
Probabilistic Program Equivalence for NetKAT
Steffen Smolka
Cornell University

David Kahn
Cornell University

Praveen Kumar
Cornell University

Nate Foster
Cornell University

Dexter Kozen
Cornell University

Alexandra Silva
University College London

Abstract
We study the problem of deciding program equivalence in
the context of Probabilistic NetKAT, a formal language for
reasoning about the behavior of packet-switched networks.
We show that the problem is decidable for the history-free
fragment of the language, and discuss a path toward a de-
cision procedure for the full language. The main challenge
lies in reasoning about iteration, which we address by a re-
duction to finite-state absorbing Markov chains. We also
describe an OCaml prototype that we have used to reason
about probabilistic network programs.

1 Motivation
NetKAT [1] is a language based on Kleene algebra (KA) and
Kleene algebra with tests (KAT) that can be used to program
networks and reason about their properties. It comes with a
rich theory (a denotational semantics, a sound and complete
axiomatization, both language and automata models) and
sophisticated tools (a fully-automatic decision procedure,
an efficient compiler). Probabilistic NetKAT [4] extends the
language with a probabilistic choice operator and a seman-
tics based on Markov kernels, allowing it to model features
such as faulty links, randomized routing algorithms, and
uncertainty about input packets.

Why study program equivalence? Many network proper-
ties can be naturally and conveniently phrased as questions
about program equivalence in NetKAT. For example, NetKAT
equivalence has been used to reason about essential prop-
erties such as waypointing, reachability, isolation, and loop
freedom, as well as for the validation and verification of
compiler transformations. This work aims to extend this
approach to the probabilistic setting.

Why is it challenging? Because ProbNetKAT has an iter-
ation operator, it is possible to write programs that gen-
erate continuous distributions over the uncountable space
of packet history sets. This makes reasoning about conver-
gence non-trivial, and raises the issue of representing infini-
tary objects in an implementation. Prior work developed a
domain-theoretic semantics that provides notions of approx-
imation and continuity, which can be used to reason about
programs using distributions with finite-support [4]. How-
ever, it left program equivalence as an open problem. We
settle this question positively for the history-free fragment
of the language, in which distributions have finite-support

but iteration may still converge only in the limit. Comput-
ing the analytical value of these limits precisely is the main
challenge we address.

Why not apply standard results? Although there is a lot
of related work (e.g., probabilistic languages based on regular
operators [3], automata [5], and model checkers [2]), Prob-
NetKAT’s semantics seems to be sufficiently different that
previous results do not apply since programs in the history-
free fragment do not denote sequences in any obvious sense
and correspond to one-state automata.

Our Approach. Our decision procedure for the history-free
fragment of ProbNetKAT follows a general approach: we
map programs to canonical representations for which check-
ing equivalence is straightforward. Specifically, we define a
big-step semantics that interprets each program as a finite sto-
chastic matrix—equivalently, a Markov chain that transitions
from input to output in a single step. Equivalence is trivially
decidable on this representation, but some care is needed
to compute the matrix in the case of iteration—intuitively,
it needs to capture the result of an infinite stochastic pro-
cess. We address this by embedding the system in a second
Markov chain with a larger state space that models iteration
in the spirit of a small-step semantics. This chain can be
transformed to an absorbing Markov chain, which admits a
closed form analytic solution using elementary matrix op-
erations that represents the limit of the iteration. We have
proved the soundness of this approach.

2 Results
Preliminaries. A history is a non-empty sequence of pack-
ets that encodes the trajectory of a single packet through
the network: it can be thought of as a log of the packet’s ac-
tivity. On a semantic level, ProbNetKAT programs p denote
functions of type [[p]] ∈ 2H → D(2H) that map sets of input
packet histories to distributions on sets of output packet
histories. On a syntactic level, the language consists of a
Boolean algebra (which enables using predicates to classify
incoming packets based on their contents); the well-known
regular operators +, ·, and ∗ (which enables specifying reg-
ular forwarding paths); a probabilistic choice operator ⊕r ;
and a modification primitive f←n (which allows rewriting
the f -field of incoming packets to n). The primitive dup is
a “logging” command that records the current state of the
packet in the history. It is important to note that the notion



2 S. Smolka, D. Kahn, P. Kumar, N. Foster, D. Kozen, and A. Silva

of history is purely semantic: in a physical network, only the
current packet needs to exist.

The price of history. Histories facilitate reasoning about
network-wide paths, but they come at a hefty mathematical
cost: there are as many histories as natural numbers, so
the powerset 2H is as large as the set of real numbers. As a
result, ProbNetKAT’s denotational semantics requires some
heavy machinery including a measurable space (2H,B) to
deal with continuous distributions, and a CPO (D(2H),⊑) of
distributions to enable defining the semantics of iteration as
a least fixpoint. To avoid this complexity, this work focuses
on the history-free fragment of the language: it is obtained
by removing the dup primitive and working only with the
finite set of packets (i.e., singleton histories).

Big-step semantics. In the history-free setting, we can in-
terpret a program p as a finite stochastic matrices B[[p]] ∈
S(2Pk), i.e. a matrix indexed by packet sets a,b ∈ 2Pk such
that B[[p]]a,b denotes the probability that the program pro-
duces output b on input a. At a high-level, deterministic
program primitives map to simple (0, 1)-matrices, and pro-
gram operators map to operations on matrices. For example,
the program primitive drop is interpreted as the matrix

B[[drop]] =


∅ b2 ... bn

∅ 1 0 · · · 0
...
...
...
. . .
...

an 1 0 · · · 0


a2

...

an

a1 = ∅

1

1

1

that puts all probability mass in the∅-column; the primitive
skip is the identity matrix; sequential composition is given by
matrix product; and probabilistic choice is given by convex
sum. Such a matrix represents a Markov chain over the state
space 2Pk that, intuitively, transitions from an initial state
a corresponding to the set of input packets in a single step
straight to the set of output packets b—thus the name big
step semantics.
We define the big-step semantics of iteration as the limit

B[[p∗]]a,b ≜ lim
n→∞
B[[p(n)]]a,b (1)

where p(n) denotes the n-th unrolling of p∗. We then prove
this semantics is sound with respect to the denotational
semantics: B[[p]]a,b = [[p]](a)({b}). The result is nontrivial
because the sequence of measures µn = [[p(n)]](a) does not
in general converge pointwise to µ = [[p∗]](a). This crucially
relies on the assumption that p is dup-free, and requires
some additional results about the denotational semantics. As
a corollary, we reduce the equivalence problem on dup-free
programs to checking equality of finite-dimensional matrices.
The remaining problem is how to compute these matrices,
which requires computing a limit in general.

Example. Suppose packets have a single binary field f , and
consider the program p∗ ≜ (skip ⊕r f←1)∗. The program

describes an infinite stochastic process that repeatedly flips a
biased coin and either outputs the input packets unmodified
with probability r , or outputs the input packets after setting
their f -field to 1 with probability 1 − r . Recalling (1), we can
approximate this infinite process using its finite unrollings
and then take the limit:

B[[p(n)]] =


∅ 0 1 0,1

∅ 1 0 0 0
0 0 rn 0 1−rn
1 0 0 1 0
0,1 0 0 0 1

 ⇒ B[[p∗]] =


∅ 0 1 0,1

∅ 1 0 0 0
0 0 0 0 1
1 0 0 1 0
0,1 0 0 0 1


The problem is how to compute these limits in general.

Small-step semantics. To solve this problem, we define
a small-step semantics S[[p]] ∈ S(2Pk × 2Pk) in terms of
B[[p]]. Intuitively, one step in the Markov chain S[[p]] mod-
els one iteration of p∗. States of the chain are pairs ⟨a,b⟩,
where a is the current set of packets, and b is an accu-
mulator tracking the packets output so far. We prove that
B[[p(n)]]a,b =

∑
a′ S[[p]]

n+1
(a,∅),(a′,b). With care, we can trans-

form S[[p]] into and absorbing Markov chain, whose unique
stationary distribution can be given in closed-form. This
allows us compute the required limit analytically.

Language model. While the equivalence problem for the
full language remains open, we show that ProbNetKAT pro-
grams are fully characterized by a language model L[[p]] ∈
D(2Pk·Pk

∗ ·Pk). That is, programs can be interpreted as distri-
butions over languages (i.e., packet sequence sets). This gives
hope that we may be able to interpret ProbNetKAT programs
as suitable automata, much in the way deterministic NetKAT
programs can be interpreted as NetKAT automata.

3 Discussion
We are pursuing several directions in ongoing work. On the
practical side, we are exploring applications of ProbNetKAT
for reasoning about probabilistic network properties, such
as correct load balancing and robustness to failures. On the
theoretical side, we are investigating a decision procedure
for the full language. The decision procedure for determin-
istic NetKAT follows a coalgebraic approach: it translates
programs to automata using derivatives, and then checks
whether the automata are bisimilar, where states are bisimi-
lar iff they have the same “observations” and transition to
bisimilar states. NetKAT “observations” are isomorphic to
dup-free programs (up to program equivalence) so this re-
quires deciding equivalence for dup-free programs. Hence,
the only thing missing for a decision procedure for the full
language is a suitable definition of the derivative.

References
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,

Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic Foundations for Networks. In POPL. 113–126.



Probabilistic Program Equivalence for NetKAT 3

[2] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Ver-
ification of Probabilistic Real-time Systems. In Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11) (LNCS),
G. Gopalakrishnan and S. Qadeer (Eds.), Vol. 6806. Springer, 585–591.
https://doi.org/10.1007/978-3-642-22110-1_47

[3] A. K. McIver, E. Cohen, C. Morgan, and C. Gonzalia. 2008. Using
Probabilistic Kleene Algebra pKA for Protocol Verification. J. Logic and
Algebraic Programming 76, 1 (2008), 90–111.

[4] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexan-
dra Silva. 2017. CantorMeets Scott: Semantic Foundations for Probabilis-
tic Networks. In POPL 2017. https://doi.org/10.1145/3009837.3009843

[5] Wen-Guey Tzeng. 1992. A Polynomial-Time Algorithm for the Equiva-
lence of Probabilistic Automata. SIAM J. Comput. 21, 2 (1992), 216–227.
https://doi.org/10.1137/0221017

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1137/0221017

	Abstract
	1 Motivation
	2 Results
	3 Discussion
	References

