Robust, Semi-Intelligible Isabelle Proofs from ATP Proofs

Steffen Juilf Smolka Jasmin Christian Blanchette

ITPs

ATPs

VS.

well suited for
large formalizations
but
require intensive manual labor
fully automatic
but
no proof
management

ITPs

Vampire L=O-T1 E SATALLAX

well suited for
large formalizations
but
require intensive manual labor

Sledge-

 hammerfully automatic
but
no proof
management

Exploit ATPs, but don't trust them.

LCF Principle (Robin Milner):
Have all proofs checked by the inference kernel.

\Rightarrow ATP proofs must be reconstructed in Isabelle.

Approach A: Metis One-Liners

lemma "length (tl xs) by (metis diff_le_self length_tl) $\stackrel{\uparrow}{\text { proof method }}$

Approach A: Metis One-Liners

lemma "length (tl xs) by (metis diff_le_self length_tl) $\underset{\text { proof method }}{\uparrow} \underset{\text { lemmas }}{\boldsymbol{T}}$
external ATPs: find proof given 100s of facts

Metis: re-find proof given only necessary facts

Approach A: Metis One-Liners

lemma "length (tl xs) by (metis diff_le_self length_tl)
external ATPs: find proof given 100s of facts

+ usually fast and reliable
+ lightweight
- cryptic
- sometimes slow (several seconds)
- on avg. 5% > 30 seconds

Approach B: Detailed Isar Proofs

```
lemma "length (tl xs) \leq length xs"
proof -
    have "^x1 x2. (x1::nat) - x2 - x1 = 0 - x2"
            by (metis comm_monoid_diff_class.diff_cancel diff_right_commute)
    hence "length xs - 1 - length xs = 0"
            by (metis zero_diff)
    hence "length xs - 1 s length xs"
            by (metis diff_is_0_eq)
    thus "length (tl xs) \leq length xs"
        by (metis length_tl)
qed
```


Approach B: Detailed Isar Proofs

```
lemma "length (tl xs) \leq length xs"
proof -
    have "^x1 x2. (x1::nat) - x2 - x1 = 0 - x2"
        by (metis comm_monoid_diff_class.diff_cancel diff_right_commute)
    hence "length xs - 1 - length xs = 0"
        by (metis zero_diff)
    hence "length xs - 1 s length xs"
        by (metis diff_is_0_eq)
    thus "length (tl xs) \leq length xs"
        by (metis length_tl)
qed
+ faster than one-liners
+ 100\% reconstruction (in principle]
+ self-explanatory
- technically more challenging
```

Challenge 1:
Resolution proofs are by contradiction
"sin against mathematical exposition" (Knuth et al. 1989)
\rightarrow Jasmin Blanchette
Challenge 2:
Skolemization - introduce new symbols during proof

Challenge 3:
Type Annotations - make Isabelle understand its own output

Challenge 4:
Preplay \& Compression - test and optimize proofs

Challenge 2:

Skolemization

Signature is extended

Signature is extended

$$
\frac{\forall X \cdot \exists Y \cdot p(X, Y)}{\exists y \cdot \forall X \cdot p(X, y(X))} \quad A x \text {. of Choice }
$$

Signature is extended

$$
\frac{\forall X \cdot \exists Y \cdot p(X, Y)}{\exists y \cdot \forall X \cdot p(X, y(X))} \quad A x . \text { of Choice }
$$

Signature is extended
obtain $\stackrel{\downarrow}{y}$ where $\forall X, p(X, y(X))$
<steps with reduced sig.>

$$
\frac{\forall X \cdot \exists Y \cdot p(X, Y)}{\exists y \cdot \forall X \cdot p(X, y(X))} \quad \text { Ax. of Choice }
$$

<steps with extended sig.>
<steps with extended sig.>
$\frac{\exists y \cdot \forall X \cdot p(X, y(X))}{\forall X \cdot \exists Y \cdot p(X, Y)}$ Ax. of Choice
<steps with reduced sig.>
<steps with extended sig.>

$$
\frac{\forall y \cdot \exists X \cdot \neg p(X, y(X))}{\exists X \cdot \forall Y \cdot \neg p(X, Y)} \quad A x \text {. of Choice }
$$

<steps with reduced sig.>
<steps with extended sig.>
$\frac{\forall y \cdot \exists X \cdot \neg p(X, y(X))}{\exists X \cdot \forall Y \cdot \neg p(X, Y)} \quad$ Contrap. of
<steps with reduced sig.>
<steps with extended sig.>

$$
\frac{\forall y \cdot \exists X \cdot \neg p(X, y(X))}{\exists X \cdot \forall Y \cdot \neg p(X, Y)} \quad \text { Contrap. of }
$$

<steps with reduced sig.>
\{ fix y
<steps with extended sig.>
have $\exists X . \neg p(X, y(X))$ \}
hence $\exists X . \forall Y . \neg p(X, Y)$
<steps with reduced sig.>

Challenge 3:

Type Annotations

Make Isabelle understand its own output

2 nat + nat $\rightarrow n a t \rightarrow n a t \quad 2^{n a t}=n a t \rightarrow n a t \rightarrow b o o l$ nat

 $\downarrow^{\text {print }}$$$
2+2=4
$$

2nat +nat \rightarrow nat \rightarrow nat 2 nat $=n a t \rightarrow n a t \rightarrow b o o l$ nat

 $\downarrow^{\text {print }}$$$
\begin{gathered}
2+2=4 \\
\int_{\text {parse }} \\
\mathbf{2}^{\alpha}+^{\alpha \rightarrow \alpha \rightarrow \alpha} 2^{\alpha}={ }^{\alpha \rightarrow \alpha \rightarrow \text { bool }} \mathbf{4}^{\alpha} \quad \text { Un- } \\
\text { where } \alpha: \text { numeral } \quad \text { provable }
\end{gathered}
$$

$\mathbf{2}^{\text {nat }} \boldsymbol{+}^{\text {nat }}$ nat \rightarrow nat $\mathbf{2}^{\text {nat }}=^{\text {nat } \rightarrow \text { nat } \rightarrow \text { bool }} \mathbf{4}^{\text {nat }}$ print

(2:nat) (+:nat \rightarrow nat \rightarrow nat) (2:nat) (=:nat \rightarrow nat \rightarrow bool) (4:nat)

parse

$\mathbf{2}^{\text {nat }} \boldsymbol{+}^{\text {nat }}$ nat \rightarrow nat $\mathbf{2}^{\text {nat }}=^{\text {nat } \rightarrow \text { nat } \rightarrow \text { bool }} \mathbf{4}^{\text {nat }}$

$\mathbf{2}^{\text {nat }} \boldsymbol{+}^{\text {nat } \rightarrow \text { nat } \rightarrow \text { nat }} \mathbf{2}^{\text {nat }}=\mathbf{n}^{\text {nat } \rightarrow \text { nat } \rightarrow \text { bool }} \mathbf{4}^{\text {nat }}$ \downarrow print

$$
\begin{gathered}
\mathbf{2}+\mathbf{2}=\mathbf{4} \\
\downarrow^{\text {parse }} \\
\mathbf{2}^{\alpha}+^{\alpha \rightarrow \alpha \rightarrow \alpha} \mathbf{2}^{\alpha}={ }^{\alpha \rightarrow \alpha \rightarrow \text { bool }} \mathbf{4}^{\alpha} \\
\text { where } \alpha: \text { numeral }
\end{gathered}
$$

$\mathbf{2}^{\text {nat }} \boldsymbol{+}^{\text {nat } \rightarrow \text { nat } \rightarrow \text { nat }} \mathbf{2}^{\text {nat }}=\mathbf{n}^{\text {nat } \rightarrow \text { nat } \rightarrow \text { bool }} \mathbf{4}^{\text {nat }}$

 $\downarrow^{\text {print }}$
(2:nat) + $2=4$

parse
$\mathbf{2}^{\text {nat }} \boldsymbol{\Psi}^{\text {nat }}$ nat \rightarrow nat $\mathbf{2}^{\text {nat }}=$ nat \rightarrow nat \rightarrow bool $\mathbf{4}^{\text {nat }}$

Goal: Calculate a set of annotations that is

[A] Complete: reparsing term must not change its type
(B) Minimal: annotations must impair readability as little as possible

$$
\begin{aligned}
& \mathbf{f}^{\text {nat } \rightarrow \text { int } \rightarrow \text { bool }} \mathbf{X}^{\text {nat }} \mathbf{y}^{\text {int }} \\
& \begin{array}{r}
\text { type erasure } \\
\approx \text { printing } \\
\downarrow
\end{array} \\
& \mathbf{f}^{-} \mathbf{x}^{-} \mathbf{y}^{-} \\
& \text {type inference } \\
& \approx \text { parsing } \downarrow \\
& \mathbf{f}^{\alpha \rightarrow \beta \rightarrow \gamma} \quad \mathbf{x}^{\alpha} \mathbf{y}^{\beta} \\
& \sigma=\left\{\alpha \mapsto n a t, \beta_{\mapsto} \text { int, } \gamma_{\mapsto} \text { bool }\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{f}^{\text {nat } \rightarrow \text { int } \rightarrow \text { bool }} \mathbf{X}^{\text {nat }} \mathbf{y}^{\text {int }} \\
& \begin{array}{r}
\text { type erasure } \\
\approx \text { printing } \\
\downarrow
\end{array} \\
& \mathbf{f}^{-} \mathbf{x}^{-} \mathbf{y}^{-} \\
& \text {type inference } \\
& \approx \text { parsing } \downarrow \\
& \mathbf{f}^{\alpha \rightarrow \beta \rightarrow \gamma} \mathbf{x}^{\alpha} \mathbf{y}^{\beta} \\
& \sigma=\left\{\alpha \mapsto n a t, \beta_{\mapsto i n t}, \gamma \mapsto b o o l\right\}
\end{aligned}
$$

Set of ann. complete IFF it covers Dom[σ]

(f:nat \rightarrow int \rightarrow bool) x y

(f:nat \rightarrow int \rightarrow bool) x y
f (x:nat) (y:int) :bool

f x y

$$
\begin{aligned}
& \text { (f:nat } \rightarrow \text { int } \rightarrow \text { bool) } x \text { y } \\
& \text { f (x:nat) (y:int) : bool } \\
& \text { (f (x:nat) :int } \rightarrow \text { bool) y }
\end{aligned}
$$

Which set of annotations is the best?
How do we compute it efficiently?

Which set of annotations is the best?

cost of $t^{\tau}:=$

Which set of annotations is the best?

cost of t^{τ} := (size of $\tau, \quad \rightarrow$ small annotations

Which set of annotations is the best?

cost of t^{τ} :=
(size of τ,
size of t,
\rightarrow small annotations
\rightarrow small annotated terms

Which set of annotations is the best?

cost of t^{τ} :=
(size of $\tau, \quad \rightarrow$ small annotations size of $t, \quad \rightarrow$ small annotated terms postindex of t^{τ}) \rightarrow annotations at the beginning

Which set of annotations is the best?

cost of $t^{\tau}:=$
(size of $\tau, \quad \rightarrow$ small annotations size of $t, \quad \rightarrow$ small annotated terms postindex of t^{τ}) \rightarrow annotations at the beginning
\leq lexiographically

+ component-wise

How do we compute it efficiently?

How do we compute it efficiently?

Instance of Weighted Set Cover Problem:

- Finite Universe U
- Family $S \subseteq 2^{U}$
\rightarrow Dom $[\sigma]$
\rightarrow Possible Annotations

How do we compute it efficiently?

Instance of Weighted Set Cover Problem:

- Finite Universe U
- Family $S \subseteq 2^{U}$
- Find $\left\{U_{1}, \ldots, U_{n}\right\} \subseteq S$ such that
- $U_{1} \cup \ldots \cup U_{n}=U$
- cost $\left\{U_{1}, \ldots, U_{n}\right\}$ minimal
\rightarrow Dom[σ]
\rightarrow Possible Annotations
\rightarrow Completeness
\rightarrow Readability

SCP is NP-complete \Rightarrow settle for Approximation

Reverse-Greedy Alg. calculates local min:

- start with all annotations
- repeatedly remove the most expensive superfluous annotation

Challenge 4:

Preplay \& Compression

Proof Preplay

Generated proofs are only useful if they...

- work
- are reasonably fast

Proof Preplay

Generated proofs are only useful if they...

- work
- are reasonably fast

Let the computer find out!
\rightarrow Present proofs with "preplay" information

File Edit Search Markers Folding View Utilities Macros Plugins Help

\square

File Edit Search Markers Folding View Utilities Macros Plugins Help
© huntington_id.thy (~/Dropbox/hiwi/isar-proofs/gallery/waldmeister/huntington_id/)

- lemma "x $\sqcup-x=-x$ $\sqcup-(-x)$ " sledgehammer
-

100\%

Try this: by (metis huntington sup_assoc sup_comm) (> 3 s).

File Edit Search Markers Folding View Utilities Macros Plugins Help
lemma "x $u-x=-x$ ப $-(-x)$ "
sledgehammer \square

100\%

Detach
Try this: by (metis huntington sup_assoc sup_comm) (> 3 s).
Structured proof (43 steps, 1.34 s):
timeout
proof -
have fl: " $\wedge x_{1} x_{2}$. - (- $\left.x_{1} \sqcup x_{2}\right) \sqcup-\left(-x_{1} \sqcup-x_{2}\right)=x_{1}$ "
by (metis huntington sup_comm)
have f2: "^x $x_{1} x_{2} x_{3} . x_{1} \sqcup\left(x_{2} \sqcup x_{3}\right)=x_{3} \sqcup\left(x_{1} \sqcup x_{2}\right)$ "
by (metis sup_assoc sup_comm)
have f3: "^x $x_{1} x_{3} . x_{1} \sqcup\left(x_{2} \sqcup x_{3}\right)=x_{2} \sqcup x_{1} \sqcup x_{3} "$ by (metis sup_assoc sup_comm)
have f4: "^x $x_{1} x_{2} x_{3} . x_{1} \sqcup\left(x_{2} \sqcup x_{3}\right)=x_{3} \sqcup\left(x_{2} \sqcup x_{1}\right)$ "
\boxminus

Output

Approach A: Feed proof text to Isabelle

+ close to reality
- expensive
- no timings for individual steps

Appraach A: Feed proof text to Isabelle

+ close to re
- expensive
- no timings for individual steps

Approach B: Simulate replay on ML-level

- not the real thing (no printing, no parsing)
+ timings for each step

Proof Compression

Proof Compression

$\mathrm{A} 1 \vdash \mathrm{~F} 1$
A1, F1 \vdash F2
A2,F1 \vdash F3
F1,F2,F3 $\vdash \mathrm{C}$

A1 \vdash F1
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
A2,F1 \vdash F3
$F 1, F 2, F 3 \vdash C$

A1 \vdash F1
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
A2,F1 \vdash F3
F1,F2,F3 $\vdash \mathrm{C}$

A1 \vdash F1
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
A2,F1 \vdash F3
F1,F2,F3 $\vdash \mathrm{C}$

A1 $\vdash \mathrm{F} 1$
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
$\mathrm{F} 1, \mathrm{~F} 2, \mathrm{~A} 2 \vdash \mathrm{C}$

A1 \vdash F1
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
A2,F1 \vdash F3
F1,F2,F3 $\vdash \mathrm{C}$

A1 \vdash F1
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
$\mathrm{F} 1, \mathrm{~F} 2, \mathrm{~A} 2 \vdash \mathrm{C}$

A1 \vdash F1
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
$\mathrm{A} 2, \mathrm{~F} 1 \vdash \mathrm{~F} 3$
F1,F2,F3 $\vdash \mathrm{C}$

A1 \vdash F1
A1,F1 \vdash F2
F1,F2,A2 $\vdash \mathrm{C}$

A1 $\vdash \mathrm{F} 1$
$\mathrm{F} 1, \mathrm{~A} 1, \mathrm{~A} 2 \vdash \mathrm{C}$

A1 \vdash F1
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
$\mathrm{A} 2, \mathrm{~F} 1 \vdash \mathrm{~F} 3$
F1,F2,F3 $\vdash \mathrm{C}$

A1 $\vdash \mathrm{F} 1$
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
F1,F2,A2 $\vdash \mathrm{C}$
\downarrow
A1 \vdash F1
$F 1, A 1, A 2 \vdash C$

A1 \vdash F1
$\mathrm{A} 1, \mathrm{~F} 1 \vdash \mathrm{~F} 2$
$\mathrm{A} 2, \mathrm{~F} 1 \vdash \mathrm{~F} 3$
F1,F2,F3 $\vdash \mathrm{C}$ \downarrow
A1 \vdash F1
A1,F1 \vdash F2
$\mathrm{F} 1, \mathrm{~F} 2, \mathrm{~A} 2 \vdash \mathrm{C}$
$\mathrm{A} 1 \vdash \mathrm{~F} 1$
$A 1, A 2 \vdash C<$
$F 1, A 1, A 2 \vdash C$

$$
\left.\begin{array}{l}
\mathrm{A} 2, \mathrm{~F} 1 \vdash \mathrm{~F} 3 \\
\mathrm{~F} 1, \mathrm{~F} 2, F 3 \vdash \mathrm{P}
\end{array}\right\} \quad \mathrm{F} 1, \mathrm{~F} 2, \mathrm{~A} 2 \vdash \mathrm{P}
$$

Does merger save time? \rightarrow Preplay

Have we reached a given compression factor?

Robust, Semi-Intelligible Isabelle Proofs from ATP Proofs

Steffen Juilf Smolka Jasmin Christian Blanchette

