
Scalable Verification of
Probabilistic Networks

Steffen Smolka, Praveen Kumar, David Kahn,
Nate Foster, Justin Hsu, Dexter Kozen, Alexandra Silva

Google Calendar
down while preparing

this talk!

`

Key Issue:
Too complex for human reasoning

Example: Network Verification

Network config:
shortest path

SRC DST

Network topology:

Example: Network Verification

Network config:
shortest path

Verification
Tool

SRC DST

Network topology:

Example: Network Verification

Network config:
shortest path

Verification
Tool

“Will my packet
get delivered?

SRC DST

Network topology:

Example: Network Verification

Network config:
shortest path

Verification
Tool

“Will my packet
get delivered?

Yes!
(+ formal proof)

No!
(+ counterexample)SRC DST

Network topology:

Example: Network Verification

Network config:
shortest path

Verification
Tool

“Will my packet
get delivered?

Yes!
(+ formal proof)

SRC DST

Network topology:

Example: Network Verification

Network config:
shortest path

Verification
Tool

“Will my packet
get delivered?

Failure model:
links fail independently

with probability 1%

SRC DST

Network topology:

Example: Network Verification

Network config:
shortest path

Verification
Tool

“Will my packet
get delivered?

maybe

Failure model:
links fail independently

with probability 1%

SRC DST

Network topology:

? ?

Example: Probabilistic Network Verification

Network config:
shortest path

McNetKAT

“Will my packet
get delivered?

Failure model:
links fail independently

with probability 1%

SRC DST

Network topology:

Example: Probabilistic Network Verification

Network config:
shortest path

“Will my packet
get delivered?

with probability
(0.99)2

Failure model:
links fail independently

with probability 1%

Network topology:

SRC DST
.99 .99

McNetKAT

SRC DST

Example: Probabilistic Network Verification

Network config:
shortest path

+ detour uniform at random

Network topology:
“Will my packet
get delivered?

Failure model:
≤ 2 links fail independently

with probability 1%

McNetKAT

SRC DST

Example: Probabilistic Network Verification

Network config:
shortest path

+ detour uniform at random

Network topology:
“Will my packet
get delivered?

with probability
1McNetKAT

Failure model:
≤ 2 links fail independently

with probability 1%

SRC DST

Example: Probabilistic Network Verification

Network config:
shortest path

+ detour uniform at random

Network topology:
“Will my packet
get delivered?

with probability
1McNetKAT

→ configuration is
2-resilientFailure model:

≤ 2 links fail independently
with probability 1%

SRC DST

Example: Infinite Paths

Network config:
shortest path

+ detour uniform at random

Failure model:
≤ 2 links fail independently

with probability 1%

SRC DST

Example: Infinite Paths

Network config:
shortest path

+ detour uniform at random

delivery with prob. 1
despite infinite loop?

Failure model:
≤ 2 links fail independently

with probability 1%

SRC DST

Example: Infinite Paths

Network config:
shortest path

+ detour uniform at random

infinite loop has
probability 0

Failure model:
≤ 2 links fail independently

with probability 1%

⅓
½

SRC DST

Example: Infinite Paths

Network config:
shortest path

+ detour uniform at random

infinite loop has
probability 0

Failure model:
≤ 2 links fail independently

with probability 1%

⅓
½

⅓ 1

Challenge:
How to automate this?

Solution

Packets in probabilistic network undergo random walk

‣ can be modeled as Markov chain

‣ limiting distribution computable in closed form

SRC DST⅓

⅓

⅓

Challenge: State Space

SRC DST⅓

⅓

⅓ State Space
Location x Header Values

Challenge: State Space

SRC DST⅓

⅓

⅓ State Space
Location x Header Values

(~1k) (~ 2160)

Challenge: State Space

SRC DST⅓

⅓

⅓ State Space
Location x Header Values

larger than # particles
in the universe

(~1k) (~ 2160)

Challenge: State Space

SRC DST⅓

⅓

⅓ State Space
Location x Header Values
 (~1k) (~ 2160)

But: Markov chain very structured in practice
‣ sparse transition structure
‣ many similar states
‣ analysis can be made tractable using clever data structures

Implementation

McNetKAT architecture

network model
= ProbNetKAT program

[ESOP ’16, POPL ’17]

Scalable Veri�cation of Probabilistic Networks∗
Ste�en Smolka
Cornell University
Ithaca, NY, USA

Praveen Kumar
Cornell University
Ithaca, NY, USA

David M. Kahn†
Carnegie Mellon University

Pittsburgh, PA, USA

Nate Foster
Cornell University
Ithaca, NY, USA

Justin Hsu†
University of Wisconsin

Madison, WI, USA

Dexter Kozen
Cornell University
Ithaca, NY, USA

Alexandra Silva
University College London

London, UK

Abstract
This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of �nite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic veri�cation tool. Domain-speci�c optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and re�nement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts •Theory of computation→Automated
reasoning;Programsemantics; Randomwalks andMarkov
chains; • Networks → Network properties; • Software and
its engineering → Domain speci�c languages.

Keywords Network veri�cation, Probabilistic Programming
ACM Reference Format:
Ste�en Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable Veri�cation

of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 1 page. h�ps://doi.org/10.1145/3314221.3314639
∗Extended version with appendix.
†Work performed at Cornell University.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published in
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA,
h�ps://doi.org/10.1145/3314221.3314639.

if port=1 then
port�2 �0.5 port�3

else if port=2 then
port�1

else

drop

McNetKAT architecture

Markov chain

network model
= ProbNetKAT program

[ESOP ’16, POPL ’17]

⟦-⟧

Scalable Veri�cation of Probabilistic Networks∗
Ste�en Smolka
Cornell University
Ithaca, NY, USA

Praveen Kumar
Cornell University
Ithaca, NY, USA

David M. Kahn†
Carnegie Mellon University

Pittsburgh, PA, USA

Nate Foster
Cornell University
Ithaca, NY, USA

Justin Hsu†
University of Wisconsin

Madison, WI, USA

Dexter Kozen
Cornell University
Ithaca, NY, USA

Alexandra Silva
University College London

London, UK

Abstract
This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of �nite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic veri�cation tool. Domain-speci�c optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and re�nement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts •Theory of computation→Automated
reasoning;Programsemantics; Randomwalks andMarkov
chains; • Networks → Network properties; • Software and
its engineering → Domain speci�c languages.

Keywords Network veri�cation, Probabilistic Programming
ACM Reference Format:
Ste�en Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable Veri�cation

of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 1 page. h�ps://doi.org/10.1145/3314221.3314639
∗Extended version with appendix.
†Work performed at Cornell University.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published in
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA,
h�ps://doi.org/10.1145/3314221.3314639.

if port=1 then
port�2 �0.5 port�3

else if port=2 then
port�1

else

drop

McNetKAT architecture

Markov chain

network model
= ProbNetKAT program

[ESOP ’16, POPL ’17]

⟦-⟧

symbolic IR
[ICFP ’15]

⟦-⟧

compile

Scalable Veri�cation of Probabilistic Networks∗
Ste�en Smolka
Cornell University
Ithaca, NY, USA

Praveen Kumar
Cornell University
Ithaca, NY, USA

David M. Kahn†
Carnegie Mellon University

Pittsburgh, PA, USA

Nate Foster
Cornell University
Ithaca, NY, USA

Justin Hsu†
University of Wisconsin

Madison, WI, USA

Dexter Kozen
Cornell University
Ithaca, NY, USA

Alexandra Silva
University College London

London, UK

Abstract
This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of �nite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic veri�cation tool. Domain-speci�c optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and re�nement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts •Theory of computation→Automated
reasoning;Programsemantics; Randomwalks andMarkov
chains; • Networks → Network properties; • Software and
its engineering → Domain speci�c languages.

Keywords Network veri�cation, Probabilistic Programming
ACM Reference Format:
Ste�en Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable Veri�cation

of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 1 page. h�ps://doi.org/10.1145/3314221.3314639
∗Extended version with appendix.
†Work performed at Cornell University.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published in
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA,
h�ps://doi.org/10.1145/3314221.3314639.

if port=1 then
port�2 �0.5 port�3

else if port=2 then
port�1

else

drop

McNetKAT architecture

Markov chain

network model
= ProbNetKAT program

[ESOP ’16, POPL ’17]

⟦-⟧

symbolic IR
[ICFP ’15]

⟦-⟧

sparse matrix

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

if pt=1 then
pt�2 �0.5 pt�3

else if pt=2 then
pt�1

else if pt=3 then
pt�1

else

drop
pt�2 �0.5 pt�3 pt�1 drop

pt=3

pt=2

pt=1

266666666664

? pt=1 pt=2 pt=3 pt=⇤

? 1
pt=1 1

2
1
2

pt=2 1
pt=3 1
pt=⇤ 1

377777777775
Network model Symbolic IR Sparse matrix

Compile Convert
Solve

Figure 5. Implementation using FDDs and a sparse linear algebra solver.

model checking to represent large state spaces compactly. A
variant called Forwarding Decision Diagrams (FDDs) [45]
was previously developed speci�cally for the networking
domain, but only supported deterministic behavior. In this
work, we extended FDDs to probabilistic FDDs. A probabilis-
tic FDD is a rooted directed acyclic graph that can be un-
derstood as a control-�ow graph. Interior nodes test packet
�elds and have outgoing true- and false- branches, which
we visualize by solid lines and dashed lines in Figure 5. Leaf
nodes contain distributions over actions, where an action
is either a set of modi�cations or a special action drop. To
interpret an FDD, we start at the root node with an initial
packet and traverse the graph as dictated by the tests until a
leaf node is reached. Then, we apply each action in the leaf
node to the packet. Thus, an FDD represents a function of
type Pk ! D(Pk +?), or equivalently, a stochastic matrix
over the state space Pk +? where the ?-row puts all mass
on ? by convention. Like BDDs, FDDs respect a total order
on tests and contain no isomorphic subgraphs or redundant
tests, which enables representing sparse matrices compactly.

Dynamic domain reduction. As Figure 5 shows, we do
not have to represent the state space Pk +? explicitly even
when converting into sparse matrix form. In the example, the
state space is represented by symbolic packets pt = 1, pt = 2,
pt = 3, and pt = ⇤, each representing an equivalence class
of packets. For example, pt = 1 can represent all packets
� satisfying � .pt = 1, because the program treats all such
packets in the same way. The packet pt = ⇤ represents the
set {� | � .pt < {1, 2, 3}}. The symbol ⇤ can be thought
of as a wildcard that ranges over all values not explicitly
represented by other symbolic packets. The symbolic packets
are chosen dynamically when converting an FDD to a matrix
by traversing the FDD and determining the set of values
appearing in each �eld, either in a test or a modi�cation.
Since FDDs never contain redundant tests or modi�cations,
these sets are typically of manageable size.

5.2 PRISM backend
PRISM is a mature probabilistic model checker that has been
actively developed and improved for the last two decades.
The tool takes as input a Markov chain model speci�ed sym-
bolically in PRISM’s input language and a property speci�ed
using a logic such as Probabilistic CTL, and outputs the
probability that the model satis�es the property. PRISM sup-
ports various types of models including �nite state Markov
chains, and can thus be used as a backend for reasoning about
ProbNetKAT programs using our results from §3 and §4. Ac-
cordingly, we implemented a second backend that translates
ProbNetKAT to PRISM programs. While the native backend
computes the big step semantics of a program—a costly op-
eration that may involve solving linear systems to compute
�xed points—the PRISM backend is a purely syntactic trans-
formation; the heavy lifting is done by PRISM itself.
A PRISM program consists of a set of bounded variables

together with a set of transition rules of the form

� ! p1 · u1 + · · · + pk · uk

where � is a Boolean predicate over the variables, the pi
are probabilities that must sum up to one, and the ui are
sequences of variable updates. The predicates are required
to be mutually exclusive and exhaustive. Such a program
encodes a Markov chain whose state space is given by the
�nite set of variable assignments and whose transitions are
dictated by the rules: if � is satis�ed under the current as-
signment � and �i is obtained from � by performing update
ui , then the probability of a transition from � to �i is pi .

It is easy to see that any PRISM program can be expressed
in ProbNetKAT, but the reverse direction is slightly tricky:
it requires the introduction of an additional variable akin to
a program counter to emulate ProbNetKAT’s control �ow
primitives such as loops and sequences. As an additional
challenge, we must be economical in our allocation of the
program counter, since the performance of model checking
is very sensitive to the size of the state space.

We address this challenge in three steps. First, we translate
the ProbNetKAT program to a �nite state machine using a

8

compile convert

⟦-⟧

compute limiting distribution

Scalable Veri�cation of Probabilistic Networks∗
Ste�en Smolka
Cornell University
Ithaca, NY, USA

Praveen Kumar
Cornell University
Ithaca, NY, USA

David M. Kahn†
Carnegie Mellon University

Pittsburgh, PA, USA

Nate Foster
Cornell University
Ithaca, NY, USA

Justin Hsu†
University of Wisconsin

Madison, WI, USA

Dexter Kozen
Cornell University
Ithaca, NY, USA

Alexandra Silva
University College London

London, UK

Abstract
This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of �nite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic veri�cation tool. Domain-speci�c optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and re�nement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts •Theory of computation→Automated
reasoning;Programsemantics; Randomwalks andMarkov
chains; • Networks → Network properties; • Software and
its engineering → Domain speci�c languages.

Keywords Network veri�cation, Probabilistic Programming
ACM Reference Format:
Ste�en Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable Veri�cation

of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 1 page. h�ps://doi.org/10.1145/3314221.3314639
∗Extended version with appendix.
†Work performed at Cornell University.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published in
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA,
h�ps://doi.org/10.1145/3314221.3314639.

if port=1 then
port�2 �0.5 port�3

else if port=2 then
port�1

else

drop

McNetKAT architecture

Markov chain

network model
= ProbNetKAT program

[ESOP ’16, POPL ’17]

⟦-⟧

symbolic IR
[ICFP ’15]

⟦-⟧

sparse matrix

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

if pt=1 then
pt�2 �0.5 pt�3

else if pt=2 then
pt�1

else if pt=3 then
pt�1

else

drop
pt�2 �0.5 pt�3 pt�1 drop

pt=3

pt=2

pt=1

266666666664

? pt=1 pt=2 pt=3 pt=⇤

? 1
pt=1 1

2
1
2

pt=2 1
pt=3 1
pt=⇤ 1

377777777775
Network model Symbolic IR Sparse matrix

Compile Convert
Solve

Figure 5. Implementation using FDDs and a sparse linear algebra solver.

model checking to represent large state spaces compactly. A
variant called Forwarding Decision Diagrams (FDDs) [45]
was previously developed speci�cally for the networking
domain, but only supported deterministic behavior. In this
work, we extended FDDs to probabilistic FDDs. A probabilis-
tic FDD is a rooted directed acyclic graph that can be un-
derstood as a control-�ow graph. Interior nodes test packet
�elds and have outgoing true- and false- branches, which
we visualize by solid lines and dashed lines in Figure 5. Leaf
nodes contain distributions over actions, where an action
is either a set of modi�cations or a special action drop. To
interpret an FDD, we start at the root node with an initial
packet and traverse the graph as dictated by the tests until a
leaf node is reached. Then, we apply each action in the leaf
node to the packet. Thus, an FDD represents a function of
type Pk ! D(Pk +?), or equivalently, a stochastic matrix
over the state space Pk +? where the ?-row puts all mass
on ? by convention. Like BDDs, FDDs respect a total order
on tests and contain no isomorphic subgraphs or redundant
tests, which enables representing sparse matrices compactly.

Dynamic domain reduction. As Figure 5 shows, we do
not have to represent the state space Pk +? explicitly even
when converting into sparse matrix form. In the example, the
state space is represented by symbolic packets pt = 1, pt = 2,
pt = 3, and pt = ⇤, each representing an equivalence class
of packets. For example, pt = 1 can represent all packets
� satisfying � .pt = 1, because the program treats all such
packets in the same way. The packet pt = ⇤ represents the
set {� | � .pt < {1, 2, 3}}. The symbol ⇤ can be thought
of as a wildcard that ranges over all values not explicitly
represented by other symbolic packets. The symbolic packets
are chosen dynamically when converting an FDD to a matrix
by traversing the FDD and determining the set of values
appearing in each �eld, either in a test or a modi�cation.
Since FDDs never contain redundant tests or modi�cations,
these sets are typically of manageable size.

5.2 PRISM backend
PRISM is a mature probabilistic model checker that has been
actively developed and improved for the last two decades.
The tool takes as input a Markov chain model speci�ed sym-
bolically in PRISM’s input language and a property speci�ed
using a logic such as Probabilistic CTL, and outputs the
probability that the model satis�es the property. PRISM sup-
ports various types of models including �nite state Markov
chains, and can thus be used as a backend for reasoning about
ProbNetKAT programs using our results from §3 and §4. Ac-
cordingly, we implemented a second backend that translates
ProbNetKAT to PRISM programs. While the native backend
computes the big step semantics of a program—a costly op-
eration that may involve solving linear systems to compute
�xed points—the PRISM backend is a purely syntactic trans-
formation; the heavy lifting is done by PRISM itself.
A PRISM program consists of a set of bounded variables

together with a set of transition rules of the form

� ! p1 · u1 + · · · + pk · uk

where � is a Boolean predicate over the variables, the pi
are probabilities that must sum up to one, and the ui are
sequences of variable updates. The predicates are required
to be mutually exclusive and exhaustive. Such a program
encodes a Markov chain whose state space is given by the
�nite set of variable assignments and whose transitions are
dictated by the rules: if � is satis�ed under the current as-
signment � and �i is obtained from � by performing update
ui , then the probability of a transition from � to �i is pi .

It is easy to see that any PRISM program can be expressed
in ProbNetKAT, but the reverse direction is slightly tricky:
it requires the introduction of an additional variable akin to
a program counter to emulate ProbNetKAT’s control �ow
primitives such as loops and sequences. As an additional
challenge, we must be economical in our allocation of the
program counter, since the performance of model checking
is very sensitive to the size of the state space.

We address this challenge in three steps. First, we translate
the ProbNetKAT program to a �nite state machine using a

8

compile convert

⟦-⟧

compute limiting distribution

Scalable Veri�cation of Probabilistic Networks∗
Ste�en Smolka
Cornell University
Ithaca, NY, USA

Praveen Kumar
Cornell University
Ithaca, NY, USA

David M. Kahn†
Carnegie Mellon University

Pittsburgh, PA, USA

Nate Foster
Cornell University
Ithaca, NY, USA

Justin Hsu†
University of Wisconsin

Madison, WI, USA

Dexter Kozen
Cornell University
Ithaca, NY, USA

Alexandra Silva
University College London

London, UK

Abstract
This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of �nite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic veri�cation tool. Domain-speci�c optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and re�nement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts •Theory of computation→Automated
reasoning;Programsemantics; Randomwalks andMarkov
chains; • Networks → Network properties; • Software and
its engineering → Domain speci�c languages.

Keywords Network veri�cation, Probabilistic Programming
ACM Reference Format:
Ste�en Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable Veri�cation

of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 1 page. h�ps://doi.org/10.1145/3314221.3314639
∗Extended version with appendix.
†Work performed at Cornell University.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published in
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA,
h�ps://doi.org/10.1145/3314221.3314639.

if port=1 then
port�2 �0.5 port�3

else if port=2 then
port�1

else

drop

can be analyzed
using custom code…

…and standard tools

Evaluation

McNetKAT scales to data-center-size networks.

Scalability on FatTree with ECMP

102 103

1umber of switches

100

101

102

103

Ti
m

e
(s

ec
on

ds
)

with failures
without failures > 1000 hosts

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

0 20 40 60 80 100
1umber of Fores

0

10

20

30

40

50

60

6S
ee
du
S

FatTree S 14
FatTree S 16

Figure 8. Speedup due to parallelization.

Semantically, this construct is equivalent to a cascade of
conditionals; but the native backend compiles it in parallel
using a map-reduce-style strategy, using one process per
core by default.
To evaluate the impact of parallelization, we compiled

two representative FatTree models (p = 14 and p = 16)
using ECMP routing on an increasing number of cores. With
m cores, we used one master machine together with r =
⌈m/16 − 1⌉ remote machines, addingmachines one by one as
needed to obtain more physical cores. The results are shown
in Figure 8. We see near linear speedup on a single machine,
cutting execution time by more than an order of magnitude
on our 16-core test machine. Beyond a single machine, the
speedup depends on the complexity of the submodels for
each switch—the longer it takes to generate the matrix for
each switch, the higher the speedup. For example, with a
p = 16 FatTree, we obtained a 30x speedup using 40 cores
across 3 machines.

Comparison with other tools. Bayonet [15] is a state-of-
the-art tool for analyzing probabilistic networks. Whereas
McNetKAT has a native backend tailored to the networking
domain and a backend based on a probabilistic model checker,
Bayonet programs are translated to a general-purpose prob-
abilistic language which is then analyzed by the symbolic in-
ference engine PSI [16]. Bayonet’s approach is more general,
as it can model queues, state, and multi-packet interactions
under an asynchronous scheduling model. It also supports
Bayesian inference and parameter synthesis. Moreover, Bay-
onet is fully symbolic whereas McNetKAT uses a numerical
linear algebra solver [7] (based on floating point arithmetic)
to compute limits.
To evaluate how the performance of these approaches

compares, we reproduced an experiment from the Bayonet
paper that analyzes the reliability of a simple routing scheme
in a family of “chain” topologies indexed by k , as shown in
Figure 9.

For k = 1, the network consists of four switches organized
into a diamond, with a single link that fails with probability

H1 S0

S1

S2

S3 S4k

S4k+1

S4k+2

S4k+3 H2

pfail pfail

Figure 9. Chain topology

Figure 10. Scalability on chain topology.

pfail = 1/1000. For k > 1, the network consists of k diamonds
linked together into a chain as shown in Figure 9. Within
each diamond, switch S0 forwards packets with equal proba-
bility to switches S1 and S2, which in turn forward to switch
S3. However, S2 drops the packet if the link to S3 fails. We
analyze the probability that a packet originating at H1 is
successfully delivered to H2. Our implementation does not
exploit the regularity of these topologies.
Figure 10 gives the running time for several tools on

this benchmark: Bayonet, hand-written PRISM, ProbNetKAT
with the PRISM backend (PPNK), and ProbNetKAT with the
native backend (PNK). Further, we ran the PRISM tools in
exact and approximate mode, and we ran the ProbNetKAT
backend on a single machine and on the cluster. Note that
both axes in the plot are log-scaled.
We see that Bayonet scales to 32 switches in about 25

minutes, before hitting the one hour time limit and 64 GB
memory limit at 48 switches. ProbNetKAT answers the same
query for 2048 switches in under 10 seconds and scales to
over 65000 switches in about 50 minutes on a single core,
or just 2.5 minutes using a cluster of 24 machines. PRISM
scales similarly to ProbNetKAT, and performs best using the
hand-written model in approximate mode.
Overall, this experiment shows that for basic network

verification tasks, ProbNetKAT’s domain-specific backend
based on specialized data structures and an optimized linear-
algebra library [7] can outperform an approach based on a
general-purpose solver.

199

Often near optimal speedup. Up to 40x on 60 cores.

Speedup through parallelization

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

0 20 40 60 80 100
1umber of Fores

0

10

20

30

40

50

60

6S
ee
du
S

FatTree S 14
FatTree S 16

Figure 8. Speedup due to parallelization.

Semantically, this construct is equivalent to a cascade of
conditionals; but the native backend compiles it in parallel
using a map-reduce-style strategy, using one process per
core by default.
To evaluate the impact of parallelization, we compiled

two representative FatTree models (p = 14 and p = 16)
using ECMP routing on an increasing number of cores. With
m cores, we used one master machine together with r =
⌈m/16 − 1⌉ remote machines, addingmachines one by one as
needed to obtain more physical cores. The results are shown
in Figure 8. We see near linear speedup on a single machine,
cutting execution time by more than an order of magnitude
on our 16-core test machine. Beyond a single machine, the
speedup depends on the complexity of the submodels for
each switch—the longer it takes to generate the matrix for
each switch, the higher the speedup. For example, with a
p = 16 FatTree, we obtained a 30x speedup using 40 cores
across 3 machines.

Comparison with other tools. Bayonet [15] is a state-of-
the-art tool for analyzing probabilistic networks. Whereas
McNetKAT has a native backend tailored to the networking
domain and a backend based on a probabilistic model checker,
Bayonet programs are translated to a general-purpose prob-
abilistic language which is then analyzed by the symbolic in-
ference engine PSI [16]. Bayonet’s approach is more general,
as it can model queues, state, and multi-packet interactions
under an asynchronous scheduling model. It also supports
Bayesian inference and parameter synthesis. Moreover, Bay-
onet is fully symbolic whereas McNetKAT uses a numerical
linear algebra solver [7] (based on floating point arithmetic)
to compute limits.
To evaluate how the performance of these approaches

compares, we reproduced an experiment from the Bayonet
paper that analyzes the reliability of a simple routing scheme
in a family of “chain” topologies indexed by k , as shown in
Figure 9.

For k = 1, the network consists of four switches organized
into a diamond, with a single link that fails with probability

H1 S0

S1

S2

S3 S4k

S4k+1

S4k+2

S4k+3 H2

pfail pfail

Figure 9. Chain topology

Figure 10. Scalability on chain topology.

pfail = 1/1000. For k > 1, the network consists of k diamonds
linked together into a chain as shown in Figure 9. Within
each diamond, switch S0 forwards packets with equal proba-
bility to switches S1 and S2, which in turn forward to switch
S3. However, S2 drops the packet if the link to S3 fails. We
analyze the probability that a packet originating at H1 is
successfully delivered to H2. Our implementation does not
exploit the regularity of these topologies.
Figure 10 gives the running time for several tools on

this benchmark: Bayonet, hand-written PRISM, ProbNetKAT
with the PRISM backend (PPNK), and ProbNetKAT with the
native backend (PNK). Further, we ran the PRISM tools in
exact and approximate mode, and we ran the ProbNetKAT
backend on a single machine and on the cluster. Note that
both axes in the plot are log-scaled.
We see that Bayonet scales to 32 switches in about 25

minutes, before hitting the one hour time limit and 64 GB
memory limit at 48 switches. ProbNetKAT answers the same
query for 2048 switches in under 10 seconds and scales to
over 65000 switches in about 50 minutes on a single core,
or just 2.5 minutes using a cluster of 24 machines. PRISM
scales similarly to ProbNetKAT, and performs best using the
hand-written model in approximate mode.
Overall, this experiment shows that for basic network

verification tasks, ProbNetKAT’s domain-specific backend
based on specialized data structures and an optimized linear-
algebra library [7] can outperform an approach based on a
general-purpose solver.

199

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

Figure 8. Speedup due to parallelization.

Semantically, this construct is equivalent to a cascade of
conditionals; but the native backend compiles it in parallel
using a map-reduce-style strategy, using one process per
core by default.
To evaluate the impact of parallelization, we compiled

two representative FatTree models (p = 14 and p = 16)
using ECMP routing on an increasing number of cores. With
m cores, we used one master machine together with r =
⌈m/16 − 1⌉ remote machines, addingmachines one by one as
needed to obtain more physical cores. The results are shown
in Figure 8. We see near linear speedup on a single machine,
cutting execution time by more than an order of magnitude
on our 16-core test machine. Beyond a single machine, the
speedup depends on the complexity of the submodels for
each switch—the longer it takes to generate the matrix for
each switch, the higher the speedup. For example, with a
p = 16 FatTree, we obtained a 30x speedup using 40 cores
across 3 machines.

Comparison with other tools. Bayonet [15] is a state-of-
the-art tool for analyzing probabilistic networks. Whereas
McNetKAT has a native backend tailored to the networking
domain and a backend based on a probabilistic model checker,
Bayonet programs are translated to a general-purpose prob-
abilistic language which is then analyzed by the symbolic in-
ference engine PSI [16]. Bayonet’s approach is more general,
as it can model queues, state, and multi-packet interactions
under an asynchronous scheduling model. It also supports
Bayesian inference and parameter synthesis. Moreover, Bay-
onet is fully symbolic whereas McNetKAT uses a numerical
linear algebra solver [7] (based on floating point arithmetic)
to compute limits.
To evaluate how the performance of these approaches

compares, we reproduced an experiment from the Bayonet
paper that analyzes the reliability of a simple routing scheme
in a family of “chain” topologies indexed by k , as shown in
Figure 9.

For k = 1, the network consists of four switches organized
into a diamond, with a single link that fails with probability

H1 S0

S1

S2

S3 S4k

S4k+1

S4k+2

S4k+3 H2

pfail pfail

Figure 9. Chain topology

100 101 102 103 104 105
1uPber of switcKes

100

101

102

103

Ti
P
e
(s
ec
on
ds
) TiPe liPit 3600s

Figure 10. Scalability on chain topology.

pfail = 1/1000. For k > 1, the network consists of k diamonds
linked together into a chain as shown in Figure 9. Within
each diamond, switch S0 forwards packets with equal proba-
bility to switches S1 and S2, which in turn forward to switch
S3. However, S2 drops the packet if the link to S3 fails. We
analyze the probability that a packet originating at H1 is
successfully delivered to H2. Our implementation does not
exploit the regularity of these topologies.
Figure 10 gives the running time for several tools on

this benchmark: Bayonet, hand-written PRISM, ProbNetKAT
with the PRISM backend (PPNK), and ProbNetKAT with the
native backend (PNK). Further, we ran the PRISM tools in
exact and approximate mode, and we ran the ProbNetKAT
backend on a single machine and on the cluster. Note that
both axes in the plot are log-scaled.
We see that Bayonet scales to 32 switches in about 25

minutes, before hitting the one hour time limit and 64 GB
memory limit at 48 switches. ProbNetKAT answers the same
query for 2048 switches in under 10 seconds and scales to
over 65000 switches in about 50 minutes on a single core,
or just 2.5 minutes using a cluster of 24 machines. PRISM
scales similarly to ProbNetKAT, and performs best using the
hand-written model in approximate mode.
Overall, this experiment shows that for basic network

verification tasks, ProbNetKAT’s domain-specific backend
based on specialized data structures and an optimized linear-
algebra library [7] can outperform an approach based on a
general-purpose solver.

199

Scalable Verification of Probabilistic Networks PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

s1 s2 s3 s4 s5 s6 s7 s8

Figure 6. A FatTree topology with p = 4.

Thompson-style construction [37]. Each edge is labeled with
a predicate ϕ, a probability pi , and an update ui , subject to
the following well-formedness conditions:

1. For each state, the predicates on its outgoing edges
form a partition.

2. For each state and predicate, the probabilities of all
outgoing edges guarded by that predicate sum to one.

Intuitively, the state machine encodes the control-flow graph.
This intuition serves as the inspiration for the next transla-

tion step, which collapses each basic block of the graph into
a single state. This step is crucial for reducing the state space,
since the state space of the initial automaton is linear in the
size of the program. Finally, we obtain a PRISM program
from the automaton as follows: for each state s with adjacent

predicate ϕ and ϕ-guarded outgoing edges s
ϕ/pi /ui
−−−−−−→ ti for

1 ≤ i ≤ k , produce a PRISM rule

(pc=s ∧ ϕ) → p1 · (u1 ;pc!t1) + · · · + pk · (uk ;pc!tk).

The well-formedness conditions of the state machine guar-
antee that the resulting program is a valid PRISM program.
With some care, the entire translation can be implemented
in linear time. Indeed, McNetKAT translates all programs in
our evaluation to PRISM in under a second.

6 Evaluation

To evaluate McNetKAT we conducted experiments on sev-
eral benchmarks including a family of real-world data center
topologies and a synthetic benchmark drawn from the liter-
ature [15]. We evaluated McNetKAT’s scalability, character-
ized the effect of optimizations, and compared performance
against other state-of-the-art tools. All McNetKAT running
times we report refer to the time needed to compile programs
to FDDs; the cost of comparing FDDs for equivalence and
ordering, or of computing statistics of the encoded distri-
butions, is negligible. All experiments were performed on
machines with 16-core, 2.6 GHz Intel Xeon E5-2650 proces-
sors with 64 GB of memory.

Scalability on FatTree topologies. We first measured the
scalability of McNetKAT by using it to compute network
models for a series of FatTree topologies of increasing size.
FatTrees [2] (see also Figure 6) are multi-level, multi-rooted

102 103 104
1uPber RI switches

100

101

102

103

Ti
P
e
(s
ec
Rn
ds
)

3RIS0
3RIS0 (#I 0)
native
native (#I 0)

Figure 7. Scalability on a family of data center topologies.

trees that are widely used as topologies in modern data cen-
ters. FatTrees can be specified in terms of a parameter p
corresponding to the number of ports on each switch. A
p-ary FatTree connects 1

4p
3 servers using 5

4p
2 switches. To

route packets, we used a form of Equal-Cost Multipath Rout-
ing (ECMP) that randomly maps traffic flows onto shortest
paths. We measured the time needed to construct the sto-
chastic matrix representation of the program on a single
machine using two backends (native and PRISM) and under
two failure models (no failures and independent failures with
probability 1/1000).
Figure 7 depicts the results, several of which are worth

discussing. First, the native backend scales quite well: in the
absence of failures (f = 0), it scales to a network with 5000
switches in approximately 10 minutes. This result shows that
McNetKAT is able to handle networks of realistic size. Sec-
ond, the native backend consistently outperforms the PRISM
backend. We conjecture that the native backend is able to
exploit algebraic properties of the ProbNetKAT program to
better parallelize the job. Third, performance degrades in the
presence of failures. This is to be expected—failures lead to
more complex probability distributions which are nontrivial
to represent and manipulate.

Parallel speedup. One of the contributors to McNetKAT’s
good performance is its ability to parallelize the computation
of stochastic matrices across multiple cores in a machine,
or even across machines in a cluster. Intuitively, because a
network is a large collection of mostly independent devices,
it is possible to model its global behavior by first modeling
the behavior of each device in isolation, and then combining
the results to obtain a network-wide model. In addition to
speeding up the computation, this approach can also reduce
memory usage, often a bottleneck on large inputs.
To facilitate parallelization, we added an n-ary disjoint

branching construct to ProbNetKAT:

case sw=1 then p1 else

case sw=2 then p2 else

. . .

case sw=n then pn

198

Scalable Verification of Probabilistic Networks PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

s1 s2

A

s3 s4

A′

s5 s6

A′′

s7 s8

C

✗

k
M̂(F100, fk)

≡

teleport

M̂(F103, fk)
≡

teleport

M̂(F103,5, fk)
≡

teleport

0 ✓ ✓ ✓

1 ✗ ✓ ✓

2 ✗ ✓ ✓

3 ✗ ✗ ✓

4 ✗ ✗ ✗

∞ ✗ ✗ ✗

k
compare

F100
F103

compare

F103
F103,5

compare

F103,5
teleport

0 ≡ ≡ ≡
1 < ≡ ≡
2 < ≡ ≡
3 < < ≡
4 < < <

∞ < < <

Figure 11. (a) AB FatTree topology with p = 4. (b) Evaluating k-resilience. (c) Comparing schemes under k failures.

7 Case Study: Data Center Fault-Tolerance

In this section, we go beyond benchmarks and present a case
study that illustrates the utility of McNetKAT for probabilis-
tic reasoning. Specifically, we model the F10 [26] data center
design in ProbNetKAT and verify its key properties.

Data center resilience. An influential measurement study
by Gill et al. [17] showed that data centers experience fre-
quent failures, which have a major impact on application
performance. To address this challenge, a number of data cen-
ter designs have been proposed that aim to simultaneously
achieve high throughput, low latency, and fault tolerance.

F10 topology. F10 uses a novel topology called an AB Fat-
Tree, see Figure 11(a), that enhances a traditional FatTree [2]
with additional backup paths that can be used when fail-
ures occur. To illustrate, consider routing from s7 to s1 in
Figure 11(a) along one of the shortest paths (in thick black).
After reaching the core switch C in a standard FatTree (re-
call Figure 6), if the aggregation switch on the downward
path failed, we would need to take a 5-hop detour (shown
in red) that goes down to a different edge switch, up to a
different core switch, and finally down to s1. In contrast, an
AB FatTree [26] modifies the wiring of the aggregation later
to provide shorter detours—e.g., a 3-hop detour (shown in
blue) for the previous scenario.

F10 routing. F10’s routing scheme uses three strategies to
re-route packets after a failure occurs. If a link on the current
path fails and an equal-cost path exists, the switch simply
re-routes along that path. This approach is also known as
equal-cost multi-path routing (ECMP). If no shortest path
exist, it uses a 3-hop detour if one is available, and otherwise
falls back to a 5-hop detour if necessary.
We implemented this routing scheme in ProbNetKAT in

several steps. The first, F100, approximates the hashing be-
havior of ECMP by randomly selecting a port along one of
the shortest paths to the destination. The second, F103, im-
proves the resilience of F100 by augmenting it with 3-hop
re-routing—e.g., consider the blue path in Figure 11(a). We
find a port on C that connects to a different aggregation
switch A′ and forward the packet to A′. If there are multiple

such ports which have not failed, we choose one uniformly
at random. The third, F103,5, attempts 5-hop re-routing in
cases where F103 is unable to find a port on C whose adja-
cent link is up—e.g., consider the red path in Figure 11(a).
The 5-hop rerouting strategy requires a flag to distinguish
packets taking a detour from regular packets.

F10 network and failure model. We model the network
as discussed in §2, focusing on packets destined to switch 1:

M(p) ! in ;do (p ; t) while (¬sw=1)

McNetKAT automatically generates the topology program
t from a Graphviz description. The ingress predicate in is
a disjunction of switch-port tests over all ingress locations.
Adding the failure model and some setup code to declare
local variables tracking the health of individual links yields
the complete network model:

M̂(p, f) ! var up1!1 in . . . var upd!1 in M(f ;p)

Here, d is the maximum degree of a topology node. The
entire model measures about 750 lines of ProbNetKAT code.
To evaluate the effect of different kinds of failures, we

define a family of failure models fk indexed by the maximum
number of failures k ∈ N∪ {∞} that may occur, where links
fail otherwise independently with probability pr ; we leave
pr implicit. To simplify the analysis, we focus on failures
occurring on downward paths (note that F100 is able to route
around failures on the upward path, unless the topology
becomes disconnected).

Verifying refinement. Having implemented F10 as a series
of three refinements, we would expect the probability of
packet delivery to increase in each refinement, but not to
achieve perfect delivery in an unbounded failure model f∞.
Formally, we should have

drop < M̂(F100, f∞) < M̂(F103, f∞)

< M̂(F103,5, f∞) < teleport

where teleport moves the packet directly to its destination,
and p < q means the probability assigned to every input-
output pair by q is greater than the probability assigned by p.
We confirmed that these inequalities hold using McNetKAT.

200

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

1/128 1/64 1/32 1/16 1/8 1/4
/Lnk faLlure probabLlLty

0.80

0.85

0.90

0.95

1.00

3r
[d

el
Lv

er
y]

AB FatTree, F100
AB FatTree, F103
AB FatTree, F103, 5
FatTree, F103, 5

(a) (b) (c)

Figure 12. Case study results (k = ∞): (a) Probability of delivery vs. link-failure probability; (b) Increased path length due to
resilience (pr = 1/4); (c) Expected hop-count conditioned on delivery.

Verifying k-resilience. Resilience is the key property sat-
isfied by F10. By using McNetKAT, we were able to auto-
matically verify that F10 is resilient to up to three failures
in the AB FatTree Figure 11(a). To establish this property,
we increased the parameter k in our failure model fk while
checking equivalence with teleportation (i.e., perfect deliv-
ery), as shown in Figure 11(b). The simplest scheme F100
drops packets when a failure occurs on the downward path,
so it is 0-resilient. The F103 scheme routes around failures
when a suitable aggregation switch is available, hence it is
2-resilient. Finally, the F103,5 scheme routes around failures
as long as any aggregation switch is reachable, hence it is
3-resilient. If the schemes are not equivalent to teleport, we
can still compare the relative resilience of the schemes using
the refinement order, as shown in Figure 11(c). Our imple-
mentation also enables precise, quantitative comparisons.
For example, Figure 12(a) considers a failure model in which
an unbounded number of failures can occur. We find that
F100’s delivery probability dips significantly as the failure
probability increases, while both F103 and F103,5 continue to
ensure high delivery probability by routing around failures.

Analyzing path stretch. Routing schemes based on de-
tours achieve a higher degree of resilience at the cost of
increasing the lengths of forwarding paths. We can quan-
tify this increase by augmenting our model with a counter
that is incremented at each hop and analyzing the expected
path length. Figure 12(b) shows the cumulative distribution
function of latency as the fraction of traffic delivered within
a given hop count. On AB FatTree, F100 delivers ≈80% of
the traffic in 4 hops, since the maximum length of a short-
est path from any edge switch to s1 is 4 and F100 does not
attempt to recover from failures. F103 and F103,5 deliver the
same amount of traffic when limited to at most 4 hops, but
they can deliver significantly more traffic using 2 additional
hops by using 3-hop and 5-hop paths to route around fail-
ures. F103 also delivers more traffic with 8 hops—these are
the cases when F103 performs 3-hop re-routing twice for a

single packet as it encountered failure twice. We can also
show that on a standard FatTree, F103,5 failures have a higher
impact on latency. Intuitively, the topology does not support
3-hop re-routing. This finding supports a key claim of F10:
the topology and routing scheme should be co-designed to
avoid excessive path stretch. Finally, Figure 12(c) shows the
expected path length conditioned on delivery. As the failure
probability increases, the probability of delivery for packets
routed via the core layer decreases for F100. Thus, the distri-
bution of delivered packets shifts towards 2-hop paths via
an aggregation switch, so the expected hop-count decreases.

8 Related Work

Themost closely related system toMcNetKAT is Bayonet [15].
In contrast to the domain-specific approach followed in this
paper, Bayonet uses a general-purpose probabilistic program-
ming language and inference tool [16]. Such an approach,
which reuses existing techniques, is naturally appealing.
In addition, Bayonet is more expressive than McNetKAT:
it supports asynchronous scheduling, stateful transforma-
tions, and probabilistic inference, making it possible to model
richer phenomena, such as congestion due to packet-level
interactions in queues. Of course, the extra generality does
not come for free. Bayonet requires programmers to supply
an upper bound on loops as the implementation is not guar-
anteed to find a fixed point. As discussed in §5, McNetKAT
scales better than Bayonet on simple benchmarks. Another
issue is that writing a realistic scheduler appears challenging,
and one might also need to model host-level congestion con-
trol protocols to obtain accurate results. Currently Bayonet
programs use deterministic or uniform schedulers and model
only a few packets at a time [14].

Prior work on ProbNetKAT [35] gave a measure-theoretic
semantics and an implementation that approximated pro-
grams using sequences of monotonically improving esti-
mates. While these estimates were proven to converge in
the limit, [35] offered no guarantees about the convergence

201

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

2 4 6 8 10 12 14
Hop Fount

0.6

0.7

0.8

0.9

1.0

3r
[h

op
 F

ou
nt

 ≤
[]

AB Fat7rHH, F100
AB Fat7rHH, F103
AB Fat7rHH, F103, 5
Fat7rHH, F103, 5

(a) (b) (c)

Figure 12. Case study results (k = ∞): (a) Probability of delivery vs. link-failure probability; (b) Increased path length due to
resilience (pr = 1/4); (c) Expected hop-count conditioned on delivery.

Verifying k-resilience. Resilience is the key property sat-
isfied by F10. By using McNetKAT, we were able to auto-
matically verify that F10 is resilient to up to three failures
in the AB FatTree Figure 11(a). To establish this property,
we increased the parameter k in our failure model fk while
checking equivalence with teleportation (i.e., perfect deliv-
ery), as shown in Figure 11(b). The simplest scheme F100
drops packets when a failure occurs on the downward path,
so it is 0-resilient. The F103 scheme routes around failures
when a suitable aggregation switch is available, hence it is
2-resilient. Finally, the F103,5 scheme routes around failures
as long as any aggregation switch is reachable, hence it is
3-resilient. If the schemes are not equivalent to teleport, we
can still compare the relative resilience of the schemes using
the refinement order, as shown in Figure 11(c). Our imple-
mentation also enables precise, quantitative comparisons.
For example, Figure 12(a) considers a failure model in which
an unbounded number of failures can occur. We find that
F100’s delivery probability dips significantly as the failure
probability increases, while both F103 and F103,5 continue to
ensure high delivery probability by routing around failures.

Analyzing path stretch. Routing schemes based on de-
tours achieve a higher degree of resilience at the cost of
increasing the lengths of forwarding paths. We can quan-
tify this increase by augmenting our model with a counter
that is incremented at each hop and analyzing the expected
path length. Figure 12(b) shows the cumulative distribution
function of latency as the fraction of traffic delivered within
a given hop count. On AB FatTree, F100 delivers ≈80% of
the traffic in 4 hops, since the maximum length of a short-
est path from any edge switch to s1 is 4 and F100 does not
attempt to recover from failures. F103 and F103,5 deliver the
same amount of traffic when limited to at most 4 hops, but
they can deliver significantly more traffic using 2 additional
hops by using 3-hop and 5-hop paths to route around fail-
ures. F103 also delivers more traffic with 8 hops—these are
the cases when F103 performs 3-hop re-routing twice for a

single packet as it encountered failure twice. We can also
show that on a standard FatTree, F103,5 failures have a higher
impact on latency. Intuitively, the topology does not support
3-hop re-routing. This finding supports a key claim of F10:
the topology and routing scheme should be co-designed to
avoid excessive path stretch. Finally, Figure 12(c) shows the
expected path length conditioned on delivery. As the failure
probability increases, the probability of delivery for packets
routed via the core layer decreases for F100. Thus, the distri-
bution of delivered packets shifts towards 2-hop paths via
an aggregation switch, so the expected hop-count decreases.

8 Related Work

Themost closely related system toMcNetKAT is Bayonet [15].
In contrast to the domain-specific approach followed in this
paper, Bayonet uses a general-purpose probabilistic program-
ming language and inference tool [16]. Such an approach,
which reuses existing techniques, is naturally appealing.
In addition, Bayonet is more expressive than McNetKAT:
it supports asynchronous scheduling, stateful transforma-
tions, and probabilistic inference, making it possible to model
richer phenomena, such as congestion due to packet-level
interactions in queues. Of course, the extra generality does
not come for free. Bayonet requires programmers to supply
an upper bound on loops as the implementation is not guar-
anteed to find a fixed point. As discussed in §5, McNetKAT
scales better than Bayonet on simple benchmarks. Another
issue is that writing a realistic scheduler appears challenging,
and one might also need to model host-level congestion con-
trol protocols to obtain accurate results. Currently Bayonet
programs use deterministic or uniform schedulers and model
only a few packets at a time [14].

Prior work on ProbNetKAT [35] gave a measure-theoretic
semantics and an implementation that approximated pro-
grams using sequences of monotonically improving esti-
mates. While these estimates were proven to converge in
the limit, [35] offered no guarantees about the convergence

201

Scalability Parallelization Comparison

Delivery Resilience Latency

Summary: McNetKAT
First scalable verification tool for probabilistic networks
๏ can reason, e.g., about fault-tolerance

Based on theory of Markov chains
๏ provides solid mathematical foundation
๏ enables computing limits in closed form

Scales thanks to
๏ sparsity, symbolic data structures
๏ parallelization
๏ optimized linear algebra solver

Thank you!

Scalable Verification of Probabilistic Networks
Steffen Smolka
Cornell University
Ithaca, NY, USA

Praveen Kumar
Cornell University
Ithaca, NY, USA

David M. Kahn∗

Carnegie Mellon University
Pittsburgh, PA, USA

Nate Foster
Cornell University
Ithaca, NY, USA

Justin Hsu∗

University of Wisconsin
Madison, WI, USA

Dexter Kozen
Cornell University
Ithaca, NY, USA

Alexandra Silva
University College London

London, UK

Abstract
This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment
of Probabilistic NetKAT in terms of finite-state, absorbing
Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an
automatic verification tool. Domain-specific optimizations
and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and refinement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT’s scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts •Theory of computation→Automated
reasoning;Programsemantics; Randomwalks andMarkov
chains; • Networks → Network properties; • Software and
its engineering → Domain specific languages.

Keywords Network verification, Probabilistic Programming

ACM Reference Format:
Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable Verification
of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3314221.3314639

∗Work performed at Cornell University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314639

1 Introduction

Networks are among the most complex and critical com-
puting systems used today. Researchers have long sought
to develop automated techniques for modeling and analyz-
ing network behavior [40], but only over the last decade
has programming language methodology been brought to
bear on the problem [5, 6, 28], opening up new avenues
for reasoning about networks in a rigorous and principled
way [3, 12, 19, 21, 25]. Building on these initial advances,
researchers have begun to target more sophisticated net-
works that exhibit richer phenomena. In particular, there is
renewed interest in randomization as a tool for designing
protocols and modeling behaviors that arise in large-scale
systems—from uncertainty about the inputs, to expected
load, to likelihood of device and link failures.

Although programming languages for describing random-
ized networks exist [11, 15], support for automated reasoning
remains limited. Even basic properties require quantitative
reasoning in the probabilistic setting, and seemingly sim-
ple programs can generate complex distributions. Whereas
state-of-the-art tools can easily handle deterministic net-
works with hundreds of thousands of nodes, probabilistic
tools are currently orders of magnitude behind.
This paper presents McNetKAT, a new tool for reason-

ing about probabilistic network programs written in the
guarded and history-free fragment of Probabilistic NetKAT
(ProbNetKAT) [3, 11, 12, 35]. ProbNetKAT is an expressive
programming language based on Kleene Algebra with Tests,
capable of modeling a variety of probabilistic behaviors and
properties including randomized routing [22, 38], uncer-
tainty about demands [30], and failures [17]. The history-free
fragment restricts the language semantics to input-output be-
havior rather than tracking paths, and the guarded fragment
provides conditionals and while loops rather than union and
iteration operators. Although the fragment we consider is a
restriction of the full language, it is still expressive enough
to encode a wide range of practical networking models. Ex-
isting deterministic tools, such as Anteater [27], HSA [19],
and Veriflow [21], also use guarded and history-free models.
To enable automated reasoning, we first reformulate the

semantics of ProbNetKAT in terms of finite state Markov

190

Code available: https://smolka.st/artifacts/mcnetkat/

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA S. Smolka, P. Kumar, D. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva

Figure 8. Speedup due to parallelization.

Semantically, this construct is equivalent to a cascade of
conditionals; but the native backend compiles it in parallel
using a map-reduce-style strategy, using one process per
core by default.
To evaluate the impact of parallelization, we compiled

two representative FatTree models (p = 14 and p = 16)
using ECMP routing on an increasing number of cores. With
m cores, we used one master machine together with r =
dm/16 � 1e remote machines, addingmachines one by one as
needed to obtain more physical cores. The results are shown
in Figure 8. We see near linear speedup on a single machine,
cutting execution time by more than an order of magnitude
on our 16-core test machine. Beyond a single machine, the
speedup depends on the complexity of the submodels for
each switch—the longer it takes to generate the matrix for
each switch, the higher the speedup. For example, with a
p = 16 FatTree, we obtained a 30x speedup using 40 cores
across 3 machines.

Comparison with other tools. Bayonet [17] is a state-of-
the-art tool for analyzing probabilistic networks. Whereas
McNetKAT has a native backend tailored to the networking
domain and a backend based on a probabilistic model checker,
Bayonet programs are translated to a general-purpose prob-
abilistic language which is then analyzed by the symbolic in-
ference engine PSI [18]. Bayonet’s approach is more general,
as it can model queues, state, and multi-packet interactions
under an asynchronous scheduling model. It also supports
Bayesian inference and parameter synthesis. Moreover, Bay-
onet is fully symbolic whereas McNetKAT uses a numerical
linear algebra solver [8] (based on �oating point arithmetic)
to compute limits.
To evaluate how the performance of these approaches

compares, we reproduced an experiment from the Bayonet
paper that analyzes the reliability of a simple routing scheme
in a family of “chain” topologies indexed by k , as shown in
Figure 9.

For k = 1, the network consists of four switches organized
into a diamond, with a single link that fails with probability

H1 S0

S1

S2

S3 S4k

S4k+1

S4k+2

S4k+3 H2

pfail pfail

Figure 9. Chain topology

100 101 102 103 104 105

1uPber of switcKes

100

101

102

103

Ti
P
e
(s
ec
on
ds
) TiPe liPit 3600s

Bayonet
3risP (approx)
331K (approx)

3risP (exact)
331K (exact)

31K
31K (cluster)

Figure 10. Scalability on chain topology.

pfail = 1/1000. For k > 1, the network consists of k diamonds
linked together into a chain as shown in Figure 9. Within
each diamond, switch S0 forwards packets with equal proba-
bility to switches S1 and S2, which in turn forward to switch
S3. However, S2 drops the packet if the link to S3 fails. We
analyze the probability that a packet originating at H1 is
successfully delivered to H2. Our implementation does not
exploit the regularity of these topologies.
Figure 10 gives the running time for several tools on

this benchmark: Bayonet, hand-written PRISM, ProbNetKAT
with the PRISM backend (PPNK), and ProbNetKAT with the
native backend (PNK). Further, we ran the PRISM tools in
exact and approximate mode, and we ran the ProbNetKAT
backend on a single machine and on the cluster. Note that
both axes in the plot are log-scaled.
We see that Bayonet scales to 32 switches in about 25

minutes, before hitting the one hour time limit and 64 GB
memory limit at 48 switches. ProbNetKAT answers the same
query for 2048 switches in under 10 seconds and scales to
over 65000 switches in about 50 minutes on a single core,
or just 2.5 minutes using a cluster of 24 machines. PRISM
scales similarly to ProbNetKAT, and performs best using the
hand-written model in approximate mode.
Overall, this experiment shows that for basic network

veri�cation tasks, ProbNetKAT’s domain-speci�c backend
based on specialized data structures and an optimized linear-
algebra library [8] can outperform an approach based on a
general-purpose solver.

10

Comparison vs state of the art

