Similarly, in the stretch factor
add the edge t6/s; otherwise, we omit the edge. stage, if we find any path ifi’s shorter thant - wy;, we

The set of edges added €@s depends on the order in  know that(7, J) can be omitted.
which the edges are processed, since adding a single edge
can affect many shortest paths. Therefore, we first consider5. Results
edges between nodes that are already on the interi@sof
(i.e., black nodes). We then follow [2] and consider the
remaining edges in order of increasing covariance weight.

We have tested our algorithm on several large Internet
photo collections of famous world sites (St. Peter’s Basil-
. ica, Stonehenge, the Pantheon, the Pisa Duomo, and Trafal-
OnceGs has t_Jeen augmented with the necessary edgesgar Square). We obtained these data sets by doing keyword
the skeletal sef is selgcted as the set of F‘O”"e?‘f nodes of searches on Flickr and downloading the results. We also
Gs. The skeletal set is reconstructed with an incremental tested on a second collection of the Pisa Duomo taken by

bundle adjLCJisc,itn;ent'techmque [?1]’ gnd ihle rgmac;?mgd!m- a single photographer with the express purpose of scene re-
ages are added using pose estimation [11]. Bundle a J'“'St'construction (we refer to the Internet collection as Pisal,

melnt Is then optionally run (;]n thifuf" Islet.' _ and this second collection as Pisa2).
N summary, our system has the following stages: We reconstructed each data set using our skeletal graph

algorithm with a stretch factor = 16. Visualizations of

1. Compute feature correspondences for the images. ,
the full and skeletal image graphs for the Pantheon data set

2. Compute a reconstruction and covariances for each h in Fi 3. Note that the skeletal hi h
matching pair, and remove duplicates (Section 3). are shown in Figure 5. Note that the skeletal graph 1S muc
. . . sparser than the full graph, yet preserves the overall topol
3. Prune reconstructions with low importance. : ; .

4 C MLST front (Section 4.1 ogy. Figure 3 shows overhead views of the Pantheon during
- Constructa rontrz (Section 4.1). ) several stages of our algorithm; note that both the inside an
5. Add edges to guarantee the stretch factor (Section 4.2) g side are reconstructed. Figure 4 shows the reconstruc-
6. Identify and reconstruct the skeletal set. tion of the Pisa2 data set. See the supplemental website

7. Add in the remaining images using pose estimation.  (http:/grail.cs.washington.edu/projects/skeletains/) for
8. Optionally, run a final bundle adjustment. visualizations and reconstructions for the other data sets
Table 1 summarizes the running time of the results (ex-
Implementation of shortest path computation in Gp. cluding matching). The running times for our algorithm are

We compute shortest paths in two parts of the skeletal setfor the entire pipeline (computing pairwise reconstrutsio



Name | #images| largestcc| [S| | #regfull | #regS [ rtfull [ rtS | rt S+BA |
Stonehenge 614 490 72 408 403 276 min 14 min 26 min
St. Peter’s 927 471 59 390 370 11.6 hrs 3.54hrs | 4.85hrs
Pantheon 1123 784 101 598 579 108.4 hrs | 7.58 hrs | 11.58 hrs
Pisal 2616 1671 298 1186 1130 | 17.8days| 14.68 hrs| 22.21 hrs
Trafalgar Square 8000 3892 277 - 2973 | >50days| 17.78 hrs| 30.12 hrs
Pisa2 1112 1110 352 1101 1093 | 18.5days| 32.9hrs | 37.4hrs

Table 1.Data sets and running time&ach row lists:;name the name of the scen#;imagesthe number of input imagetgrgest c¢ the
size of the largest connected component of the image gtaph;the size of the computed skeletal séteg full, the number of images
registered in the full reconstructiotireg S, the number of images registered in the skeletal set reconstrudtioii; the running time of
the full reconstructionrt S, the running time of the skeletal set reconstruction, including computingaheise reconstructions and the
skeletal graphrt S+BA, the running time of the skeletal set reconstruction plus a final bundletadjos

(a) (b) (c) (d)
Figure 3.Reconstructions of the Pantheo(a) The full image graph for the Pantheon and (b) our skeletal grdple black (interior)
nodes of (b) comprise the skeletal set, and the gray (leaf) nodegldeel & later. The Pantheon consists of two dense sets of views
(corresponding to the inside and outside), with a thin connection between(ti®ws taken outside that see through the door). Note how
the skeletal set preserves this important connection, but sparsifiesrike garts of the graph. (c) Reconstruction from the skeletal set
only. (d) After using pose estimation to register the remaining images.f{e) Auinning bundle adjustment on (d).

building the skeletal graph, and reconstructing the scene) structed St. Peter’s with multiple valuestfind compared
For Trafalgar (the largest set), the baseline method wis sti the results to the reconstruction obtained from running the
running after 50 days. baseline method on the full image set. For each valug of

The results show that our method takes significantly lessWe aligned the resulting reconstruction to the baseline re-
time than the baseline method, and the performance gairfonstruction by finding a similarity transform between cor-
increases dramatically with the size of the data set. Theresponding points, and computed the distance between cor-
speedup ranged from a factor of 2 for St. Peter’s, to a factor'®Sponding cameras, both before and after a final bundle.
of about 40 for Trafalgar Square, the largest collection. At Figure 5 shows the results, plotting the size of the skeletal
the same time, our algorithm recovers most of the imagesSet: and the median error in camera position, for several val
reconstructed by the baseline method. A few images areUes oft. Ast increases, the size of the skeletal set decreases,
lost; most of these are very tenuously connected to the restand the error before bundling increases. However, applying
and can mistakenly be pruned as infeasible while building a final bundle results in a low, relatively constant erroelev
the skeletal graph. Our method also worked well on the set(in this case, a median error between 6-8cm for a building
taken by a single person (Pisa2), though the fraction of im- about_ 24m in width), even for gtretch factors as_large as 30,
ages in the skeletal setis somewnhat higher than for the Inter & Which point only 10% of the images are used in the skele-
net sets. For most of the data sets, our algorithm spent mord@l Set. For even larger stretch factors, however, the lsahd|
time in reconstruction than in building the skeletal graph; solution begins to degrade, because the initializatiomfro

for a few particularly dense sets (e.g., the Pantheon), thethe skeletal set is no longer good enough to converge to the
preprocessing took more time. correct solution. We also ran the same experiment on an

image collection with known ground truth, with compara-
Next, we analyze the tradeoff betwgen the strgtch factorble results (please see the supplemental website).
t and the accuracy of the reconstruction. We first recon-



(2]

(3]

(4]

(5]

Figure 4. View of the Pisal reconstruction. 6]
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Figure 5.Stretch factor analysis for St. Peter’keft: stretch fac-
tor vs. number of nodes in the skeletal set. Right: median error [10]
(in meters) in camera position for reconstructions before and after
final bundle adjustment. As the stretch factor increases, the error[ll]
before bundling increases, but applying bundle adjustment results[lz]
in a low error level (around 6-8cm; note that the nave of the cathe-
dral is about 24m across), even for stretch factors as large as 30.

[13]
6. Conclusions

We have developed an algorithm for reconstructing In-
ternet photo collections by computing a skeletal graph, and[14]
shown that this method can improve efficiency by up to an
order of magnitude or more, with little or no loss in ac-
curacy. Our work suggests many interesting avenues for[l6]
future work. For instance, we would like to find ways of
using a more sophisticated model of uncertainty, e.g, tak-[17]
ing uncertainty in camera orientation, and perhaps in scene
structure, into account, or by considering multiple patis b (18]
tween image pairs. It might also be fruitful to work with
triples, rather than pairs, for convenience in represgntin [19]
connectivity and improved robustness. It would be interest
ing to adapt our model to remove measurements at a fined20l
granularity, e.g., to remove points as well as images. We
ultimately hope to extend our work to even larger sets, in- [21]
cluding entire cities.
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Skeletal graphs for efficient structure from motion
Supplemental material

This document contains additional visualizations of sletlgraphs and reconstructions.

Figure 1.Reconstruction of Stonehengé) The full image graph for Stonehenge and (b) our skeletal grfapht (= 16). The black
(interior) nodes of (b) comprise the skeletal set, and the gray (lea@sare added in later. Note that the large loop in the graph is
preserved. (The graph layouts are not based on the physical pagiitibe cameras, but are created with treatotool in the Graphviz
package). (c) Aerial photo. (d-e) Two views of the Stonehenge staation. The reconstructions show the recovered cameras, eehder

as small frusta, in addition to the point cloud.

(©) (d)

Figure 2.Reconstruction of the interior of St. Peter{g) The full image graph for St. Peter’s and (b) our skeletal graptt 16). In this
graph, white nodes represent images found to be duplicates. Thesge a@ removed before computing the skeletal graph. (c) Overhead
photo of St. Peter’s. (d) Our final reconstruction.

(@)




Figure 4. Overhead photo and view of the Pisa2 reconstruction.

Figure 5. Several views of the Pisal reconstruction.
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Figure 6. Views of the Trafalgar Square reconstruction, with images fopecison.

1 0.4 \ ‘ ‘ ; ; ‘
Avg. error (before BA) —+—
2 08| | 0.35 ¢ Avg. error (after BA) = ]
%5 : 03 | Avg. error (baseling)
’ETE 0.6 | i \LE}, 0.25
o s 02
S% 04t 1 £ 015
S g M=
g 0.1
= 027 1 )
0.05 1
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Stretch factor Stretch factor

Figure 7.Analysis of the stretch factor for tiieemple data set.This 312 image collections is taken from the multi-view stereo evaluation
data of Seitzget al, and has known ground-truth camera parameters. We ran the sae@ngant with this dataset as with St. Peter’s,
described in our results. The graph on the left plots the number of inliagles skeletal set for several values of the stretch fact@he
graph on the right plots the average distance between the reconstrodtgdoand truth camera centers for these values @he graph
shows average error (in cm) both before and after a final bundletadins Note that the error before bundle adjustment, while noisy,
tends to increase with the stretch factor, but the error after bundle a@josstays roughly constant. We also ran SfM with the full set of
input images, and plot the error as a baseline. This data set is verplgemhind regularly sampled compared to the Internet collections,
and the behavior aschanges is somewhat different than the St. Peter’s collection. For inseussefor the largest values bfve tried,

the initialization provided by the skeletal reconstruction was close enougke tothect solution for the final bundle to pull it to the right
place.



