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1 INTRODUCTION
Computer scientists have long explored the connections between families of programming lan-

guages and abstract machines. This dual perspective has furnished deep theoretical insights as well

as practical tools. As an example, Kleene’s classic result establishing the equivalence of regular

expressions and finite automata [Kleene 1956] inspired decades of work across a variety of areas

including programming language design, mathematical semantics, and formal verification.
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Kleene Algebra with Tests (KAT) [Kozen 1996], which combines Kleene Algebra (KA) with

Boolean Algebra (BA), is a modern example of this approach. Viewed from the program-centric per-

spective, a KAT models the fundamental constructs that arise in programs: sequencing, branching,

iteration, etc. The equational theory of KAT enables algebraic reasoning and can be finitely axioma-

tized [Kozen and Smith 1996]. Viewed from the machine-centric perspective, a KAT describes a kind

of automaton that generates a regular language of traces. This shift in perspective admits techniques

from coalgebra for reasoning about program behavior. In particular, there are efficient algorithms

for checking bisimulation, which can be optimized using properties of bisimulations [Bonchi and

Pous 2013; Hopcroft and Karp 1971] or symbolic automata representations [Pous 2015].

KAT has been used to model computation across a wide variety of areas including program

transformations [Angus and Kozen 2001; Kozen 1997], concurrency control [Cohen 1994b], compiler

optimizations [Kozen and Patron 2000], cache control [Barth and Kozen 2002; Cohen 1994a], and

more [Cohen 1994a]. A prominent recent application is NetKAT [Anderson et al. 2014], a language

for reasoning about the packet-forwarding behavior of software-defined networks. NetKAT has a

sound and complete equational theory, and a coalgebraic decision procedure that can be used to

automatically verify many important networking properties including reachability, loop-freedom,

and isolation [Foster et al. 2015]. However, while NetKAT’s implementation scales well in practice,

deciding equivalence for NetKAT is PSPACE-complete in the worst case [Anderson et al. 2014].

A natural question to ask is whether there is an efficient fragment of KAT that is reasonably

expressive, while retaining a solid foundation. We answer this question positively with a com-

prehensive study of Guarded Kleene Algebra with Tests (GKAT), the guarded fragment of KAT.

GKAT is a propositional abstraction of imperative while programs. We establish the fundamental

properties of GKAT and develop its algebraic and coalgebraic theory. GKAT replaces the union

(e + f ) and iteration (e∗) constructs in KAT with guarded versions: conditionals (e +b f ) and loops

(e(b)) guarded by Boolean predicates b. The resulting language is a restriction of full KAT, but

sufficiently expressive to model typical, imperative programs—e.g., essentially all NetKAT programs

needed to solve practical verification problems can be expressed as guarded programs.

In exchange for amodest sacrifice in expressiveness, GKAT offers two significant advantages. First,

program equivalence (for a fixed Boolean algebra) is decidable in nearly linear time—a substantial

improvement over the PSPACE complexity for KAT [Cohen et al. 1996]. Specifically, any GKAT

expression e can be represented as a deterministic automaton of size O(|e |), while KAT expressions

can require as many as O(2 |e |) states. As a consequence, any language property that is efficiently

decidable for deterministic automata is also efficiently decidable for GKAT. Second, we believe that

GKAT is a better foundation for probabilistic languages due to well-known issues that arise when

combining non-determinism—which is native to KAT—with probabilistic choice [Mislove 2006;

Varacca and Winskel 2006]. For example, ProbNetKAT [Foster et al. 2016], a probabilistic extension

of NetKAT, does not satisfy the KAT axioms, but its guarded restriction forms a proper GKAT.

Although GKAT is a simple restriction of KAT at the syntactic level, its semantics is surprisingly

subtle. In particular, the “obvious” notion of GKAT automata can encode behaviors that would

require non-local control-flow operators (e.g, goto or multi-level break statements) [Kozen and

Tseng 2008]. In contrast, GKAT models programs whose control-flow always follows a lexical,

nested structure. To overcome this discrepancy, we identify restrictions on automata to enable an

analogue of Kleene’s theorem—every GKAT automaton satisfying our restrictions can be converted

to a program, and vice versa. Besides the theoretical interest in this result, we believe it may also

have practical applications, such as reasoning about optimizations in a compiler [Hendren et al.

1992]. We also develop an equational axiomatization for GKAT and prove that it is sound and

complete over a coequationally-defined language model. The main challenge is that without +, the
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natural order on KAT programs can no longer be used to axiomatize a least fixpoint. We instead

axiomatize a unique fixed point, in the style of Salomaa’s work on Kleene Algebra [Salomaa 1966].

Outline. We make the following contributions in this paper.

• We initiate a comprehensive study of GKAT, a guarded version of KAT, and show how GKAT

models relational and probabilistic programming languages (§ 2).

• We give a new construction of linear-size automata from GKAT programs (§ 4). As a conse-

quence, the equational theory of GKAT (over a fixed Boolean algebra) is decidable in nearly

linear time (§ 5).

• We identify a class of automata representable as GKAT expressions (§ 4) that contains all

automata produced by the previous construction, yielding a Kleene theorem.

• We present axioms for GKAT (§ 3) and prove that our axiomatization is complete for equiva-

lence with respect to a coequationally-defined language model (§ 6).

Omitted proofs appear in the appendix of the extended version of this paper [Smolka et al. 2019a].

2 OVERVIEW: AN ABSTRACT PROGRAMMING LANGUAGE
This section introduces the syntax and semantics of GKAT, an abstract programming language with

uninterpreted actions. Using examples, we show how GKAT can model relational and probabilistic

programming languages—i.e., by giving actions a concrete interpretation. An equivalence between

abstract GKAT programs thus implies a corresponding equivalence between concrete programs.

2.1 Syntax
The syntax of GKAT is parameterized by abstract sets of actions Σ and primitive tests T , where
Σ and T are assumed to be disjoint and nonempty, and T is assumed to be finite. We reserve p
and q to range over actions, and t to range over primitive tests. The language consists of Boolean

expressions, BExp, and GKAT expressions, Exp, as defined by the following grammar:

b, c,d ∈ BExp ::=

| 0 false
| 1 true
| t ∈ T t
| b · c b and c
| b + c b or c
| b not b

e, f ,д ∈ Exp ::=

| p ∈ Σ do p
| b ∈ BExp assert b
| e · f e ; f
| e +b f if b then e else f

| e(b) while b do e

The algebraic notation on the left is more convenient when manipulating terms, while the notation

on the right may be more intuitive when writing programs. We often abbreviate e · f by e f , and
omit parentheses following standard conventions, e.g., writing bc + d instead of (bc) + d and e f (b)

instead of e(f (b)).

2.2 Semantics: Language Model
Intuitively, we interpret a GKAT expression as the set of “legal” execution traces it induces, where

a trace is legal if no assertion fails. To make this formal, let b ≡BA c denote Boolean equivalence.

Entailment is a preorder on the set of Boolean expressions, BExp, and can be characterized in terms

of equivalence as follows: b ≤ c ⇐⇒ b + c ≡BA c . In the quotient set BExp/≡BA (the free Boolean

algebra on generatorsT = {t1, . . . , tn}), entailment is a partial order [b]≡BA ≤ [c]≡BA :⇐⇒ b+c ≡BA
c , with minimum and maximum elements given by the equivalence classes of 0 and 1, respectively.

The minimal nonzero elements of this order are called atoms. We let At denote the set of atoms and

use lowercase Greek letters α, β, . . . to denote individual atoms. Each atom is the equivalence class
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of an expression of the form c1 · c2 · · · cn ∈ BExp with ci ∈ {ti , ti }. Thus we can think of each atom

as representing a truth assignment onT , e.g., if ci = ti then ti is set to true, otherwise if ci = ti then
ti is set to false. Likewise, the set {α ∈ At | α ≤ b} can be thought of as the set of truth assignments

where b evaluates to true; ≡BA is complete with respect to this interpretation in that two Boolean

expressions are related by ≡BA if and only if their atoms coincide [Birkhoff and Bartee 1970].

A guarded string is an element of the regular set GS B At · (Σ · At)∗. Intuitively, a non-empty

string α0p1α1 · · ·pnαn ∈ GS describes a trace of an abstract program: the atoms αi describe the
state of the system at various points in time, starting from an initial state α0 and ending in a final

state αn , while the actions pi ∈ Σ are the transitions triggered between the various states. Given

two traces, we can combine them sequentially by running one after the other. Formally, guarded

strings compose via a partial fusion product ⋄ : GS × GS⇀ GS, defined for x,y ∈ (At ∪ Σ)∗ as

xα ⋄ βy B

{
xαy if α = β

undefined otherwise.

This product lifts to a total function on languages L,K ⊆ GS of guarded strings, given by

L ⋄K B {x ⋄y | x ∈ L,y ∈ K}.

We need a few more constructions before we can interpret GKAT expressions as languages repre-

senting their possible traces. First, 2
GS

with the fusion product forms a monoid with identity At
and so we can define the n-th power Ln of a language L inductively in the usual way:

L0 B At Ln+1 B Ln ⋄ L

Second, in the special case where B ⊆ At, we write B for At − B and define:

L +B K B (B ⋄ L) ∪ (B ⋄K) L(B) B
⋃
n≥0

(B ⋄ L)n ⋄ B

We are now ready to interpret GKAT expressions as languages of guarded strings via the semantic

map J−K : Exp→ 2
GS

as follows:

JpK B {αpβ | α, β ∈ At}
JbK B {α ∈ At | α ≤ b}

Je · f K B JeK ⋄ Jf K
Je +b f K B JeK +JbK Jf K

Je(b)K B JeK(JbK)

We call this the language model of GKAT. Since we make no assumptions about the semantics of

actions, we interpret them as sets of traces beginning and ending in arbitrary states; this soundly

overapproximates the behavior of any instantiation. A test is interpreted as the set of states satisfying

the test. The traces of e · f are obtained by composing traces from e with traces from f in all

possible ways that make the final state of an e-trace match up with the initial state of an f -trace.
The traces of e +b f collect traces of e and f , restricting to e-traces whose initial state satisfies b and

f -traces whose initial state satisfies b. The traces of e(b) are obtained by sequentially composing

zero or more be-traces and selecting traces ending in a state satisfying b.

Remark 2.1 (Connection to KAT). The expressions for KAT, denoted KExp, are generated by the same

grammar as for GKAT, except that KAT’s union (+) replaces GKAT’s guarded union (+b ) and KAT’s

iteration (e∗) replaces GKAT’s guarded iteration (e(b)). GKAT’s guarded operators can be encoded

in KAT; this encoding, which goes back to early work on Propositional Dynamic Logic [Fischer

and Ladner 1979], is the standard method to model conditionals and while loops:

e +b f 7→ be + b f e(b) 7→ (be)∗b

Thus, there is a homomorphism φ : Exp→ KExp from GKAT to KAT expressions. We inherit KAT’s

language model [Kozen and Smith 1996], KJ−K : KExp→ 2
GS
, in the sense that J−K = KJ−K ◦ φ.
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The languages denoted by GKAT programs satisfy an important property:

Definition 2.2 (Determinacy property). A language of guarded strings L ⊆ GS satisfies the determi-

nacy property if, whenever string x,y ∈ L agree on their first n atoms, then they agree on their

first n actions (or lack thereof). For example, {αpγ ,αpδ , βqδ } and {αpγ , β} for α , β satisfy the

determinacy property, while {αpβ,α } and {αpβ,αqδ } for p , q do not.

We say that two expressions e and f are equivalent if they have the same semantics—i.e., if JeK = Jf K.
In the following sections, we show that this notion of equivalence

• is sound and complete for relational and probabilistic interpretations (§ 2.3 and 2.4),

• can be finitely and equationally axiomatized in a sound (§ 3) and complete (§ 6) way, and

• is efficiently decidable in time nearly linear in the sizes of the expressions (§ 4 and 5).

2.3 Relational Model
This subsection gives an interpretation of GKAT expressions as binary relations, a common model

of input-output behavior for many programming languages. We show that the language model is

sound and complete for this interpretation. Thus GKAT equivalence implies program equivalence

for any programming language with a suitable relational semantics.

Definition 2.3 (Relational Interpretation). Let i = (State, eval, sat) be a triple consisting of

• a set of states State,
• for each action p ∈ Σ, a binary relation eval(p) ⊆ State × State, and
• for each primitive test t ∈ T , a set of states sat(t) ⊆ State.

Then the relational interpretation of an expression e with respect to i is the smallest binary relation

RiJeK ⊆ State × State satisfying the following rules,

(σ ,σ ′) ∈ eval(p)

(σ ,σ ′) ∈ RiJpK

σ ∈ sat†(b)

(σ ,σ ) ∈ RiJbK

(σ ,σ ′) ∈ RiJeK (σ ′,σ ′′) ∈ RiJf K

(σ ,σ ′′) ∈ RiJe · f K

σ ∈ sat†(b) (σ ,σ ′) ∈ RiJeK

(σ ,σ ′) ∈ RiJe +b f K

σ ∈ sat†(b) (σ ,σ ′) ∈ RiJf K

(σ ,σ ′) ∈ RiJe +b f K

σ ∈ sat†(b) (σ ,σ ′) ∈ RiJeK (σ ′,σ ′′) ∈ RiJe(b)K

(σ ,σ ′′) ∈ RiJe(b)K

σ ∈ sat†(b)

(σ ,σ ) ∈ RiJe(b)K

where sat† : BExp→ 2
State

is the usual lifting of sat : T → 2
State

to Boolean expression over T .

The rules defining RiJeK are reminiscent of the big-step semantics of imperative languages,

which arise as instances of the model for various choices of i . The following result says that the
language model from the previous section abstracts the various relational interpretations in a sound

and complete way. It was first proved for KAT by Kozen and Smith [1996].

Theorem 2.4. The language model is sound and complete for the relational model:

JeK = Jf K ⇐⇒ ∀i .RiJeK = RiJf K

It is worth noting that Theorem 2.4 also holds for refinement (i.e., with ⊆ instead of =).
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Example 2.5 (IMP). Consider a simple imperative programming language IMP with variable assign-

ments and arithmetic and boolean expressions:

arithmetic expressions a ∈ A ::= x ∈ Var | n ∈ Z | a1 + a2 | a1 − a2 | a1 × a2
boolean expressions b ∈ B ::= false | true | a1 < a2 | not b | b1 and b2 | b1 or b2

commands c ∈ C ::= skip | x B a | c1; c2 | if b then c1 else c2 | while b do c

IMP can be modeled in GKAT using actions for assignments and primitive tests for comparisons,
1

Σ = {x B a | x ∈ Var,a ∈ A} T = {a1 < a2 | a1,a2 ∈ A}

and interpreting GKAT expressions over the state space of variable assignments State B Var→ Z:

eval(x B a) B {(σ ,σ [x := n]) | σ ∈ State,n = AJaK(σ )}

σ [x B n] B λy.

{
n if y = x

σ (y) else

sat(a1 < a2) B {σ ∈ State | AJa1K(σ ) < AJa2K(σ )},

where AJaK : State→ Z denotes arithmetic evaluation. Sequential composition, conditionals, and

while loops in IMP are modeled by their GKAT counterparts; skip is modeled by 1. Thus, IMP

equivalence refines GKAT equivalence (Theorem 2.4). For example, the program transformation

if x < 0 then (x B 0 − x ;x B 2 × x) else (x B 2 × x)

⇝ (if x < 0 then x B 0 − x else skip);x B 2 × x

is sound by the equivalence pq +b q ≡ (p +b 1) · q. We study such equivalences further in Section 3.

2.4 Probabilistic Model
In this subsection, we give a third interpretation of GKAT expressions in terms of sub-Markov

kernels, a common model for probabilistic programming languages (PPLs). We show that the

language model is sound and complete for this model as well.

We briefly review some basic primitives commonly used in the denotational semantics of PPLs.

For a countable set
2 X , we let D(X ) denote the set of subdistributions over X , i.e., the set of

probability assignments f : X → [0, 1] summing up to at most 1—i.e.,

∑
x ∈X f (x) ≤ 1. A common

distribution is the Dirac distribution or point mass on x ∈ X , denoted δx ∈ D(X ); it is the map

y 7→ [y = x] assigning probability 1 to x, and probability 0 to y , x . (The Iverson bracket [φ] is
defined to be 1 if the statement φ is true, and 0 otherwise.) Denotational models of PPLs typically

interpret programs as Markov kernels, maps of type X → D(X ). Such kernels can be composed in

sequence using Kleisli composition, since D(−) is a monad [Giry 1982].

Definition 2.6 (Probabilistic Interpretation). Let i = (State, eval, sat) be a triple consisting of

• a countable set of states State;
• for each action p ∈ Σ, a sub-Markov kernel eval(p) : State→ D(State); and
• for each primitive test t ∈ T , a set of states sat(t) ⊆ State.

1
Technically, we can only reserve a test for a finite subset of comparisons, as T is finite. However, for reasoning about

pairwise equivalences of programs, which only contain a finite number of comparisons, this restriction is not essential.

2
We restrict to countable state spaces (i.e., discrete distributions) for ease of presentation, but this assumption is not essential.

See the extend version [Smolka et al. 2019a] for a more general version using measure theory and Lebesgue integration.
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Then the probabilistic interpretation of an expression e with respect to i is the sub-Markov kernel

PiJeK : State→ D(State) defined as follows:

PiJpK B eval(p) PiJbK(σ ) B [σ ∈ sat†(b)] · δσ

PiJe · f K(σ )(σ ′) B
∑
σ ′′
PiJeK(σ )(σ ′′) · PiJf K(σ ′′)(σ ′)

PiJe +b f K(σ ) B [σ ∈ sat†(b)] · PiJeK(σ ) + [σ ∈ sat†(b)] · PiJf K(σ )

PiJe(b)K(σ )(σ ′) B lim

n→∞
PiJ(e +b 1)n · bK(σ )(σ ′)

The proofs that the limit exists and that PiJeK is sub-Markov for all e can be found in the extended

version of the paper [Smolka et al. 2019a].

Theorem 2.7. The language model is sound and complete for the probabilistic model:

JeK = Jf K ⇐⇒ ∀i .PiJeK = PiJf K

Proof Sketch. By mutual implication.

⇒: For soundness, we define a map κi : GS → State → D(State) from guarded strings to

sub-Markov kernels:

κi (α)(σ ) B [σ ∈ sat†(α)] · δσ

κi (αpw)(σ )(σ
′) B [σ ∈ sat†(α)] ·

∑
σ ′′

eval(p)(σ )(σ ′′) · κi (w)(σ ′′)(σ )

We then lift κi to languages via pointwise summation, κi (L) B
∑
w ∈L κi (w), and establish that

any probabilistic interpretation factors through the language model via κi : PiJ−K = κi ◦ J−K.
⇐: For completeness, we construct an interpretation i B (GS, eval, sat) over GS as follows,

eval(p)(w) B Unif({wpα | α ∈ At}) sat(t) B {xα ∈ GS | α ≤ t}

and show that JeK is fully determined by PiJeK:

JeK = {αx ∈ GS | PiJeK(α)(αx) , 0}. □

As for Theorem 2.4, Theorem 2.7 can also be shown for refinement (i.e., with ⊆ and ≤ instead of =).

Example 2.8 (Probabilistic IMP). We can extend IMP from Example 2.5 with a probabilistic assignment

command x ∼ µ, where µ ranges over sub-distributions on Z, as follows:

c ::= . . . | x ∼ µ Σ = . . . ∪ {x ∼ µ | x ∈ Var, µ ∈ D(Z)}

The interpretation i = (Var → Z, eval, sat) is as before, except we now restrict to a finite set of

variables to guarantee that the state space is countable, and interpret actions as sub-Markov kernels:

eval(x B n)(σ ) B δσ [xBn] eval(x ∼ µ)(σ ) B
∑
n∈Z

µ(n) · δσ [xBn]

A concrete example of a PPL based on GKAT is McNetKAT [Smolka et al. 2019b], a recent

language and verification tool for reasoning about the packet-forwarding behavior in networks.
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Guarded Union Axioms Sequence Axioms (inherited from KA)

U1. e +b e ≡ e (idempotence) S1. (e · f ) · д ≡ e · (f · д) (associativity)

U2. e +b f ≡ f +b e (skew commut.) S2. 0 · e ≡ 0 (absorbing left)

U3. (e +b f ) +c д ≡ e +bc (f +c д) (skew assoc.) S3. e · 0 ≡ 0 (absorbing right)

U4. e +b f ≡ be +b f (guardedness) S4. 1 · e ≡ e (neutral left)

U5. eд +b f д ≡ (e +b f ) · д (right distrib.) S5. e · 1 ≡ e (neutral right)

Guarded Loop Axioms
W1. e(b) ≡ ee(b) +b 1 (unrolling)

W3.

д ≡ eд +b f

д ≡ e(b) f
if E(e) ≡ 0 (fixpoint)

W2. (e +c 1)
(b) ≡ (ce)(b) (tightening)

Fig. 1. Axioms for GKAT-expressions.

3 AXIOMATIZATION
In most programming languages, the same behavior can be realized using different programs. For

example, we expect the programs if b then e else f and if (not b) then f else e to encode the

same behavior. Likewise, different expressions in GKAT can denote the same language of guarded

strings. For instance, the previous example is reflected in GKAT by the fact that the language

semantics of e +b f and f +b e coincide. This raises the questions: what other equivalences hold
between GKAT expressions? And, can all equivalences be captured by a finite number of equations?

In this section, we give some initial answers to these questions, by proposing a set of axioms for

GKAT and showing that they can be used to prove a large class of equivalences.

3.1 Some Simple Axioms
As an initial answer to the first question, we propose the following.

Definition 3.1. We define ≡ as the smallest congruence (with respect to all operators) on Exp that

satisfies the axioms given in Figure 1 (for all e, f ,д ∈ Exp and b, c,d ∈ BExp) and subsumes Boolean

equivalence in the sense that b ≡BA c implies b ≡ c .

The guarded union axioms (U1-U5) can be understood intuitively in terms of conditionals. For

instance, we have the law e+b f ≡ f +b e discussed before, but also eд+b f д ≡ (e+b f )·д, which says
thatд can be “factored out” of branches of a guarded union. Equivalences for sequential composition

are also intuitive. For instance, 0 · e ≡ 0 encodes that any instruction after failure is irrelevant,

because the program has failed. The axioms for loops (W1–W3) are more subtle. The axiom

e(b) ≡ ee(b)+b 1 (W1) says that we can think of a guarded loop as equivalent to its unrolling—i.e., the

programwhile b do e has the same behavior as the program if b then (e ; while b do e) else skip.
The axiom (e +c 1)

(b) ≡ (ce)(b) (W2) states that if part of a loop body does not have an effect (i.e., is

equivalent to skip), it can be omitted; we refer to this transformation as loop tightening.

To explain the fixpoint axiom (W3), disregard the side-condition for a moment. In a sense, this rule

states that if д tests (using b) whether to execute e and loop again or execute f (i.e., if д ≡ eд +b f )
then д is a b-guarded loop followed by f (i.e., д ≡ e(b) f ). However, such a rule is not sound in

general. For instance, suppose e, f ,д,b = 1; in that case, 1 ≡ 1 · 1+1 1 can be proved using the other

axioms, but applying the rule would allow us to conclude that 1 ≡ 1
(1) · 1, even though J1K = At

and J1(1) · 1K = ∅! The problem here is that, while д is tail-recursive as required by the premise,

this self-similarity is trivial because e does not represent a productive program. We thus need to

restrict the application of the inference rule to cases where the loop body is strictly productive—i.e.,

where e is guaranteed to execute some action. To this end, we define the function E as follows.
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Guarded Union Facts Guarded Iteration Facts
U3’. e +b (f +c д) ≡ (e +b f ) +b+c д (skew assoc.) W4. e(b) ≡ e(b) · b (guardedness)

U4’. e +b f ≡ e +b b f (guardedness) W4’. e(b) ≡ (be)(b) (guardedness)

U5’. b · (e +c f ) ≡ be +c b f (left distrib.) W5. e(0) ≡ 1 (neutrality)

U6. e +b 0 ≡ be (neutral right) W6. e(1) ≡ 0 (absorption)

U7. e +0 f ≡ f (trivial right) W6’. b(c) ≡ c (absorption)

U8. b · (e +b f ) ≡ be (branch selection) W7. e(c) ≡ e(bc) · e(c) (fusion)

Fig. 2. Derivable GKAT facts

Definition 3.2. The function E : Exp→ BExp is defined inductively as follows:

E(b) B b E(p) B 0 E(e +b f ) B b ·E(e)+b ·E(f ) E(e · f ) B E(e) ·E(f ) E(e(b)) B b

Intuitively, E(e) is the weakest test that guarantees that e terminates successfully, but does not

perform any action. For instance, E(p) is 0—the program p is guaranteed to perform the action p.
Using E, we can now restrict the application of the fixpoint rule to the cases where E(e) ≡ 0, i.e.,

where e performs an action under any circumstance.

Theorem 3.3 (Soundness). The GKAT axioms are sound for the language model: for all e, f ∈ Exp,

e ≡ f =⇒ JeK = Jf K.

Proof Sketch. By induction on the length of derivation of the congruence ≡. We provide the full

proof in the extended version [Smolka et al. 2019a] and show just the proof for the fixpoint rule.

Here, we should argue that if E(e) ≡ 0 and JдK = Jeд +b f K, then also JдK = Je(b) f K. We note that,

using soundness of (W1) and (U5), we can derive that Je(b) f K = J(ee(b) +b 1)f K = Jee(b) f +b f K.
We reason by induction on the length of guarded strings. In the base case, we know that α ∈ JдK

if and only if α ∈ Jeд +b f K; since E(e) ≡ 0, the latter holds precisely when α ∈ Jf K and α ≤ b,
which is equivalent to α ∈ Je(b) f K. For the inductive step, suppose the claim holds for y; then

αpy ∈ JдK
⇐⇒ αpy ∈ Jeд +b f K

⇐⇒ αpy ∈ JeдK ∧ α ≤ b or αpy ∈ Jf K ∧ α ≤ b

⇐⇒ ∃y, β . y = y1βy2 ∧ αpy1β ∈ JeK ∧ βy2 ∈ JдK ∧ α ≤ b or αpy ∈ Jf K ∧ α ≤ b (E(e) = 0)

⇐⇒ ∃y, β . y = y1βy2 ∧ αpy1β ∈ JeK ∧ βy2 ∈ Je(b) f K ∧ α ≤ b or αpy ∈ Jf K ∧ α ≤ b (IH)

⇐⇒ αpy ∈ Jee(b) f K ∧ α ≤ b or αpy ∈ Jf K ∧ α ≤ b (E(e) = 0)

⇐⇒ αpy ∈ Jee(b) f +b f K = Je(b) f K □

3.2 A Fundamental Theorem
The side condition on (W3) is inconvenient when proving facts about loops. However, it turns out

that we can transform any loop into an equivalent, productive loop—i.e., one with a loop body e
such that E(e) ≡ 0. To this end, we need a way of decomposing a GKAT expression into a guarded

sum of an expression that describes termination, and another (strictly productive) expression that

describes the next steps that the program may undertake. As a matter of fact, we already have a

handle on the former term: E(e) is a Boolean term that captures the atoms for which e may halt

immediately. It therefore remains to describe the next steps of a program.
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Definition 3.4 (Derivatives). For α ∈ At we define Dα : Exp→ 2 + Σ × Exp inductively as follows,

where 2 = {0, 1} is the two-element set:

Dα (b) =

{
1 α ≤ b

0 α ≰ b
Dα (p) = (p, 1) Dα (e +b f ) =

{
Dα (e) α ≤ b

Dα (f ) α ≤ b

Dα (e · f ) =


(p, e ′ · f ) Dα (e) = (p, e

′)

0 Dα (e) = 0

Dα (f ) Dα (e) = 1

Dα (e
(b)) =


(p, e ′ · e(b)) α ≤ b ∧ Dα (e) = (p, e

′)

0 α ≤ b ∧ Dα (e) ∈ 2

1 α ≤ b

We will use a general type of guarded union to sum over an atom-indexed set of expressions.

Definition 3.5. Let Φ ⊆ At, and let {eα }α ∈Φ be a set of expressions indexed by Φ. We write

+
α ∈Φ

eα =


eβ +β

(
+

α ∈Φ\{β }
eα

)
β ∈ Φ

0 Φ = ∅

Like other operators on indexed sets, we may abuse notation and replace Φ by a predicate over

some atom α , with eα a function of α ; for instance, we could write+α ≤1 α ≡ 1.

Remark 3.6. The definition above is ambiguous in the choice of β . However, because of skew-

commutativity (U2) and skew-associativity (U3), that does not change the meaning of the expression

as far as ≡ is concerned. For the details, see the extended version [Smolka et al. 2019a].

We are now ready to state the desired decomposition of terms. Following [Rutten 2000; Silva

2010], we call this the fundamental theorem of GKAT, in reference to the strong analogy with the

fundamental theorem of calculus, as explained in [Rutten 2000; Silva 2010]. The proof is included

in the extended version [Smolka et al. 2019a].

Theorem 3.7 (Fundamental Theorem). For all GKAT programs e , the following equality holds:

e ≡ 1 +E(e) D(e), where D(e) B +
α : Dα (e)=(pα ,eα )

pα · eα . (1)

The following observations about D and E are also useful.

Lemma 3.8. Let e ∈ Exp; its components E(e) and D(e) satisfy the following identities:

E(D(e)) ≡ 0 E(e) · D(e) ≡ D(e) E(e) · e ≡ D(e)

Using the fundamental theorem and the above, we can now show how to syntactically transform

any loop into an equivalent loop whose body e is strictly productive.

Lemma 3.9 (Productive Loop). Let e ∈ Exp and b ∈ BExp. We have e(b) ≡ D(e)(b).

Proof. Using Lemma 3.8, we derive as follows:

e(b)
FT

≡ (1 +E(e) D(e))
(b) U2≡ (D(e) +E(e) 1)

(b) W2

≡ (E(e)D(e))
(b)
≡ D(e)(b) □

3.3 Derivable Facts
The GKAT axioms can be used to derive other natural equivalences of programs, such as the ones

in Figure 2. For instance, e(b) ≡ e(b)b, labelled (W4), says that b must be false when e(b) ends.

Lemma 3.10. The facts in Figure 2 are derivable from the axioms.
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Proof Sketch. Let us start by showing (U6).

e +b 0 ≡ be +b 0 (U4. e +b f ≡ be +b f )

≡ 0 +b be (U2. e +b f ≡ f +b e)

≡ bbe +b be (Boolean algebra and S2. 0 ≡ 0e)

≡ be +b be (U4. e +b f ≡ be +b f )

≡ be (U1. e +b e ≡ e)

To prove (W7), we use the productive loop lemma and the fixpoint axiom (W3).

e(c) ≡ e(c) +bc e
(c)

(U1. e +b e ≡ e)

≡ (D(e))(c) +bc e
(c)

(Productive loop lemma)

≡ (D(e)D(e)(c) +c 1) +bc e
(c)

(W1. e(b) ≡ ee(b) +b 1)

≡ c · (D(e)D(e)(c) +c 1) +bc e
(c)

(U4 and Boolean algebra)

≡ c · D(e)D(e)(c) +bc e
(c)

(U8. b · (e +b f ) ≡ be)

≡ D(e)D(e)(c) +bc e
(c)

(U4 and Boolean algebra)

≡ D(e)e(c) +bc e
(c)

(Productive loop lemma)

≡ D(e)(bc)e(c) (W3)

≡ e(bc)e(c) (Productive loop lemma)

The remaining proofs appear in the extended version [Smolka et al. 2019a]. □

We conclude our presentation of derivable facts by showing one more interesting fact. Unlike

the derived facts above, this one is an implication: if the test c is invariant for the program e given
that a test b succeeds, then c is preserved by a b-loop on e .

Lemma 3.11 (Invariance). Let e ∈ Exp and b, c ∈ BExp. If cbe ≡ cbec , then ce(b) ≡ (ce)(b)c .

Proof. We first derive a useful equivalence, as follows:

cb · D(e) ≡ cb · E(e) · e (Lemma 3.8)

≡ E(e) · cbe (Boolean algebra)

≡ E(e) · cbec (premise)

≡ cb · E(e) · ec (Boolean algebra)

≡ cb · D(e) · c (Lemma 3.8)

Next, we show the main claim by deriving

ce(b) ≡ c · D(e)(b) (Productive loop lemma)

≡ c · (D(e) · D(e)(b) +b 1) (W1)

≡ c · (D(e) · e(b) +b 1) (Productive loop lemma)

≡ c · (b · D(e) · e(b) +b 1) (U2)

≡ cb · D(e) · e(b) +b c (U5’)

≡ cb · D(e) · ce(b) +b c (above derivation)
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≡ c · D(e) · ce(b) +b c (U2)

≡ (c · D(e))(b)c (W3)

≡ D(ce)(b)c (Def. D, Boolean algebra)

≡ (ce)(b)c (Productive loop lemma)

This completes the proof. □

3.4 A Limited Form of Completeness
Above, we considered a number of axioms that were proven sound with respect to the language

model. Ultimately, we would like to show the converse, i.e., that these axioms are sufficient to prove

all equivalences between programs, meaning that whenever JeK = Jf K, it also holds that e ≡ f .
We return to this general form of completeness in Section 6, when we can rely on the coalgebraic

theory of GKAT developed in Sections 4 and 5. At this point, however, we can already prove a

special case of completeness related to Hoare triples. Suppose e is a GKAT program, and b and c
are Boolean expressions encoding pre- and postconditions. The equation JbeK = JbecK states that
every finite, terminating run of e starting from a state satisfying b concludes in a state satisfying c .
The following states that all valid Hoare triples of this kind can be established axiomatically:

Theorem 3.12 (Hoare completeness). Let e ∈ Exp, b, c ∈ BExp. If JbecK = JbeK, then bec ≡ be .

Proof Sketch. By induction on e . We show only the case for while loops and defer the full proof

to the extended version [Smolka et al. 2019a].

If e = e(d )
0

, first note that if b ≡ 0, then the claim follows trivially. For b . 0, let

h =
∑
{α ∈ At : ∃n.JbK ⋄ Jde0Kn ⋄ JαK , ∅}.

We make the following observations.

(i) Since b . 0, we have that JbK ⋄ Jde0K0 ⋄ JbK = JbK , ∅, and thus b ≤ h.

(ii) If α ≤ hd , then in particular γwα ∈ JbK ⋄ Jde0Kn ⋄ JαK for some n and γw . Since α ≤ d , it

follows that γwα ∈ Jbe(d )
0

K = Jbe(d )
0
cK, and thus α ≤ c . Consequently, hd ≤ c .

(iii) If αwβ ∈ Jdhe0K, then α ≤ h and hence there exists an n such that γxα ∈ JbK ⋄ Jde0Kn ⋄ JβK.
But then γxαwβ ∈ JbK ⋄ Jde0Kn+1 ⋄ JβK, and therefore β ≤ h. We can conclude that

Jdhe0K = Jdhe0hK; by induction, it follows that dhe0h ≡ dhe0.

Using these observations and the invariance lemma (Lemma 3.11), we derive

be(d )
0
c ≡ bhe(d )

0
c (By (i))

≡ b · (he0)
(d )hc (Invariance and (iii))

≡ b · (he0)
(d )dhc (W4)

≡ b · (he0)
(d )dh (By (ii))

≡ b · (he0)
(d )h (W4)

≡ bhe0
(d )

(Invariance and (iii))

≡ be0
(d )

(By (i))

This completes the proof. □

As a special case, the fact that a program has no traces at all can be shown axiomatically.

Corollary 3.13 (Partial Completeness). If JeK = ∅, then e ≡ 0.
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s1 s2 s3

α

β/p c/q

Fig. 3. Graphical depiction of a G-coalgebra ⟨X , δX⟩. States are represented by dots, labeled with the name
of that state whenever relevant. In this example, δX(s1)(α) = 1, and δX(s1)(β) = (p, s2). When γ ∈ At such
that δX(s)(γ ) = 0, we draw no edge at all. We may abbreviate drawings by combining transitions with the
same target into a Boolean expression; for instance, when c = α + β , we have δX(s2)(α) = δX(s2)(β) = (q, s3).

Proof. We have J1 · eK = JeK = ∅ = J1 · e · 0K, and thus e ≡ 1 · e ≡ 1 · e · 0 ≡ 0 by Theorem 3.12. □

We will return to deriving a general completeness result in Section 6. This will rely on the

coalgebraic theory of GKAT, which we develop next (Sections 4 and 5).

4 AUTOMATON MODEL AND KLEENE THEOREM
In this section, we present an automaton model that accepts traces (i.e., guarded strings) of GKAT

programs. We then present language-preserving constructions from GKAT expressions to automata,

and conversely, from automata to expressions. Our automaton model is rich enough to express

programs that go beyond GKAT; in particular, it can encode traces of programswith goto statements

that have no equivalent GKAT program [Kozen and Tseng 2008]. In order to obtain a Kleene Theorem

for GKAT, that is, a correspondence between automata and GKAT programs, we identify conditions

ensuring that the language accepted by an automaton corresponds to a valid GKAT program.

4.1 Automata and Languages
LetG be the functorGX = (2 + Σ × X )At, where 2 = {0, 1} is the two-element set. AG-coalgebra is a
pair X = ⟨X , δX⟩ with state space X and transition map δX : X → GX . The outcomes 1 and 0model

immediate acceptance and rejection, respectively. From each state s ∈ X , given an input α ∈ At,
the coalgebra performs exactly one of three possible actions: it either produces an output p ∈ Σ
and moves to a new state t , halts and accepts, or halts and rejects; that is, either δX(s)(α) = (p, t),
or δX(s)(α) = 1, or δX(s)(α) = 0.

A G-automaton is a G-coalgebra with a designated start state ι, commonly denoted as a triple

X = ⟨X , δX, ι⟩. We can represent G-coalgebras graphically as in Figure 3.

AG-coalgebraX = ⟨X , δX⟩ can be viewed both as an acceptor of finite guarded strings GS = At ·
(Σ · At)∗, or as an acceptor of finite and infinite guarded stringsGS∪ω-GS, whereω-GS B (At · Σ)ω .
Acceptance for a state s is captured by the following equivalences:

accept(s,α) ⇐⇒ δX(s)(α) = 1

accept(s,αpx) ⇐⇒ ∃t . δX(s)(α) = (p, t) ∧ accept(t, x)
(2)

The language of finite guarded strings ℓX(s) ⊆ GS accepted from state s ∈ X is the least fixpoint

solution of the above system; in other words, we interpret (2) inductively. The language of finite

and infinite guarded strings LX(s) ⊆ GS ∪ ω-GS accepted from state s is the greatest fixpoint

solution of the above system; in other words, we interpret (2) coinductively.
3
The two languages are

related by the equation ℓX(s) = LX(s) ∩GS. Our focus will mostly be on the finite-string semantics,

ℓX(−) : X → 2
GS
, since GKAT expressions denote finite-string languages, J−K : Exp→ 2

GS
.

3
The set F of maps F : X → 2

GS∪ω -GS
ordered pointwise by subset inclusion forms a complete lattice. The monotone map

τ : F → F, τ (F ) = λs ∈ X . {α ∈ At | δX(s)(α ) = 1} ∪ {apx | ∃t . δX(s)(α ) = (p, t ) ∧ x ∈ F (t )}

arising from (2) has least and greatest fixpoints, ℓX and LX , by the Knaster-Tarksi theorem.
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e Xe δe ∈ Xe → GXe ιe (α) ∈ 2 + Σ × Xe

b ∅ ∅ [α ≤ b]

p {∗} ∗ 7→ 1 (p, ∗)

f +b д Xf + Xд δf + δд

{
ιf (α) α ≤ b

ιд(α) α ≤ b

f · д Xf + Xд (δf + δд)[Xf , ιд]

{
ιf (α) ιf (α) , 1

ιд(α) ιf (α) = 1

f (b) Xf δf [Xf , ιe ]


1 α ≤ b

0 α ≤ b, ιf (α) = 1

ιf (α) α ≤ b, ιf (α) , 1

Fig. 4. Construction of the Thompson coalgebra Xe = ⟨Xe , δe ⟩ with initial pseudostate ιe .

The language accepted by a G-automaton X = ⟨X , δX , ι⟩ is the language accepted by its initial

state ι. Just like the language model for GKAT programs, the language semantics of aG-automaton

satisfies the determinacy property (see Definition 2.2). In fact, every language that satisfies the

determinacy property can be recognized by aG-automaton, possibly with infinitely many states.

(We will prove this formally in Theorem 5.8.)

4.2 Expressions to Automata: a Thompson Construction
We translate expressions to G-coalgebras using a construction reminiscent of Thompson’s con-

struction for regular expressions [Thompson 1968], where automata are formed by induction on

the structure of the expressions and combined to reflect the various GKAT operations.

We first set some notation. A pseudostate is an element h ∈ GX . We let 1 ∈ GX denote the

pseudostate 1(α) = 1, i.e., the constant function returning 1. Let X = ⟨X , δ⟩ be a G-coalgebra. The
uniform continuation of Y ⊆ X by h ∈ GX (in X) is the coalgebra X[Y ,h] B ⟨X , δ [Y ,h]⟩, where

δ [Y ,h](x)(α) B

{
h(α) if x ∈ Y , δ (x)(α) = 1

δ (x)(α) otherwise.

Intuitively, uniform continuation replaces termination of states in a region Y of X by a transition

described by h ∈ GX ; this construction will be useful for modeling operations that perform

some kind of sequencing. Figure 5 schematically describes the uniform continuation operation,

illustrating different changes to the automaton that can occur as a result; observe that since h may

have transitions into Y , uniform continuation can introduce loops.

We will also need coproducts to combine coalgebras. Intuitively, the coproduct of two coalgebras

is just the juxtaposition of both coalgebras. Formally, for X = ⟨X , δ1⟩ and Y = ⟨Y , δ2⟩, we write
the coproduct as X + Y = ⟨X + Y , δ1 + δ2⟩, where X + Y is the disjoint union of X and Y , and
δ1 + δ2 : X + Y → G(X + Y ) is the map that applies δ1 to states in X and δ2 to states in Y .

Figure 4 presents our translation from expressions e to coalgebras Xe using coproducts and

uniform continuations, and Figure 6 sketches the transformations used to construct the automaton

of a term from its subterms. We model initial states as pseudostates, rather than proper states.

This trick avoids the ε-transitions that appear in the classical Thompson construction and yields

compact, linear-size automata. Figure 7 depicts some examples of our construction.
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Y

α β γ

β

β/q γ/p

β/p

h

γ/p

β/q

α

Fig. 5. Schematic explanation of the uniform continuation X[Y ,h] of X, where Y ⊆ X and h ∈ GX . The
pseudostate h and its transitions are drawn in blue. Transitions present in X unchanged by the extension are
drawn in black; grayed out transitions are replaced by transitions drawn in red as a result of the extension.

Xf Xд

ιf

α
/
p

β
/q

γ

β

ιд

α
/
r

β
/
s

η

α

ιe

α
/p

β
/s

γ , η

(a) e = f +b д, with α,γ ≤ b and β,η ≤ b.

Xf Xд

ιf

α
/p

γ , η

β

ιд

β
/
r

γ
/
s

η

α

ιe

α
/p

γ
/s

η

β/r

(b) e = f · д

Xf

ιf

β
/
p

γ

β

ιe

β
/p

α

β/p

α/q

(c) e = f (b), with β,γ ≤ b and α ≤ b

Fig. 6. Schematic depiction of the Thompson construction for guarded union, sequencing and guarded loop
operators. The initial psuedostates of the automata for f and д are depicted in gray. Transitions in red are
present in the automata for f and д, but overridden by a uniform extension with the transitions in blue.

To turn the resulting coalgebra into an automaton, we simply convert the initial pseudostate into

a proper state. Formally, when Xe = ⟨Xe , δe ⟩, we write X
ι
e for the G-automaton ⟨{ι} + Xe , δ

ι
e , ι⟩,

where for x ∈ Xe , we set δ
ι
e (x) = δe (x) as well as δ

ι
e (ι) = ιe . We call Xe and Xι

e the Thompson

coalgebra and Thompson automaton for e , respectively.
The construction translates expressions to equivalent automata in the following sense:

Theorem 4.1 (Correctness I). The Thompson automaton for e recognizes JeK, that is ℓXιe (ι) = JeK.

Proof Sketch. This is a direct corollary of Proposition 4.5 and Theorem 4.8, to follow. □

Moreover, the construction is efficiently implementable and yields small automata:

Proposition 4.2. The Thompson automaton for e is effectively constructible in time O(|e |) and has
#Σ(e) + 1 (thus, O(|e |)) states, where |At| is considered a constant for the time complexity claim, |e |
denotes the size of the expression, and #Σ(e) denotes the number of occurrences of actions in e .

4.3 Automata to Expressions: Solving Linear Systems
The previous construction shows that every GKAT expression can be translated to an equivalent G-

automaton. In this section we consider the reverse direction, from G-automata to GKAT expressions.
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ιe ∗p

b/p

b b

b/p

(a) e = while b do p

ιf

∗q ∗r

c/
q c/r

1 1

(b) f = if c then q else r

ιд ∗p

∗q ∗r

b/p
b/p

bc/q bc/r

bc/r

bc
/q

1 1

(c) д = e · f

Fig. 7. Concrete construction of an automaton using the Thompson construction. First, we construct an
automaton for e , then an automaton for f , and finally we combine these into an automaton for д. In these
examples, p,q, r are single action letters, not arbitrary expressions.

The main idea is to interpret the coalgebra structure as a system of equations, with one variable

and equation per state, and show that there are GKAT expressions solving the system, modulo

equivalence; this idea goes back to Conway [1971] and Backhouse [1975]. Not all systems arising

fromG-coalgebras have a solution, and so not all G-coalgebras can be captured by GKAT expressions.

However, we identify a subclass of G-coalgebras that can be represented as GKAT terms. By showing

that this class contains the coalgebras produced by our expressions-to-automata translation, we

obtain an equivalence between GKAT expressions and coalgebras in this class.

We start by defining when a map assigning expressions to coalgebra states is a solution.

Definition 4.3 (Solution). Let X = ⟨X , δX⟩ be a G-coalgebra. We say that s : X → Exp is a solution

to X if for all x ∈ X it holds that

s(x) ≡ +
α ≤1
⌊δX(x)(α)⌋s where ⌊0⌋s B 0 ⌊1⌋s B 1 ⌊⟨p, x⟩⌋s B p · s(x)

Example 4.4. Consider the Thompson automata in Figure 7.

(a) Solving the first automaton requires, by Definition 4.3, finding an expression se (∗p ) such that

se (∗p ) ≡ p · se (∗p ) +b 1. By (W1), we know that se (∗p ) = p(b) is valid; in fact, (W3) tells us

that this choice of x is the only valid solution up to GKAT-equivalence. If we include ιe as a
state, we can choose se (ιe ) = p

(b)
as well.

(b) The second automaton has an easy solution: both ∗q and ∗r are solved by setting sf (∗q) =
sf (∗r ) = 1. If we include ιf as a state, we can choose sf (ιf ) = q · sf (∗q) +b r · sf (∗r ) ≡ q +b r .

(c) The third automaton was constructed from the first two; similarly, we can construct its

solution from the solutions to the first two. We set sд(∗p ) = se (∗p ) ·sf (ιf ), and sд(∗q) = sf (∗q),
and sд(∗r ) = sf (∗r ). If we include ιд as a state, we can choose sд(ιд) = se (ιe ) · sf (ιf ).

Solutions are language-preserving maps from states to expressions in the following sense:

Proposition 4.5. If s solves X and x is a state, then Js(x)K = ℓX(x).

Proof Sketch. Show thatw ∈ Js(x)K⇔ w ∈ ℓX(x) by induction on the length ofw ∈ GS. □

We would like to build solutions for G-coalgebras, but Kozen and Tseng [2008] showed that

this is not possible in general: there is a 3-state G-coalgebra that does not correspond to any

while program, but instead can only be modeled by a program with multi-level breaks. In order

to obtain an exact correspondence to GKAT programs, we first identify a sufficient condition for

G-coalgebras to permit solutions, and then show that the Thompson coalgebra defined previously

meets this condition.
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Definition 4.6 (Well-nested Coalgebra). Let X = ⟨X , δX⟩ and Y = ⟨Y , δY⟩ range over G-coalgebras.
The collection of well-nested coalgebras is inductively defined as follows:

(i) If X has no transitions, i.e., if δX ∈ X → 2
At
, then X is well-nested.

(ii) If X and Y are well-nested and h ∈ G(X + Y ), then (X +Y)[X ,h] is well-nested.

We are now ready to construct solutions to well-nested coalgebras.

Theorem 4.7 (Existence of Solutions). Any well-nested coalgebra admits a solution.

Proof Sketch. Assume X is well-nested. We proceed by rule induction on the well-nestedness

derivation.

(i) Suppose δX : X → 2
At
. Then

sX(x) B
∑
{α ∈ At | δX(x)(α) = 1}

is a solution to X.

(ii) LetY = ⟨Y , δY⟩ andZ = ⟨Z , δZ⟩ be well-nestedG-coalgebras, and let h ∈ G(Y +Z ) be such
that X = (Y +Z)[Y ,h]. By induction, Y andZ admit solutions sY and sZ respectively; we

need to find a solution sX to X = Y + Z . The idea is to retain the solution that we had for

states inZ—whose behavior has not changed under uniform continuation—while modifying

the solution to states in Y in order to account for transitions from h. To this end, we choose

the following expressions:

b B
∑
{α ∈ At | h(α) ∈ Σ × X } ℓ B

(
+
α ≤b
⌊h(α)⌋sY

) (b)
· +
α ≤b
⌊h(α)⌋sZ

We can then define s by setting s(x) = sY(x) · ℓ for x ∈ Y , and s(x) = sZ(x) for x ∈ Z . A
detailed argument showing that s is a solution can be found in the extended version of the

paper [Smolka et al. 2019a]. □

As it turns out, we can do a round-trip, showing that the solution to the (initial state of the)

Thompson automaton for an expression is equivalent to the original expression.

Theorem 4.8 (Correctness II). Let e ∈ Exp. Then Xι
e admits a solution s such that e ≡ s(ι).

Finally, we show that the automata construction of the previous section gives well-nested automata.

Theorem 4.9 (well-nestedness of Thompson construction). Xe and X
ι
e are well-nested for all

expressions e .

Proof. We proceed by induction on e . In the base, letZ = ⟨∅,∅⟩ and I = ⟨{∗}, ∗ 7→ 1⟩ denote
the coalgebras with no states and with a single all-accepting state, respectively. Note thatZ and I

are well-nested, and that for b ∈ BExp and p ∈ Σ we have Xb = Z and Xp = I.

All of the operations used to build Xe , as detailed in Figure 4, can be phrased in terms of

an appropriate uniform continuation of a coproduct; for instance, when e = f (b) we have that
Xe = (Xf + I)[Xf , ιe ]. Consequently, the Thompson automaton Xe is well-nested by construction.

Finally, observe that Xι
e = (I + Xe )[{∗}, ιe ]; hence, X

ι
e is well-nested as well. □

Theorems 4.1, 4.7 and 4.9 now give us the desired Kleene theorem.

Corollary 4.10 (Kleene Theorem). Let L ⊆ GS. The following are equivalent:

(1) L = JeK for a GKAT expression e .
(2) L = ℓX(ι) for a well-nested, finite-state G-automaton X with initial state ι.
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5 DECISION PROCEDURE
We saw in the last section that GKAT expressions can be efficiently converted to equivalent automata

with a linear number of states. Equivalence of automata can be established algorithmically, sup-

porting a decision procedure for GKAT that is significantly more efficient than decision procedures

for KAT. In this section, we describe our algorithm.

First, we define bisimilarity of automata states in the usual way [Kozen and Tseng 2008].

Definition 5.1 (Bisimilarity). Let X and Y be G-coalgebras. A bisimulation between X and Y is a

binary relation R ⊆ X × Y such that if x R y, then the following implications hold:

(i) if δX(x)(α) ∈ 2, then δY(y)(α) = δX(x)(α); and
(ii) if δX(x)(α) = (p, x ′), then δY(y)(α) = (p,y ′) and x ′ R y ′ for some y ′.

States x and y are called bisimilar, denoted x ∼ y, if there exists a bisimulation relating x and y.

As usual, we would like to reduce automata equivalence to bisimilarity. It is easy to see that bisimilar

states recognize the same language.

Lemma 5.2. If X and Y are G-coalgebras with bisimilar states x ∼ y, then ℓX(x) = ℓY(y).

Proof. We verify thatw ∈ ℓX(x) ⇔ w ∈ ℓY(y) by induction on the length ofw ∈ GS:
• For α ∈ GS, we have α ∈ ℓX(x) ⇔ δX(x)(α) = 1⇔ δY(y)(α) = 1⇔ α ∈ ℓY(y).
• For αpw ∈ GS, we use bisimilarity and the induction hypothesis to derive

αpw ∈ ℓX(x) ⇐⇒ ∃x ′. δX(x)(α) = (p, x ′) ∧w ∈ ℓX(x ′)

⇐⇒ ∃y ′. δY(y)(α) = (p,y ′) ∧w ∈ ℓY(y ′) ⇐⇒ αpw ∈ ℓY(y). □

The converse direction, however, does not hold for G-coalgebras in general. To see the problem,

consider the following automaton, where α ∈ At is an atom and p ∈ Σ is an action:

s1 s2α/p

Both states recognize the empty language, that is i.e., ℓ(s1) = ℓ(s2) = ∅; but s2 rejects immediately,

whereas s1 may first take a transition. As a result, s1 and s2 are not bisimilar. Intuitively, the language

accepted by a state does not distinguish between early and late rejection, whereas bisimilarity does.

We solve this by disallowing late rejection, i.e., transitions that can never lead to an accepting state;

we call coalgebras that respect this restriction normal.

5.1 Normal Coalgebras
We classify states and coalgebras as follows.

Definition 5.3 (Live, Dead, Normal). LetX = ⟨X , δX⟩ denote aG-coalgebra. A state s ∈ X is accepting

if δX(s)(α) = 1 for some α ∈ At. A state is live if it can transition to an accepting state one or more

steps, or dead otherwise. A coalgebra is normal if it has no transitions to dead states.

Remark 5.4. Note that, equivalently, a state is live iff ℓX(s) , ∅ and dead iff ℓX(s) = ∅. Dead states

can exist in a normal coalgebra, but they must immediately reject all α ∈ At, since any successor of

a dead state would also be dead.

Example 5.5. Consider the following automaton.

ι s1 s2s3 α/pβ/p α/q

α/qα/q

β
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The state s3 is accepting. The states ι and s3 are live, since they can reach an accepting state. The

states s1 and s2 are dead, since they can only reach non-accepting states. The automaton is not

normal, since it contains the transitions ι
α/p
−−−→ s1, s1

α/q
−−−→ s2, and s2

α/q
−−−→ s2 to dead states s1 and s2.

We can normalize the automaton by removing these transitions:

ι s1 s2s3 β/p

α/q

β

The resulting automaton is normal: the dead states s1 and s2 reject all α ∈ At immediately. □

The example shows how G-coalgebra can be normalized. Formally, let X = ⟨X , δ⟩ denote a

coalgebra with dead states D ⊆ X . We define the normalized coalgebra X̂ B ⟨X , δ̂⟩ as follows:

δ̂ (s)(α) B

{
0 if δ (s)(α) ∈ Σ × D

δ (s)(α) otherwise.

Lemma 5.6 (Correctness of normalization). Let X be a G-coalgebra. Then the following holds:

(i) X and X̂ have the same solutions: that is, s : X → Exp solves X if and only if s solves X̂; and

(ii) X and X̂ accept the same languages: that is, ℓX = ℓX̂ ; and

(iii) X̂ is normal.

Proof. For the first claim, suppose s solves X. It suffices (see the extended version [Smolka et al.

2019a]) to show that for x ∈ X and α ∈ At we have α · s(x) ≡ α · ⌊δ X̂(x)(α)⌋s . We have two cases.

• If δX(x)(α) = (p, x ′) with x ′ dead, then by Proposition 4.5 we know that Js(x ′)K = ℓX(x ′) = ∅.

By Corollary 3.13, it follows that s(x ′) ≡ 0. Recalling that δ X̂(x)(α) = 0 by construction,

α · s(x) ≡ α · ⌊δX(x)(α)⌋s ≡ α · p · s(x ′) ≡ α · 0 ≡ α · ⌊δ X̂(x)(α)⌋s

• Otherwise, we know that δ X̂(x)(α) = δX(x)(α), and thus

α · s(x) ≡ α · ⌊δX(x)(α)⌋s ≡ α · ⌊δ X̂(x)(α)⌋s

The other direction of the first claim can be shown analogously.

For the second claim, we can establish x ∈ ℓX(s) ⇔ x ∈ ℓX̂(s) for all states s by a straightforward
induction on the length of x ∈ GS, using that dead states accept the empty language.

For the third claim, we note that the dead states of X and X̂ coincide by claim two; thus X̂ has

no transition to dead states by construction. □

5.2 Bisimilarity for Normal Coalgebras
We would like to show that, for normal coalgebras, states are bisimilar if and only if they accept

the same language. This will allow us to reduce language-equivalence to bisimilarity, which is easy

to establish algorithmically. We need to take a slight detour.

Recall the determinacy property satisfied by GKAT languages (Definition 2.2): a language L ⊆ GS
is deterministic if, whenever strings x,y ∈ L agree on the first n atoms, they also agree on the first n
actions (or absence thereof). Now, let L ⊆ 2

GS
denote the set of deterministic languages. L carries
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a coalgebra structure ⟨L, δ L⟩ whose transition map δ L is the semantic Brzozowski derivative:

δ L(L)(α) B


(p, {x ∈ GS | αpx ∈ L}) if {x ∈ GS | αpx ∈ L} , ∅
1 if α ∈ L

0 otherwise.

Note that the map is well-defined by determinacy: precisely one of the three cases holds.

Next, we define structure-preserving maps between G-coalgebras in the usual way:

Definition 5.7 (Homomorphism). A homomorphism between G-coalgebrasX andY is a maph : X →
Y from states of X to states of Y that respects the transition structures in the following sense:

δY(h(x)) = (Gh)(δX(x)).

More concretely, for all α ∈ At, p ∈ Σ, and x, x ′ ∈ X ,

(i) if δX(x)(α) ∈ 2, then δY(h(x))(α) = δX (x)(α); and
(ii) if δX(x)(α) = (p, x ′), then δY(h(x))(α) = (p,h(x ′)). □

We can now show that the acceptance map ℓX : X → 2
GS

is structure-preserving in the above sense.

Moreover, it is the only structure-preserving map from states to deterministic languages:

Theorem 5.8. If X is normal, then ℓX : X → 2
GS

is the unique homomorphism X → L.

Since the identity function is trivially a homomorphism, Theorem 5.8 implies that ℓL is the identity.

That is, in the G-coalgebra L, the state L ∈ L accepts the language L! This proves that every
deterministic language is recognized by a G-coalgebra, possibly with an infinite number of states.

Theorem 5.8 says that L is final for normal G-coalgebras. The desired connection between

bisimilarity and language-equivalence is then a standard corollary [Rutten 2000]:

Corollary 5.9. Let X and Y be normal with states s and t . Then s ∼ t if and only if ℓX(s) = ℓY(t).

Proof. The implication from left to right is Lemma 5.2. For the other implication, we observe

that the relation R B {(s, t) ∈ X × Y | ℓX(s) = ℓY(t)} is a bisimulation, using that ℓX and ℓY are

homomorphisms by Theorem 5.8:

• Suppose s R t and δX(s)(α) ∈ 2. Then δX(s)(α) = δ L(ℓX(s))(α) = δ L(ℓY(t))(α) = δY(t)(α).
• Suppose s R t and δX(s)(α) = (p, s ′). Then δ L(ℓY(t))(α) = δ L(ℓX(s))(α) = (p, ℓX(s ′)).
This implies that δY(t)(α) = (p, t ′) for some t ′, using that ℓY is a homomorphism. Hence

(p, ℓY(t ′)) = δ L(ℓY(t))(α) = (p, ℓX(s ′))

by the above equation, which implies s ′ R t ′ as required. □

We prove a stronger version of this result in the extended version of this paper [Smolka et al. 2019a].

5.3 Deciding Equivalence
We now have all the ingredients required for deciding efficiently whether two expressions are

equivalent. Given two expressions e1 and e2, the algorithm proceeds as follows:

(1) Convert e1 and e2 to equivalent Thompson automata X1 and X2;

(2) Normalize the automata, obtaining X̂1 and X̂2;

(3) Check bisimilarity of the start states ι1 and ι2 using Hopcroft-Karp (see Algorithm 1);

(4) Return true if ι1 ∼ ι2, otherwise return false.

Theorem 5.10. The above algorithm decides whether Je1K = Je2K in time O(n · α(n)) for |At| constant,
where α denotes the inverse Ackermann function and n = |e1 | + |e2 |.
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Algorithm 1: Hopcroft and Karp’s algorithm [Hopcroft and Karp 1971], adapted to G-
automata.

Input: G-automata X = ⟨X , δX, ιX⟩ and Y = ⟨Y , δY, ιY⟩, finite and normal; X , Y disjoint.

Output: true if X and Y are equivalent, false otherwise.

1 todo← Queue.singleton(ιX, ιY ); // state pairs that need to be checked

2 forest← UnionFind.disjointForest(X ⊎ Y );

3 while not todo.isEmpty() do
4 x,y ← todo.pop();

5 rx , ry ← forest.find(x ), forest.find(y);

6 if rx = ry then continue; // safe to assume bisimilar

7 for α ∈ At do // check Definition 5.1
8 switch δX(x)(α), δY(y)(α) do
9 case b1,b2 with b1 = b2 do // case (i) of Definition 5.1
10 continue
11 case (p, x ′), (p,y ′) do // case (ii) of Definition 5.1
12 todo.push(x ′,y ′)

13 otherwise do return false; // not bisimilar

14 end
15 end
16 forest.union(rx , ry ); // mark as bisimilar

17 end
18 return true;

Proof. The algorithm is correct by Theorem 4.1, Lemma 5.6, and Corollary 5.9:

Je1K = Je2K ⇐⇒ ℓX1 (ι1) = ℓ
X2 (ι2) ⇐⇒ ℓX̂1 (ι1) = ℓ

X̂2 (ι2) ⇐⇒ ι1 ∼ ι2

For the complexity claim, we analyze the running time of steps (1)–(3) of the algorithm:

(1) Recall by Proposition 4.2 that the Thompson construction converts ei to an automaton with

O(|ei |) states in time O(|ei |). Hence this step takes time O(n).
(2) Normalizing Xi amounts to computing its dead states. This requires time O(|ei |) using a

breadth-first traversal as follows (since there are at most |At| ∈ O(1) transitions per state).
We find all states that can reach an accepting state by first marking all accepting states, and

then performing a reverse breadth-first search rooted at the accepting states. All marked

states are then live; all unmarked states are dead.

(3) Since X̂i has O(|ei |) states and there are at most |At| ∈ O(1) transitions per state, Hopcroft-
Karp requires time O(n · α(n)) by a classic result due to Tarjan [1975]. □

Theorem 5.10 establishes a stark complexity gap with KAT, where the same decision problem is

PSPACE-complete [Cohen et al. 1996] even for a constant number of atoms. Intuitively, the gap

arises because GKAT expressions can be translated to linear-size deterministic automata, whereas

KAT expressions may require exponential-size deterministic automata.

A shortcoming of Algorithm 1 is that it may scale poorly if the number of atoms |At| is large. It is
worth noting that there are symbolic variants [Pous 2015] of the algorithm that avoid enumerating

At explicitly (cf. Line 7 of Algorithm 1), and can often scale to very large alphabets in practice. As a

concrete example, a version of GKAT specialized to probabilistic network verification was recently
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shown [Smolka et al. 2019b] to scale to data-center networks with thousands of switches. In the

worst case, however, we have the following hardness result:

Proposition 5.11. If |At| is not a constant, GKAT equivalence is co-NP-hard, but in PSPACE.

Proof. For the hardness result, we observe that Boolean unsatisfiability reduces to GKAT equiv-

alence: b ∈ BExp is unsatisfiable, interpreting the primitive tests as variables, iff JbK = ∅. The

PSPACE upper bound is inherited from KAT by Remark 2.1. □

6 COMPLETENESS FOR THE LANGUAGE MODEL
In Section 3 we presented an axiomatization that is sound with respect to the language model, and

put forward the conjecture that it is also complete. We have already proven a partial completeness

result (Corollary 3.13). In this section, we return to this matter and show we can prove completeness

with a generalized version of (W3).

6.1 Systems of Left-affine Equations
A system of left-affine equations (or simply, a system) is a finite set of equations of the form

x1 = e11x1 +b11 · · · +b1(n−1) e1nxn +b1n d1
... (3)

xn = en1x1 +bn1 · · · +bn(n−1) ennxn +bnn dn

where +b associates to the right, the xi are variables, the ei j are GKAT expressions, and the bi j and
di are Boolean guards satisfying the following row-wise disjointness property for row 1 ≤ i ≤ n:

• for all j , k , the guards bi j and bik are disjoint: bi j · bik ≡BA 0; and

• for all 1 ≤ j ≤ n, the guards bi j and di are disjoint: bi j · di ≡BA 0.

Note that by the disjointness property, the ordering of the summands is irrelevant: the system

is invariant (up to ≡) under column permutations. A solution to such a system is a function

s : {x1, . . . ,xn} → Exp assigning expressions to variables such that, for row 1 ≤ i ≤ n:

s(xi ) ≡ ei1 · s(x1) +bi1 · · · +bi (n−1) ein · s(xn) +bin di

Note that any finite G-coalgebra gives rise to a system where each variable represents a state,

and the equations define what it means to be a solution to the coalgebra (c.f. Definition 4.3); indeed,

a solution to a G-coalgebra is precisely a solution to its corresponding system of equations, and

vice versa. In particular, for a coalgebra X with states x1 to xn , the parameters for equation i are:

bi j =
∑
{α ∈ At | δX(xi )(α) ∈ Σ × {x j }}

di =
∑
{α ∈ At | δX(xi )(α) = 1} ei j = +

α : δX (xi )(α )=(pα ,x j )
pα

Systems arising from G-coalgebras have a useful property: for all ei j , it holds that E(ei j ) ≡ 0.

This property is analogous to the empty word property in Salomaa’s axiomatization of regular

languages [Salomaa 1966]; we call such systems Salomaa.

To obtain a general completeness result beyond Section 3.4, we assume an additional axiom:

Uniqueness axiom. Any system of left-affine equations that is Salomaa has at most

one solution, modulo ≡. More precisely, whenever s and s ′ are solutions to a Salomaa

system, it holds that s(xi ) ≡ s
′(xi ) for all 1 ≤ i ≤ n.
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Remark 6.1. We do not assume that a solution always exists, but only that if it does, then it is

unique up to ≡. It would be unsound to assume that all such systems have solutions; the following

automaton and its system, due to [Kozen and Tseng 2008], constitutes a counterexample:

x1

x2

x0

α0 + α3 α1 + α3

α2 + α3

α1/p01

α
2 /p

0
2

α0/p10

α 2
/p
1
2

α 1
/p
2
1

α
0 /p

2
0

x0 ≡ p01x1 +α1
p02x2 +α2

(α0 + α3)
x1 ≡ p10x0 +α0

p12x2 +α2
(α1 + α3)

x2 ≡ p20x0 +α1
p21x1 +α0

(α2 + α3)

As shown in [Kozen and Tseng 2008], no corresponding while program exists for this system.

When n = 1, a system is a single equation of the form x = ex +b d . In this case, (W1) tells us that

a solution does exist, namely e(b)d , and (W3) says that this solution is unique up to ≡ under the

proviso E(e) ≡ 0. In this sense, we can regard the uniqueness axiom as a generalization of (W3) to

systems with multiple variables.

Theorem 6.2. The uniqueness axiom is sound in the model of guarded strings: given a system of

left-affine equations as in (3) that is Salomaa, there exists at most one R : {x1, . . . , xn} → 2
GS

s.t.

R(xi ) =

( ⋃
1≤j≤n

Jbi jK ⋄ Jei jK ⋄ R(x j )

)
∪ JdiK

Proof Sketch. We recast this system as a matrix-vector equation of the form x = Mx + D in the

KAT of n-by-n matrices over 2
GS
; solutions to x in this equation are in one-to-one correspondence

with functions R as above. We then show that the map σ (x) = Mx + D on the set of n-dimensional

vectors over 2
GS

is contractive in a certain metric, and therefore has a unique fixpoint by the Banach

fixpoint theorem; hence, there can be at most one solution x . □

6.2 General Completeness
Using the generalized version of the fixpoint axiom, we can now establish completeness.

Theorem 6.3 (Completeness). The axioms are complete w.r.t. J−K: given e1, e2 ∈ Exp,

Je1K = Je2K =⇒ e1 ≡ e2.

Proof. Let X1 and X2 be the Thompson automata corresponding to e1 and e2, with initial states ι1
and ι2, respectively. Theorem 4.8 shows there are solutions s1 and s2, with s1(ι1) ≡ e1 and s2(ι2) ≡ e2;

and we know from Lemma 5.6 that s1 and s2 solve the normalized automata X̂1 and X̂2. By Lemma 5.6,

Theorem 4.1, and the premise, we derive that X̂1 and X̂2 accept the same language:

ℓX̂1 (ι1) = ℓ
X1 (ι1) = Je1K = Je2K = ℓX2 (ι2) = ℓX̂2 (ι2).

This implies, by Corollary 5.9, that there is a bisimulation R between X̂1 and X̂2 relating ι1 and ι2.
This bisimulation can be given the following transition structure,

δ R(x1, x2)(α) B


0 if δ X̂1 (x1)(α) = 0 and δ X̂2 (x2)(α) = 0

1 if δ X̂1 (x1)(α) = 1 and δ X̂2 (x2)(α) = 1

(p, (x ′
1
, x ′

2
)) if δ X̂1 (x1)(α) = (p, x

′
1
) and δ X̂2 (x2)(α) = (p, x

′
2
)
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turning R = ⟨R, δ R⟩ into a G-coalgebra; note that δ R is well-defined since R is a bisimulation.

Now, define s ′
1
, s ′

2
: R → Exp by s ′

1
(x1, x2) = s1(x1) and s

′
2
(x1, x2) = s2(x2). We claim that s ′

1
and s ′

2

are both solutions to R; to see this, note that for α ∈ At, (x1, x2) ∈ R, and i ∈ {1, 2}, we have that

α · s ′i (xi , xi ) ≡ α · si (xi ) (Def. s ′i )

≡ α · ⌊δ X̂i (xi )(α)⌋si (si solves X̂i )

≡ α · ⌊δ R(x1, x2)(α)⌋s ′i (Def. s ′i and ⌊−⌋)

Thus, s ′i is a solution (c.f. the extended proof of Lemma 5.6 [Smolka et al. 2019a]).

Since the system of left-affine equations induced by R is Salomaa, the uniqueness axiom then

tells us that s1(ι1) = s
′
1
(ι1, ι2) ≡ s

′
2
(ι1, ι2) = s2(ι2); hence, we can conclude that e1 ≡ e2. □

7 COALGEBRAIC STRUCTURE
The coalgebraic theory of GKAT is quite different from that of KA and KAT because the final

G-coalgebra, without the normality assumption from § 5.1, is not characterized by sets of finite

guarded strings. Even including infinite accepted strings is not enough, as this still cannot distinguish

between early and late rejection. It is therefore of interest to characterize the finalG-coalgebra and
determine its precise relationship to the language model. We give a brief overview of these results,

which give insight into the nature of halting versus looping and underscore the role of topology in

coequational specifications.

In the extended version of the paper [Smolka et al. 2019a] we give two characterizations of

the final G-coalgebra, one in terms of nonexpansive maps Atω → Σ∗ ∪ Σω with natural metrics

defined on both spaces and one in terms of labeled trees with nodes indexed by At+, and show their

equivalence. We also state and prove a stronger form of the bisimilarity lemma (Corollary 5.9).

We have discussed the importance of the determinacy property (Definition 2.2). In the extended

version [Smolka et al. 2019a] we identify another important property satisfied by all languages

LX(s), a certain closure property defined in terms of a natural topology onAtω . We define a language

model L ′, aG-coalgebra whose states are the subsets of GS∪ω-GS satisfying the determinacy and

closure properties and whose transition structure is the semantic Brzozowski derivative:

δ L
′

(A)(α) =


(p, {x | αpx ∈ A}) if {x | αpx ∈ A} , ∅
1 if α ∈ A

0 otherwise.

Although this looks similar to the language model L of Section 5.2, they are not the same: states of

L contain finite strings only, and L and L ′ are not isomorphic.

We show that L is identity on L ′ and that L ′ is isomorphic to a subcoalgebra of the final G-
coalgebra. It is not the final G-coalgebra, because early and late rejection are not distinguished: an

automaton could transition before rejecting or reject immediately. Hence, L : (X , δX ) → L ′ is not a
homomorphism in general. However, normality prevents this behavior, and L is a homomorphism

if (X , δX ) is normal. Thus L ′ contains the unique homomorphic image of all normal G-coalgebras.
Finally, we identify a subcoalgebra L ′′ ⊆ L ′ that is normal and final in the category of normal

G-coalgebras. The subcoalgebra L ′′ is defined topologically; roughly speaking, it consists of sets

A ⊆ GS ∪ ω-GS such that A is the topological closure of A ∩ GS. Thus L ′′ is isomorphic to the

language model L of Section 5.2: the states of L are obtained from those of L ′′ by intersecting

with GS, and the states of L ′′ are obtained from those of L by taking the topological closure. Thus

L is isomorphic to a coequationally-defined subcoalgebra of the final G-coalgebra.
We also remark thatL ′ itself is final in the category ofG-coalgebras that satisfy a weaker property

than normality, the so-called early failure property, which can also be characterized topologically.
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8 RELATEDWORK
Program schematology is one of the oldest areas of study in the mathematics of computing. It is

concerned with questions of translation and representability among and within classes of program

schemes, such as flowcharts, while programs, recursion schemes, and schemes with various data

structures such as counters, stacks, queues, and dictionaries [Garland and Luckham 1973; Ianov

1960; Luckham et al. 1970; Paterson and Hewitt 1970; Rutledge 1964; Shepherdson and Sturgis

1963]. A classical pursuit in this area was to find mechanisms to transform unstructured flowcharts

to structured form [Ashcroft and Manna 1972; Böhm and Jacopini 1966; Kosaraju 1973; Morris

et al. 1997; Oulsnam 1982; Peterson et al. 1973; Ramshaw 1988; Williams and Ossher 1978]. A

seminal result was the Böhm-Jacopini theorem [Böhm and Jacopini 1966], which established that

all flowcharts can be converted to while programs provided auxiliary variables are introduced.

Böhm and Jacopini conjectured that the use of auxiliary variables was necessary in general, and

this conjecture was confirmed independently by Ashcroft and Manna [1972] and Kosaraju [1973].

Early results in program schematology, including those of [Ashcroft and Manna 1972; Böhm and

Jacopini 1966; Kosaraju 1973], were typically formulated at the first-order uninterpreted (schematic)

level. However, many restructuring operations can be accomplished without reference to first-order

constructs. It was shown in [Kozen and Tseng 2008] that a purely propositional formulation of

the Böhm-Jacopini theorem is false: there is a three-state deterministic propositional flowchart

that is not equivalent to any propositional while program. As observed by a number of authors

(e.g. [Kosaraju 1973; Peterson et al. 1973]), while loops with multi-level breaks are sufficient to

represent all deterministic flowcharts without introducing auxiliary variables, and [Kosaraju 1973]

established a strict hierarchy based on the allowed levels of the multi-level breaks. That result was

reformulated and proved at the propositional level in [Kozen and Tseng 2008].

The notions of functions on a domain, variables ranging over that domain, and variable assign-

ment are inherent in first-order logic, but are absent at the propositional level. Moreover, many

arguments rely on combinatorial graph restructuring operations, which are difficult to formalize.

Thus the value of the propositional view is twofold: it operates at a higher level of abstraction and

brings topological and coalgebraic concepts and techniques to bear.

Propositional while programs and their encoding in terms of the regular operators goes back to

early work on Propositional Dynamic Logic [Fischer and Ladner 1979]. GKAT as an independent

system and its semantics were introduced in [Kozen 2008; Kozen and Tseng 2008] under the name

propositional while programs, although the succinct form of the program operators is new here.

Also introduced in [Kozen 2008; Kozen and Tseng 2008] were the functor G and automaton model

(Section 4), the determinacy property (Definition 2.2) (called strict determinacy there), and the

concept of normality (Section 5.1) (called liveness there). The linear construction of an automaton

from a while program was sketched in [Kozen 2008; Kozen and Tseng 2008], based on earlier results

for KAT automata [Kozen 2003], but the complexity of deciding equivalence was not addressed.

The more rigorous alternative construction given here (Section 4.2) is needed to establish well-

nestedness, thereby enabling our Kleene theorem. The existence of a complete axiomatization was

not considered in [Kozen 2008; Kozen and Tseng 2008].

Guarded strings, which form the basis of our language semantics, come from [Kaplan 1969].

The axiomatization we propose for GKAT is closely related to Salomaa’s axiomatization of regular

expressions based on unique fixed points [Salomaa 1966] and to Silva’s coalgebraic generalization

of KA [Silva 2010]. The proof technique we used for completeness is inspired by [Silva 2010].

The relational semantics is inspired by that for KAT [Kozen and Smith 1996], which goes back to

work on Dynamic Logic [Fischer and Ladner 1979]. Because the fixpoint axiom uses a non-algebraic

side condition, extra care is needed to define the relational interpretation for GKAT.
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9 CONCLUSIONS AND FUTURE DIRECTIONS
We have presented a comprehensive algebraic and coalgebraic study of GKAT, an abstract program-

ming language with uninterpreted actions. Our main contributions include: (i) a new automata

construction yielding a nearly linear time decidability result for program equivalence; (ii) a Kleene

theorem for GKAT providing an exact correspondence between programs and a well-defined class

of automata; and (iii) a set of sound and complete axioms for program equivalence.

We hope this paper is only the beginning of a long and beautiful journey into understanding the

(co)algebraic properties of efficient fragments of imperative programming languages. We briefly

discuss some limitations of our current development and our vision for future work.

As in Salomaa’s axiomatization of KA, our axiomatization is not fully algebraic: the side condition

of (W3) is only sensible for the language model. As a result, the current completeness proof does

not generalize to other natural models of interest—e.g., probabilistic or relational. To overcome this

limitation, we would like to adapt Kozen’s axiomatization of KA to GKAT by developing a natural

order for GKAT programs. In the case of KA we have e ≤ f :⇐⇒ e + f = f , but this natural order
is no longer definable in the absence of + and so we need to axiomatize e ≤ f for GKAT programs

directly. This appears to be the main missing piece to obtain an algebraic axiomatization.

On the coalgebraic side, we are interested in studying the different classes of G-coalgebras
from a coequational perspective. Normal coalgebras, for instance, form a covariety, and hence are

characterized by coequations. If well-nested G-coalgebras could be shown to form a covariety, this

would imply completeness of the axioms without the extra uniqueness axiom from Section 6.

Various extensions of KAT to reason about richer programs (KAT+B!, NetKAT, ProbNetKAT)

have been proposed, and it is natural to ask whether extending GKAT in similar directions will

yield interesting algebraic theories and decision procedures for domain-specific applications. For

instance, recent work [Smolka et al. 2019b] on a probabilistic network verification tool suggests

that GKAT is better suited for probabilistic models than KAT, as it avoids mixing non-determinism

and probabilities. The complex semantics of probabilistic programs would make a framework for

equational and automated reasoning especially valuable.

In a different direction, a language model containing infinite traces could be interesting in many

applications, as it could serve as a model to reason about non-terminating programs—e.g., loops in

NetKAT in which packets may be forwarded forever. An interesting open question is whether the

infinite language model can be finitely axiomatized.

Finally, another direction would be to extend the GKAT decision procedure to handle extra equa-

tions. For instance, both KAT+B! and NetKAT have independently-developed decision procedures,

that are similar in flavor. This raises the question of whether the GKAT decision procedure could

be extended in a more generic way, similar to the Nelson-Oppen approach [Nelson and Oppen

1979] for combining decision procedures used in SMT solving.
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