
Proof-Carrying Network Code
Christian Skalka

University of Vermont

Burlington, VT, USA

ceskalka@uvm.edu

John Ring

University of Vermont

Burlington, VT, USA

john.ring@uvm.edu

David Darais

University of Vermont

Burlington, VT, USA

ddarais@uvm.edu

Minseok Kwon

Rochester Institute of Technology

Rochester, NY, USA

jmk@cs.rit.edu

Sahil Gupta

Rochester Institute of Technology

Rochester, NY, USA

sg5414@rit.edu

Kyle Diller

Rochester Institute of Technology

Rochester, NY, USA

kid6584@rit.edu

Steffen Smolka

Cornell University

Ithaca, NY, USA

smolka@cs.cornell.edu

Nate Foster

Cornell University

Ithaca, NY, USA

jnfoster@cs.cornell.edu

ABSTRACT
Computer networks often serve as the first line of defense against

malicious attacks. Although there are a growing number of tools

for defining and enforcing security policies in software-defined

networks (SDNs), most assume a single point of control and are

unable to handle the challenges that arise in networks with multiple

administrative domains. For example, consumers may want want

to allow their home IoT networks to be configured by device ven-

dors, which raises security and privacy concerns. In this paper we

propose a framework called Proof-Carrying Network Code (PCNC)

for specifying and enforcing security in SDNs with interacting ad-

ministrative domains. Like Proof-Carrying Authorization (PCA),

PCNC provides methods for managing authorization domains, and

like Proof-Carrying Code (PCC), PCNC provides methods for en-

forcing behavioral properties of network programs. We develop

theoretical foundations for PCNC and evaluate it in simulated and

real network settings, including a case study that considers security

in IoT networks for home health monitoring.

CCS CONCEPTS
• Security and privacy → Formal methods and theory of se-
curity; • Software and its engineering → Formal software
verification; • Networks→ Programming interfaces; Network se-
curity;

KEYWORDS
Trust Management; Formal Verification; Software-Defined Net-

works; Nexus Authorization Logic; NetKAT

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3363214

ACM Reference Format:
Christian Skalka, John Ring, David Darais, Minseok Kwon, Sahil Gupta,

Kyle Diller, Steffen Smolka, and Nate Foster. 2019. Proof-Carrying Network

Code. In 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’19), November 11–15, 2019, London, United Kingdom. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3319535.3363214

1 INTRODUCTION
Computer networks play a critical role in implementing security

policies, often serving as the first line of defense against malicious

attacks. Although there are a growing number of tools for specifying

and verifying behavior in software-defined networks (SDNs), most

are unable to handle the challenges that arise in networks with

multiple administrative domains.

To illustrate, consider the following concrete scenario. Suppose

that a health monitoring system is connected to a home network

with one or more IoT (Internet of Things) devices—e.g., as shown

in Figure 1(a), a fitness tracker monitors the sleep patterns of its

residents, using Bluetooth or WiFi to connect to a switch that

provides connectivity to other devices on the local network. There is

also an edge router that connects the home network to the Internet.

To prevent health data from being sent externally, the network

is configured as follows. The switch uses VLANs (virtual local

area networks) to isolate different segments of the network from

each other, while the router uses a firewall to filter incoming and

outgoing traffic and a NAT (network address translator) to convert

between private addresses used in the home network and public

addresses used on the Internet. For example, the switch might

classify packets coming from the fitness tracker, adding a tag to

indicate if they are private (e.g., fine-grained location information)

or public (e.g., aggregate, anonymous sleep data), and the firewall

might drop packets tagged as private.

Suppose we add a second device that monitors blood pressure.

In order to report information in an emergency—e.g., when blood

pressure becomes dangerously high—the network must be reconfig-

ured. In particular, the filtering rules installed on the firewall must

be relaxed to allow data to be released from the network even if

it is not public during an emergency. One possible approach is to

https://doi.org/10.1145/3319535.3363214
https://doi.org/10.1145/3319535.3363214

CCS ’19, November 11–15, 2019, London, United Kingdom Skalka et al.

sleep
tracker

public
data

edge router
cloud
server

private data
(a) Initially, only public data generated by the sleep tracker can pass the

edge router.

sleep
tracker private data

blood
pressure

public

emergency

(b) After the blood pressure monitor is added, the emergency data is not

filtered at the router reaching the 911 service.

sleep
tracker private

data

blood
pressure

public

emergency

ML server

public

(c) Public data from the sleep tracker is delivered to a federated edge

computing service upon request.

Figure 1: PCNC use case: health monitoring edge network.

modify the switch to apply a special emergency tag and relax the

filtering rules used by the firewall to forward packets carrying this

tag, even if they are also marked as private.

Although this is a simple example, it already raises a number of

interesting issues. First, to correctly configure the network, wemust

specify, verify, and coordinate behavior on multiple devices—e.g.,

the tagging rules at the switch and the filtering rules at the firewall.

Second, we must ensure that requests to reconfigure devices are

submitted by an authorized party. For example, the homeowner

might only trust device vendors that have been appropriately cer-

tified. Unfortunately, existing platforms do not provide adequate

mechanisms for specifying and enforcing such properties.

Moreover, challenges related to security and federation arise in

more complex and varied systems, such as the following scenarios.

Campus Network: The goal is to implement a distributed firewall

that isolates different classes of traffic from each other—e.g., faculty,

students, and visitors. However, different principals are responsible

for managing the devices in the network. For instance, university

staff might control the routers at the core of the network while

department staff control the switches at the edge.

Internet Exchange Point (IXP): The goal is to allow each partic-

ipant to specify policies that determine how their own traffic is

handled. These policies encode intricate preferences and are often

inter-dependent, due to complex business relationships and opera-

tional concerns—e.g., a large Internet Service Provider (ISP) might

be willing to carry traffic generated by its direct customers, but not

be willing to provide transit for competitors.

Federated Edge Computing: The goal is to push computational

tasks to edge devices, which requires using the network to commu-

nicate the inputs and outputs of a given computation. For example,

the IoT network (B) described above might coordinate with another

IoT network (A) that provides a machine learning (ML) service at

the edge, allowing A to configure B to forward public data to A

as illustrated in Figure 1(c). However, authorization is challenging

in this context since A and B may not have a direct trust relation-

ship, and A and B may have independent local policies governing

authorization and network behavior.

In each scenario, multiple principals must collaborate to manage

different network devices and enforce the intended security pol-

icy. However, operators often have no choice but to rely on social

mechanisms or even blind faith. This is unfortunate since networks

can provide crucial security and privacy defenses. For example,

networks can prevent sensitive information from being exfiltrated

by monitoring and blocking unauthorized communication. They

can ensure that data received from untrusted sources is properly

sanitized before it is sent to internal servers. And they can provide

strong guarantees about availability, even in the presence of conges-

tion or failures, by setting up multiple, redundant paths connecting

each pair of hosts.

A promising approach to these problems is to exploit the pro-

gramming interface for network devices provided by software-

defined networks (SDN). However existing SDN platforms either

assume a single administrative domain, or only handle limited

forms of federation—e.g., virtualization solutions that enable multi-

ple tenants to control disjoint slices of the network. For instance,

languages such as Frenetic [12], Pyretic [28], and NetKAT [4], and

data plane verification tools such as Header Space Analysis [22]

and Veriflow [23] assume that the network is managed by a single

administrator who has global visibility of the network and full au-

thority to control how packets are processed. SDN control platforms

also present their own unique security challenges [25, 32].

1.1 Overview and Foundations
To address these challenges, we introduce an expressive and flexible

discipline for reconfiguring SDN controllers in a federated setting

that supports both authorization and behavioral compliance of

programs, called Proof-Carrying Network Code (PCNC). Analogous
to Proof-Carrying Code (PCC) [29], PCNC allows clients to ship

proofs of security compliance along with their code that can be

verified before it is installed. We argue that networks are a good

application domain for a PCC-style approach for several reasons.

First, as discussed above, operators today must often execute pro-

grams produced by different parties with varying degrees of trust.

Hence, a framework in which rich properties are automatically

verified using a trustworthy proof checker could have a significant

practical impact. Second, while networks are often large in size,

the programs they execute tend to be extremely simple and thus

amenable to verification—each device executes a loop-free program

that classifies and transforms incoming packets.

Proof-Carrying Network Code CCS ’19, November 11–15, 2019, London, United Kingdom

We observe that there are two key concerns for allowing network

reconfiguration across multiple administrative domains: authoriz-

ing that a network update is permitted, and verifying that the update

preserves important behavioral properties. To this end, PCNC uses

a client-server model in which administrators can submit policy

specifications of authorization and behavior and clients can submit

authorization credentials and network updates. Upon receiving a

client request, the server verifies it against its current authorization

and behavioral policies.

PCNC is based on two existing theories, which provide its formal

foundation: Nexus Authorization Logic (NAL) [19, 35] for express-

ing and enforcing authorization policies, and NetKAT for expressing

and enforcing behavioral policies. NetKAT is a domain-specific lan-

guage for programming and reasoning about SDNs developed in

previous work [4, 13]. It is based on a solid mathematical founda-

tion, Kleene Algebra with Tests (KAT) [24], and comes equipped

with an equational reasoning system that can be used to verify

many properties of interest automatically [13].

1.2 Contributions and Related Work
In this paper we develop theory and establish an architecture for

PCNC, including a prototype implementation and evaluation on

realistic use cases both in simulation and on a hardware testbed.

In Section 2, we describe the theoretical foundations of PCNC.

We formulate a variant of NAL, called NALlight , that captures

application-level assertions about NetKAT programs. Thus, judg-

ments in NALlight model an authorization and a behavioral compo-

nent. The authorization component combines the expressiveness of

a higher-order logic extended with modalities for belief ascription

and delegation, while properties involving NetKAT programs can

be expressed as application-level assertions (though decidable prop-

erties, such as equivalence, are of particular interest). For properties

that can be reduced to equivalence, we define an algorithm with

optimizations for checking equivalence of NetKAT programs that

is based on previous work [13].

Also in Section 2, we develop a language for proof representation,

called System FSays , a typed term calculus that enjoys a Curry-

Howard types-as-formulas correspondence with NALlight as stated

in Theorem 2.1. Our approach to proof representation is similar to

CDD [2], which demonstrated the benefits of the Curry-Howard

approach, including a reduction semantics that can support proof

minimization.

In Section 3, we describe how these elements are combined in

a system for enforcing security in SDNs. We propose a specific

judgment form that can be used to verify requests to either recon-

figure or extend the configuration of the network using NetKAT.

Verification of requests subsumes System FSays type checking for

authorization and decidable equivalence checking for behavioral

verification. Classic work on PCC focuses mostly on supporting

purely behavioral policies, but previous work has considered Proof-

Carrying Authentication [5] and Authorization [6, 15], also known

as PCA, to support verification of authorization policies in dis-

tributed systems. Thus, PCNC unifies concepts explored in PCC

and PCA to obtain a uniform language framework for expressing

proofs of authorization and behavioral policy compliance to support

SDN network configuration in federated settings.

The work most related to our PCNC framework is the FLANC

system [18]. However, being based on NAL and NetKAT, PCNC

offers effective mechanisms for constructing proofs and deciding

behavioral properties that are based on well-studied logical founda-

tions. In particular, since PCNC requests carry System FSays proof

witnesses, authorization is based on proof checking, not proof re-

construction or certificate chain discovery, unlike systems such as

SAFE [7].

In Section 4, we develop a case study that illustrates its features

and applicability to SDN programming. This case study is based

on the IoT health monitoring network example discussed above

and illustrated in Figure 1. We propose a specific network topology,

configurations, and PCNC requests that embody the example.

In Section 5. we describe an implementation of PCNC on a hard-

ware testbed that combines novel verification components with

NetKAT compilation tools from Frenetic [12], as described in Sec-

tion 5.2. Our implementation includes a JSON wire format schema

for PCNC messages and and a signature verification scheme for

NALlight credentials. We evaluate the implementation using the

case study and report on verification overhead.

2 PCNC FOUNDATIONS
In this section we develop a foundational theory for PCNC. To

support authorization in PCNC, we adapt the authorization logic

NAL [35]. We define a natural deduction style proof theory for

the logic, for which we later develop a proof representation and

checking method in Section 2.1.4.

To support behavioral policy specification and enforcement dur-

ing network reconfiguration, we use the NetKAT language [4, 13].

NetKAT has a decidable equational theory—here, we define an algo-

rithm for checking program equivalence that is incorporated into

our PCNC framework to support behavioral verification.

2.1 Authorization Logic
A number of authorization logics have been proposed in previous

work that offer features for policy expression [1, 3, 8, 17, 19]. In gen-

eral, modern authorization logics equate authorization decisions

with provability of formulas, where given authorization creden-

tials are modeled as assumptions for the proof derivation. They

typically extend an underlying logic (e.g., first-order classical logic)

with SpeaksFor and Says modalities endowed with either a possi-

ble worlds semantics [16] or a related semantics of “belief” [19].

The SpeaksFor modality allows the authority of one principal to be

“handed off” to another, supporting expression of the delegation of

authority. The Says modality is typically taken to ascribe beliefs to

principals and can be used to express authorized credentials among

others, but the precise interpretation of Says is a subtle matter with

significant consequences. We discuss this issue here as it is relevant

to our proof representations.

2.1.1 Monadic Interpretation of Says. The Says modality has

historically been related to classical modalities. The interpretation

of Says in the original presentation of Nexus Authorization Logic

[35] (NAL) can formally be said to be lax and in particular can be

embedded in the logic S4 [16]. Intuitively, the lax interpretation

allows a more liberal ascription of beliefs to principals. Formally,

a lax system includes the axiom ∀X .X ⇒ A Says X (whereas in

CCS ’19, November 11–15, 2019, London, United Kingdom Skalka et al.

Syntax

F , G, H ::= f (t, ...)
| true

| false

| F Says F
| X
| F ∧ F
| F ∨ F
| F ⇒ F
| ∀X .F
| ∃X .F

Proof Derivation Rules

True

∆ ⊢ true
Assume

∆, F ⊢ F

Unit

∆ ⊢ F
∆ ⊢ A Says F

Bind

∆ ⊢ A Says F ∆, F ⊢ A Says G
∆ ⊢ A Says G

⇒-Intro

∆, F ⊢ G
∆ ⊢ F ⇒ G

⇒-Elim

∆ ⊢ F ⇒ G ∆ ⊢ F
∆ ⊢ G

∨-IntroL
∆ ⊢ G

∆ ⊢ F ∨G

∨-IntroR
∆ ⊢ F

∆ ⊢ F ∨G

∨-Elim
∆ ⊢ F ∨G ∆, F ⊢ H ∆, G ⊢ H

∆ ⊢ H

∧-Intro
∆ ⊢ F ∆ ⊢ G

∆ ⊢ F ∧G

∧-ElimL
∆ ⊢ F ∧G
∆ ⊢ F

∧-ElimR
∆ ⊢ F ∧G
∆ ⊢ G

∀-Intro
∆ ⊢ F X < fv(∆)

∆ ⊢ ∀X .F

∀-Elim
∆ ⊢ ∀X .F
∆ ⊢ F [G/X]

∃-Intro
∆ ⊢ F [G/X]
∆ ⊢ ∃X .F

∃-Elim
∆ ⊢ ∃X .F ∆, F ⊢ G X < (fv(∆) ∪ fv(G))

∆ ⊢ G

Figure 2: NALlight syntax and proof derivation rules.

a non-lax system we can only deduce X ⇒ A Says X if X is a

theorem). While the lax interpretation of Says has been assumed

by other systems, various authors have suggested that it can lead

to dangerous consequences [1, 17, 19]. This includes the authors of

a more recent version of Nexus Authorization Logic, called FOCAL,

who refer to the lax interpretation of Says in NAL as a “bug” [19]. A

thorough formal study of lax vs. non-lax interpretations identifies

the core issue as the axiom of escalation [3] which results from

extending classical logic with a lax interpretation of Says:

∀X ,Y .(A Says X) ⇒ (X ∨A Says Y)

However, since NAL is not classical—in particular it lacks negation

and the law of excluded middle—it does not exhibit escalation. Fur-

thermore, it enjoys the properties of Says transparency and handoff,
which are desirable in any authorization logic. The former means

that any principle can be trusted to assert their own worldview,

whereas the latter supports delegation of authority in distributed

settings. The use of NAL also has implementation benefits—lax

logic can be interpreted monadically, and a monadic interpreta-

tion of Says readily supports a Curry-Howard isomorphism with

typed monadic structures in a functional calculus (as we show in

Section 2.1.4).
1
Thus terms in the calculus can constitute proof wit-

nesses, which enables optimization techniques (e.g., certain types

of reduction).

Another important point is that in a proof checking system, be-

liefs relevant to a judgment are explicitly provided as a component

of the judgment. And in the PCNC implementation (see Section 5.1),

beliefs provided to support a proof are always cryptographically

signed and thus ascribed to a principal (i.e. the signer). Therefore,

problems with “importing beliefs” as a consequence of laxity noted

byHirsch et al. [19] are ameliorated in our setting. For these reasons,

in PCNC we build on NAL.

2.1.2 Syntax and Proof Theory of NALlight . In Figure 2we present
the syntax and proof theory of the logic NALlight in a judgmental

style. The logic NALlight is a simplified fragment of NAL with a

streamlined set of atomic principals A rather than the more com-

plex principals used by Schneider et al. [35]. These principals are

encoded using a subset of nullary atomic formulas (rather than

introducing a new kind of term in the grammar)—an approach that

simplifies our encoding of formulas as types. In particular, we do

1
Though it should be noted that a Curry-Howard isomorphismwith non-lax modalities

can be formulated, as demonstrated in [31].

not need two forms of universal quantification (i.e., over first- and

higher-order constructs) as in the original system [35].

Our proof theory also differs slightly from the original formu-

lation but captures the same principles of deduction. Aside from

the judgmental presentation, we define Unit and Bind rules which

are known to be inter-derivable with the rule forms in the original

definition (including idempotence, distribution, and necessitation).

Also, we allow higher-order (vs. first-order) existential quantifi-

cation. These design choices yield a tighter Curry-Howard cor-

respondence with the system we present in Section 2.1.4. Note

that negation and the law of excluded middle is not supported in

NALlight , hence it is not classical and not subject to escalation [3].

We will use letters A, B, C to refer to principals, while F , G, H
refer to formulas. Formulas include universal (∀) and existential

(∃) quantification, and standard logical connectives (∧, ∨, and⇒).

Predicates f on terms t are left abstract and represent application-
level assertions. In PCNC, we will be concerned with assertions

about behavioral policies, so this logic allows verification of autho-

rization and behavioral policy components to be synergized. We

only require that variable X are allowed to appear in term position

in predicates, thus supporting first-order quantification.

The logic includes a Says modality as a primitive. However the

SpeaksFor modality is defined as syntactic sugar in terms of higher-

order quantification:

A SpeaksFor B ≜ ∀X .(A Says X) ⇒ (B says X)

A restricted form of delegation is also supported,

A SpeaksFor B on (X1 · · ·Xn : F)
≜

∀X1.∀Xn .(A Says F) ⇒ (B says F)

where X1 · · ·Xn only occur in term positions in F—i.e. they are

first-order variables.

2.1.3 Complexity of Proof Inference and Verification. Because
NALlight subsumes a higher-order constructive logic it is highly

expressive. At the low end of expressiveness, intuitionistic proposi-

tional logic is PSPACE-complete [38], while intuitionistic predicate

logic is undecidable—and these are first-order. Both can be embed-

ded in NALlight , which is a higher-order constructive predicate

logic, so in general NALlight proof inference is also undecidable.

But checking NALlight proofs is linear in the size of the proof term,

since each deduction step involves only simple syntactic checks.

Proof-Carrying Network Code CCS ’19, November 11–15, 2019, London, United Kingdom

Syntax

types τ F unit | τ + τ | τ × τ | τ → τ | X | ∀X .τ | ∃X .τ |
τ Says τ | reconfig(τ) | extend(τ) | τ ≼ τ | p | A

terms e F tt |

inl(e) as · + τ | inr(e) as τ + · | case(e){x .e }{x .e } |
⟨e, e ⟩ | projl(e) | projr(e) |
x | let x B e in e | λ(x : τ).e | e(e) |
ΛX .e | e[τ] | ⟨∗τ , e ⟩ as ∃X .τ | let ⟨∗X , x ⟩ B e in e |
ret

A(e) | x ← e ; e | e ≼ e | p

Typing
Bind

S, Γ ⊢ e1 : A Says τ1 S, Γ[x 7→ τ1] ⊢ e2 : A Says τ2
S, Γ ⊢ x ← e1 ; e2 : A Says τ2

Ret

S, Γ ⊢ e : τ

S, Γ ⊢ retA(e) : A Says τ

TypeApply

S ⊢ τ ′ S, Γ ⊢ e : ∀X .τ
S, Γ ⊢ e[τ ′] : [τ ′/X]τ

Figure 3: Selected System FSays syntax and typing rules.

2.1.4 Proof Representation: System FSays . Judgments are of the

form ∆ ⊢ F , where ∆ is a list of assumptions, considered equivalent

up to reordering. Validity of judgments is defined as derivability by

inductive application of the derivation rules defined in Figure 2. If

∆ is empty (and hence F is a tautology) we write ⊢ F .
To represent proofs in a compact and verifiable manner, we

introduce the language System FSays which enjoys a Curry-Howard

types-as-formulas correspondence with NALlight . This approach

has been explored previously for a different authorization logic [2].

The syntax of System FSays is presented in Figure 3, where x

and X are type and term variables respectively. The language is

an extension of System F with a Says monad to represent the Says
modality in NALlight , and other features to represent NALlight con-

nectives. Types τ of System FSays have a tight correspondence with

NALlight formulas F . The System F fragment of System FSays is ad-

equate to represent implication and higher order quantification as

in NALlight , and the addition of sum (+) and product (×) types are

adequate to represent disjunction and conjunction. The Saysmonad

is realized using return and bind terms. Existential quantification

is realized using standard pack and unpack terms.

We introduce System FSays here specifically for PCNC, so we

only include three atomic predicate forms: reconfig, extend, and

≼. The first two of these are parameterized by NetKAT programs

and are unary, while the latter is binary. The predicate reconfig(p)
asserts the intent to install configuration program p, extend(p)
asserts the intent to extend the current configuration with program

p, and p ≼ q asserts semantic containment of p in q.
Type validity is defined in terms of judgments are of the form

S, Γ ⊢ e : τ . Here, Γ is an environment binding free term variables

to types, and S is the set of type variables in scope. Considering

the type τ as a NAL formula analogue, the term e is referred to as a
witness. The type derivation rules have a tight correspondence with

the NALlight natural deduction rules shown in Figure 2. These rules

are mostly standard and include System F-style polymorphism,

existential quantification, etc. As shown in Figure 3, to support

judgments involving the Says modality, we include monadic typing

rules for return and bind constructs. See the appendix for the full

typing rules.

Syntax
Field f F f1 | · · · | fk

Packet pkF {f1 = v1, · · · , fk = vk }
History hF pk::⟨⟩ | pk::h

Predicatea, bF 1 Id
| 0 Drop
| f = n Test
| a + b Or
| a · b And
| ¬a Not

Policyp, qF a Filter
| f ← n Modify
| p + q Union
| p · q Sequence
| p∗ Iterate
| dup Duplicate

Denotational Semantics
JpK ∈H→ P(H)

J1K h ≜ {h}
J0K h ≜ {}

Jf = nK (pk::h) ≜
{
{pk::h} if pk.f = n
{} otherwise

J¬aK h ≜ {h} \ (JaK h)
Jf ← nK (pk::h) ≜ {pk[f B n]::h}

Jp + qK h ≜ JpK h ∪ JqK h
Jp · qK h ≜ (JpK • JqK) h

Jp∗K h ≜
⋃
i∈N F i h

where F 0 h ≜ {h}
and F i+1 h ≜ (JpK • F i) h

JdupK (pk::h) ≜ {pk::(pk::h)}

Figure 4: NetKAT: syntax and denotational semantics.

2.1.5 Types-as-Formulas Correspondence. Our main result for

System FSays is soundness of the representation—i.e., we show that

if a System FSays term is typeable at type τ , the formula correspond-

ing to τ is derivable. The issue of completeness is left as an inter-

esting topic for future work—note that we do not support arbitrary

atomic formulas in System FSays nor an explicit false term.

Since the syntax of types and formulas used in System FSays and

NALlight respectively do not match up, we define an interpretation

of types as formulas denoted ⟨τ ⟩:

⟨τ1 ≼ τ2⟩ = ⟨τ1⟩ ≼ ⟨τ2⟩
⟨τ1 + τ2⟩ = ⟨τ1⟩ ∨ ⟨τ2⟩
⟨τ1 → τ2⟩ = ⟨τ1⟩ ⇒ ⟨τ2⟩

...

and so on. We extend this interpretation pointwise to type environ-

ments, which translate to lists of assumptions in NALlight . Then we

can state the types-as-formulas correspondence isomorphism as

follows, using this translation. The results follow by induction on

derivations, and is straightforward due to the tight correspondence

of derivation rules in System FSays and NALlight .

Theorem 2.1. If S, Γ ⊢ e : τ is derivable then so is ⟨Γ⟩ ⊢ ⟨τ ⟩.

Example. To illustrate System FSays proof witnessing, consider

the following formula that represents the important property of

delegation handoff as discussed in [35]:

∀A.∀B.(A Says B SpeaksFor A) ⇒ (B SpeaksFor A)

In System FSays the type representation τ of this formula is:

∀A.∀B.(A Says (∀X .B Says X → A Says X)) →
(∀X .B Says X → A Says X)

and the following term e serves as a proof witness for this type τ ,
in the sense that �,� ⊢ e : τ is valid:

ΛA.ΛB.λx : (A Says (∀X .B Says X → A Says X)) .
ΛX .λz : B Says X .w ← x ; (w[X])(z)

2.2 Network Programming
TheNetKAT language [4, 13] enables programmers to work in terms

of functions on packets histories (where a packet is a record of fields

and a history is a non-empty list of packets). This is a departure

CCS ’19, November 11–15, 2019, London, United Kingdom Skalka et al.

from low-level SDN languages such as OpenFlow, which require

thinking about hardware-level details such as forwarding tables,

matches, actions, priorities, etc. The language offers primitives for

matching (f = n) and modifying (f ← n) packet headers, as well
combinators such as union (+), sequence (·), and Kleene star (∗), that

form larger programs out of smaller ones. NetKAT is based on a solid

mathematical foundation, Kleene Algebra with Tests (KAT) [24],

and comes equipped with an equational reasoning system that can

be used to verify many properties of interest automatically [13].

Figure 4 defines the syntax and semantics of the language for-

mally. The denotational semantics (J K) models predicates a and

policies p as functions that take a packet history as input and pro-

duce a set of packet histories as output. Most of the constructs in

the language are standard, but the dup operator is worth noting:

it extends the trajectory recorded in the packet history by one

hop, which is useful for encoding paths. Many other constructs

can be defined—e.g., it is straightforward to encode conditionals

(if a then p else q) using union and sequence (a · p + ¬a · q).
NetKAT has an equational deductive system that can be used

to reason about network-wide properties automatically [4]. This

consists of a collection of equational axioms of the form p ≡ q that

capture equivalences between policies. These axioms are sound (ev-

ery pair of policies that can be proved equivalent behave identically)

and complete (every pair of policies that behave identically can be

proved equivalent). Moreover, NetKAT has an efficient procedure

for deciding policy equivalence [13], which enables automatic veri-

fication of rich properties such as reachability, loop freedom, traffic

isolation, and many others [4]. In Section 5.3, we develop an ex-

tended example of NetKAT programming to realize the application

scenario introduced in Section 1.

2.3 Decidable Behavioral Properties
Previous work has identified a number of interesting security prop-

erties that are decidable for NetKAT programs, including slicing,

isolation, and waypointing policies [4]. A general property of inter-

est for security is containment, where we write p ≤ q if and only

if p returns a subset of the packets returned by q on all inputs. In

a security and privacy context, we can take q to be a behavioral

specification, and by requiring that p ≤ q for any configuration pro-

gram p, we enforce that p at most refines or specializes the behavior

defined by q. For the case study described in Section 1 this property

is appropriate, as we will show in Section 4, and is interesting to

adapt for our prototype implementation (though in principal other

behavioral properties could also be verified in PCNC). Furthermore,

the relation p ≤ q can be considered an abbreviation for q ≡ p + q,
so decidability of ≡ allows specification and enforcement of desired

network properties.

Asmentioned in Section 2.1, the logic NALlight admits application-

level assertions, which is how PCNC behavioral policy integrates

with NALlight for uniform policy expression. In particular, we in-

troduce the application-level assertion p ≼ q, with the following

derivation rule in NALlight , and its analogue for term witnessing

in System FSays :

Contains

q ≡ p + q

∆ ⊢ p ≼ q

Contains

q ≡ p + q

S, Γ ⊢ p ≼ q : p ≼ q

2.3.1 Proving Program Equivalence. The technique for proving
program equivalence we currently use in PCNC is based on bisim-

ulation of deterministic NetKAT automata, which are obtained via

determinization of the Antimorov derivative of NetKAT source

programs [13, 37]. Analogous to standard automata for strings,

NetKAT automata accept sequences of packets which are isomor-

phic to packet histories as we have defined for NetKAT. Hence, the

language recognized by an automaton is equivalent to the semantics

of the source program from which it is derived.

In the following,A ranges over deterministic NetKAT automata,

G(A) denotes the language accepted by A, and ∼ denotes bisim-

ilarity. Formally, if A is the automaton computed for a NetKAT

program p using the Antimorov derivative, then G(A) is related
to JpK by a variant of Kleene’s Theorem (see Foster et al. [13] for

details). We note that A1 ∼ A2 implies G(A1) = G(A2). An au-

tomaton can be represented by continuation and observationmaps δ
and ϵ . Following the formulation due to Smolka et al. [37] for deter-

ministic automata (without loss of generality), both the observation

and continuation functions are parameterized by configurations,
which are pairs (pk, ℓ) for packets pk ∈ PK and states ℓ ∈ S . Intu-
itively, these configurations determine the relevant state ℓ, with

properties of pk refining transitions (analogous to automata on

guarded strings). The observation map applied to a configuration

yields a function that accepts packets, whereas the continuation

map applied to a configuration yields a function that transitions to

the next state given a packet. Observation and continuation maps

thus have the following signatures:

δ : (S × PK) → PK → S

ϵ : (S × PK) → PK → 2

Given automata A1 and A2, we can prove their equivalence

using bisimulation. Although bisimulation has been informally de-

scribed in prior work [13, 37], here we give an explicit definition

of the algorithm. We assume without loss of generality that au-

tomata are deterministic (since prior work has demonstrated sound

and complete determinization methods [13]). Let A1 and A2 be

encoded as previously defined, and let δ1, δ2, and ϵ1, ϵ2 be the con-
tinuation and observation maps of A1 and A2 respectively. We

can check bisimulation denoted A1 ∼ A2 as follows, based on

properties described in [13]. The bisimulation algorithm equiv can

be defined as follows, using an accumulator πc as a termination

condition for previously explored configurations:

equiv(c1, c2,πc) ⇐⇒
(c1, c2) ∈ πc ∨

∀pk . (ϵ1 c1 pk) = (ϵ2 c2 pk) ∧

∀pk . equiv((δ1 c1 pk, pk), (δ2 c2 pk, pk),πc ∪ {(c1, c2)})
Then, positing that initial automata states are always identified as

0, we can implement bisimulation as:

A1 ∼ A2 ⇐⇒ ∀pk.equiv((0, pk), (0, pk),�)
Note these definitions quantify over all packets pk. As packets
contain all OpenFlow fields, there is clearly potential for combi-

natorial explosion in a naive implementation. However, a simple

optimization is to only consider packets containing fields and values

mentioned in the source programs or automata being checked for

equivalence. In general, our method for implementing bisimulation

Proof-Carrying Network Code CCS ’19, November 11–15, 2019, London, United Kingdom

in the PCNC framework depends on our representation of source

code and automata, including compiler optimizations. We return to

this issue in Section 3.2.

3 THE PCNC FRAMEWORK
We implement PCNC using a client-server architecture. We assume

that at least one principal Root has administrative authority on the

Server, and that an initial behavioral policy has been defined as a

NetKAT program spec. Then to install a configuration program p,
the high level goal on the Server is to prove a judgment of the fol-

lowing form, where a credential environment Γ and a System FSays
proof witness e has been provided by the client:

�, Γ ⊢ ⟨e,p ≼ spec⟩ : Root Says reconfig(p) × (p ≼ spec)

In this judgment, the program p is the (re)configuration program to

be installed and spec is the NetKAT behavioral policy specification.

The assertion p ≼ spec is predicated on program equivalence as

discussed in Section 2.3, and this component of the conjunction in

the judgment covers behavioral policy enforcement. The other com-

ponent of the conjunct Root Says reconfig(p) expresses the need
to verify that the administrator approves installation, as deduced

from the proof witness e provided by the client and the credentials

provided in Γ.
We can also imagine as a weaker privilege that rather than a

complete reconfiguration of the network, we allow only an exten-

sion of the current configuration. That is, assuming that q is the

current network configuration and p is the submitted extension,

the network is reconfigured with p + q following verification. For

this purpose we posit a different predicate extend, where the goal

judgment to prove on the server is:

�, Γ ⊢ ⟨e,p + q ≼ spec⟩ : Root Says extend(p) × (p + q ≼ spec)

Again in this case, the client would provide Γ and e , in addition to

the extension program p, for verification of the request.

Thus, verification of the above judgments on the server, with

configuration and proof material provided by the client, comprises

both authorization and behavioral verification. Although in this pa-

per we consider just containment policies, we note that the synergy

of behavioral and authorization assertions in System FSays would

allow us to constrain principals to only affecting certain kinds of

traffic, as in the “flow spaces” of FLANC [18]. This could be accom-

plished with appropriate application-level (NetKAT) assertions. A

credentialed approach with public-key signatures allows this to

scale to highly distributed settings.

3.1 Authorization in System FSays
On the server side, validity of the submitted judgment is established

by checking the validity of Γ ⊢ e : Root Says reconfig(p). Since this
entails type checking, as long as the latter is implemented correctly,

we can trust typability of the given judgment—modulo trust of

assumptions in Γ.

Authentication and Integrity of Assumptions. The user will typi-
cally submit a non-empty Γ containing credentials (as illustrated

below in Section 4.1). The PCNC wire representation of credentials

ensures that clients cannot forge false assumptions. Specifically, we

restrict Γ so that it can only include credentials of the formA Says τ

in its image. Our approach to this is standard—we represent prin-

cipals A as public keys KA, and for every assumption A Says τ in

the image of Γ, we include signature s = sig(K−1A ,τ) in the PCNC

message, which is τ signed with A’s private key. The server can
then verify s given KA and τ which are provided directly in the

credential (so no public key lookup is necessary). This establishes

authenticity and integrity for all belief ascriptions in Γ. We provide

more detail about algorithms and wire format used to represent

proofs in Section 5.1.

As a simple example, if we assume that Bob is the local net-

work administrator, and wants to submit his own reconfiguration

program p, then Bob could submit the following credential:

cred : K
Bob

Says reconfig(p)

along with its signature:

sig(K−1
Bob
,K

Bob
Says reconfig(p))

and the proof term cred. Then given these items, on the Server we

can verify:

�, cred : K
Bob

Says reconfig(p) ⊢ cred : K
Bob

Says reconfig(p)

Note also in this example how verification of the supplied signature

verifies authenticity and integrity of the reconfiguration program

p, due to the signature of cred.
Crucially, we further observe that there exists no e such that

�,� ⊢ e : K
Bob

Says reconfig(p) is valid, since reconfig(p) has no
direct term witness and must follow from assumptions. Thus any

installation request must be appropriately credentialed. See Section

4.1 for a more extended example with a non-trivial proof term.

3.2 Behavioral Verification in NetKAT
If p is a reconfiguration program and spec is a behavioral policy
defined as a NetKAT program, then installation of p requires ver-

ification of p ≼ spec as a behavioral verification component. As

discussed in Section 2.3, this is equivalent to proving spec ≡ p+spec
by definition, and equivalence of NetKAT programs can be auto-

matically proven via bisimulation of their derived deterministic

automata. Thus, writing A(p) to denote the deterministic automata

obtained from any program p, we have:

p ≼ spec ⇐⇒ (A(spec) ∼ A(p + spec))

Therefore the central technical challenge for PCNC behavioral ver-

ification is checking NetKAT program equivalence via bisimulation

of derived automata. This approach has the benefit of integrating

easily with the current state-of-the-art compiler for NetKAT in Fre-

netic [12, 37], where determinized NetKAT automata are generated

as an intermediate representation. These automata are subsequently

provided to a back-end that translates them to OpenFlow tables,

but we can “intercept” automata representations, and in our frame-

work, we define bisimulation directly on the intermediate automata

representations.

3.2.1 FDDs and Optimizations. An important detail of automata

representation in Frenetic is the use of forwarding decision dia-

grams (FDDs) [37] to represent observation and continuation func-

tions as they are described in Section 2.3. FDDs are a variation of

binary decision diagrams (BDDs), but test field names rather than

bits. FDDs benefit from optimizing transformations which in turn

CCS ’19, November 11–15, 2019, London, United Kingdom Skalka et al.

support optimizations of network programs as they are deployed in

flow tables. Since equality and evaluation of FDDs is decidable, our

approach is thus flexible with respect to FDD-based compiler opti-

mizations. Furthermore, to achieve the bisimulation optimization

suggested at the end of Section 2.3, in our implementation FDDs

are analyzed to extract field-value pairs that are explicitly tested

in programs. These pairs are used to generate the strict subset of

packets that are relevant to checking bisimulation.

3.2.2 Program Wire Format. In the framework it is necessary

to maintain the specification spec on the Server for confidence in

its definition. Thus, when checking p ≼ spec on the Server it is

necessary to obtain A(p + spec) there. While it would be possible

to ship A(p), and then compute A(p + spec), the current version
of Frenetic does not support a serialized format for automata, and

also compilation to automata is highly efficient for the examples

we have considered. Shipping the source code p has the additional

advantage of simplicity for this presentation, so in our prototype

implementation we take this approach.

However, we observe that in principle it would also be feasible

to ship A(p), which would have the benefit of being adaptable to

arbitrary compiler optimizations that clients may desire to apply,

and which may not be available on the Server.

4 PCNC INSTANCE: CASE STUDY
We now return to the case study introduced in Section 1, and show

how it can be implemented as an instance of the PCNC framework.

We imagine that the local network is owned and administered

by Bob, and that the health monitoring devices Bob adds to his

network are provided by the vendor NetCo, which also provides

configuration code for these devices submitted as a PCNC request.

We further imagine that another IoT network, owned and ad-

ministered by Alice, provides an edge computing service, where

Alice and Bob do not have a direct trust relationship. In order to

obtain his public data, Alice submits a configuration extension code

to Bob as a PCNC request.

4.1 Authorization
Because Bob purchases health monitoring devices from NetCo, he

also trusts them to install configuration code in his local network,

as well as to extend the local configuration. Thus Bob provides

them with a credential asserting that NetCo speaks on Bob’s behalf

for any installation or extension requests. In NALlight this could be

represented as the following formula, with the convention intro-

duced in Section 3.1 that principals are represented by their public

keys in credentials:

K
Bob

Says
KNetCo SpeaksFor KBob

on (X : reconfig(X))∧
KNetCo SpeaksFor KBob

on (X : extend(X))

and the corresponding System FSays type form is:

τdelegate ≜
K
Bob

Says
(∀X .KNetCo Says reconfig(X) → K

Bob
Says reconfig(X)) ×

(∀X .KNetCo Says extend(X) → K
Bob

Says extend(X))

and in addition Bob provides NetCo the appropriate signature to

certify the credential:

sig(K−1
Bob
,τdelegate)

Now, when NetCo submits a network configuration update p
to Bob’s network, it is necessary for NetCo to provide credentials

Γ and a term witness e such that �, Γ ⊢ e : K
Bob

Says reconfig(p)
is derivable. To accomplish this, NetCo would also generate a cre-

dential asserting their intent to install p (identical in NALlight and

System FSays forms):

τreconfig ≜ KNetCo Says reconfig(p)

along with the signature:

sig(K−1
NetCo

,τreconfig)

Then to install p, NetCo submits Γ containing the following type

bindings:

delegate : τdelegate reconfig : τreconfig

along with the certifying signatures described above, and also sub-

mits the following term witness:

witness1 ≜ config ← delegate; (((projl(config))[p]) reconfig)

On Bob’s Server, the following authorization judgment can then be

verified:

�, Γ ⊢ witness1 : KBob
Says reconfig(p)

4.1.1 Addressing Federation. In the federated edge computing

scenario where Alice aims to submit a PCNC request to forward

Bob’s public data to her, the scenario is complicated by the realistic

assumption that Bob and Alice do not have a direct trust relation-

ship. To resolve this, an appealing approach is to assume that mem-

bers of a network federation will allow each other to extend (not

entirely reconfigure) each other’s networks. Membership in this

group can be established by agreement on a certification authority

(CA), that possesses the private key for the FedMem group. In our

scenario this could be NetCo or another trusted entity. Certificates

can then be constructed using the public key for FedMem.

Bob can advertise his trust in the FedMem group using the fol-

lowing credential:

K
Bob

Says K
FedMem

SpeaksFor K
Bob

on (X : extend(X))

with the corresponding type form:

τFedMem ≜
K
Bob

Says ∀X .K
FedMem

Says extend(X) → K
Bob

Says extend(X)

along with the signature:

sig(K−1
Bob
,τFedMem)

Upon joining the federation, Alice can independently certify her

membership via the following certificate, issued by the CA:

K
FedMem

Says K
Alice

SpeaksFor K
FedMem

with the corresponding type form:

τAlice ≜ K
FedMem

Says ∀X .K
Alice

Says X → K
FedMem

Says X

along with the signature:

sig(K−1
FedMem

,τAlice)

Proof-Carrying Network Code CCS ’19, November 11–15, 2019, London, United Kingdom

Now, when Alice submits a network configuration extension p to

Bob’s network that forwards his public data to her, it is necessary

for Alice to provide credentials Γ and a term witness e such that

�, Γ ⊢ e : K
Bob

Says extend(p) is derivable. To accomplish this,

Alicewould also generate a credential asserting her intent to extend

Bob’s current configuration q with p (identical in NALlight and

System FSays forms):

τextend ≜ K
Alice

Says extend(p)

along with the signature:

sig(K−1
Alice
,τextend)

Then Alice submits Γ containing the following type bindings:

fedmem : τFedMem alice : τAlice extend : τextend

along with the certifying signatures described above, and also sub-

mits the following term witness:

witness2 ≜
bobconfig ← fedmem;

bobconfig[p](config ← alice; (config[extend(p)] extend))

On Bob’s Server, the following authorization judgment can then be

verified:

�, Γ ⊢ witness2 : KBob
Says extend(p)

4.2 Behavioral Verification
The network configuration shown in Figure 5 reifies the network

structure for the case study introduced in Section 1. The local

network contains two hosts and four switches/routers. Hosts H1

and H2 represent IoT devices (like the sleep tracker and the blood

pressure monitor in the use case). There are also two local network

switches (at layer 2) SH1 for H1 and SH2 for H2–it is also possible

to have the switching capabilities implemented on IoT devices

themselves. When we consider a concrete implementation of the

case study in Section 5, we will simulate this exact structure in

Mininet as described in Section 5.3.

Behavioral Policy. We imagine that the local network owner Bob

specifies a behavioral policy that any network configuration code

must satisfy. The main concern is that this policy only allows public
or emergency data from escaping the network. Configuration code

submitted by vendors must be a refinement of this policy.

The policy includes specification of the network topology t , a
local forwarding policy f for the topology, and crucially a firewall

policyw that indicates what sort of traffic is allowed to escape the

network. Beginning with the topology, the local switches are linked

to the edge router denoted by ER, which is then connected to the

gateway switch GS for external communication. In NetKAT, it is

standard to use the following notation to represent a link from

switch S1, port P1, to switch S2, port P2:

dup · sw = S1 · pt = P1 · sw ← S2 · pt ← P2 · dup

By convention we will write such a link as follows:

[S1 : P1]_ [S2 : P2]

ER

H1

H2

SH1

SH2

GS

H3

H4

Frenetic SDN controller

PCNC

1

1

2

2
3

2 1 1

H5
(Edge Device)

Figure 5: Our Mininet network topology and configuration
where the numbers represent port numbers at the switches.

We can encode the network topology into NetKAT as follows:

t ≜ [SH1 : 2]_ [ER : 2] + [SH2 : 2]_ [ER : 3]+

[ER : 2]_ [SH1 : 2] + [ER : 3]_ [SH3 : 2]+

[ER : 1]_ [GS : 1]

Intuitively, this program models the links between ER, SH1, and

SH2, and from ER to GS . To keep the example simple, we will

focus on the one-way flow of data from internal devices H1 and

H2 toward the gateway GS—i.e., we will not specify the behavior

of GS or of the network that connects it to external hosts. Hence,

the local policy forwards from hosts H1 and H2 toward GS :

f ≜ (sw = SH1 · pt← 2)+

(sw = SH2 · pt← 2)+

(sw = ER · pt← 1)

The firewall policy specifies that only data marked with the PUB
flag, indicating public data, or with the 911 flag, indicating emer-

gency data, may be forwarded by the edge router:

w ≜ ¬(sw = ER)+
sw = ER ·meta =PUB+
sw = ER ·meta =911

The complete policy is then defined as follows, which is submitted

by Bob to the PCNC server:

spec ≜ (f ·w · t)∗

4.2.1 Configuration and Reconfiguration. Also depicted in Fig-

ure 5 are two external hosts H3 and H4. Initially, when Bob’s home

network only includes the sleep tracker, we imagine that H3 is

the external data repository used by the vendor for data storage

and analysis. Thus, the initial network configuration uses the same

topology and forwarding policies t and f as spec, but refines the
firewall to only allow the release of public data destined for H3:

winit ≜ ¬(sw = ER) + sw = ER · dst = H3 ·meta =PUB

and so the initial configuration is (f ·winit · t)∗, and observe it is the
case that (f ·winit ·t)∗ ≼ spec. Subsequently, when Bob’s network is
augmented to include the blood pressure monitor, NetCo provides

a reconfiguration that allows public and emergency data to be

CCS ’19, November 11–15, 2019, London, United Kingdom Skalka et al.

released, while identifying a specific destination H4 for emergency

data (e.g., a care provider).

wreconfig ≜ ¬(sw = ER)+

sw = ER · dst = H3 ·meta =PUB+
sw = ER · dst = H4 ·meta =911

In full detail, the reconfiguration program, that we call reconfig,
would be defined as:

reconfig ≜ (f ·wreconfig · t)∗

and it is the case that reconfig ≼ spec, since reconfiguration code

only refines spec with specific data endpoints.

Putting together these definitions in the PCNC framework, suc-

cessful verification for the described reconfiguration request estab-

lishes validity of the following judgment:

�, Γ ⊢ ⟨witness1, reconfig ≼ spec⟩ :
K
Bob

Says reconfig(reconfig) × reconfig ≼ spec

4.2.2 Extension. Finally, in the scenario where Alice aims to

extends Bob’s network configuration to also forward his public

data to her, we imagine that Alice’s edge router address is H5. In

order to receive Bob’s public data, we can envision two possible

scenarios. In the first, we imagine that Bob is contacted by Alice via

some application-level process, and updates Bob’s sleep monitor

to send public data to H5. Then Alice can request to extend Bob’s

existing firewall with a new rule allowing public data out of the

network. That is, we can definewextend as:

wextend ≜ sw = ER · dst = H5 ·meta =PUB

and Bob would install the program extend1:

extend1 ≜ reconfig + (f ·wextend · t)∗

Another option is for Alice to duplicate traffic intended for H3 and

address it to H5 entirely at the network level. In this case she could

request to extend the forwarding behavior at ER via fextend :

fextend ≜ sw = SH1 · pt← 2)+

(sw = SH2 · pt← 2)+

(sw = ER · dst = H3 · dst← H5 · pt← 1)

and Bob would install the program extend2:

extend2 ≜ reconfig + (fextend ·w · t)∗

In our implementation we explore the second option as described

in Section 5, because the sleep monitor application we used allows

only one data destination address to be specified.

Putting together these definitions in the PCNC framework, suc-

cessful verification of the second sort of extension request estab-

lishes validity of the following judgmement:

�, Γ ⊢ ⟨witness2, extend2 ≼ spec⟩ :
K
Bob

Says extend((fextend ·w · t)∗) × extend2 ≼ spec

4.3 Additional Concerns
It is important to note that multiple PCNC servers can exist in

the same federated network that support their own policies. For

example, in the above scenario Bob is only the administrator of his

own network. Alice could also support reprogramming of her own

network with an edge controller running a PCNC server, and by

expressing trust in FedMem members in a similar manner as Bob,

for example via the credential:

K
Alice

Says K
FedMem

SpeaksFor K
Alice

on (X : extend(X))

Of course, Bob or other principals would still need to be properly

credentialed as FedMemmembers by the FedMem CA. In particular,

Bob could not spoof membership using a credential like,

K
Bob

Says ∀X .K
Bob

Says X → K
FedMem

Says X

since hand-off will not logically apply to establish the delegation—

i.e., the verification would fail during System FSays type checking.

Another practical concern is certificate revocation—the creden-

tials discussed above are effectively irrevocable, which is problem-

atic if certain principals turn out to be untrustworthy. However,

credential revocation can be defined in NAL—e.g., via timestamps

and a notion of trusted local time, as explored in previous work

[35]. We omit consideration of revocation here for brevity.

Finally, we note that our scenario assumes that trust domains

(e.g., Bob’s network) have not been compromised. Otherwise, pri-

vate data could easily be leaked—e.g., by internally relabeling pri-

vate data packets as public. One method to address the problem of

device compromise is to use PCNC itself to segment the network

into different trust domains, and validate packets upon ingress. For

example, if the network contains an untrusted device, we could use

the switches at the trust boundary to drop packets that originate

from that device and carry the PUB tag, because only trusted de-

vices should add that tag. Moreover, we can use PCNC to ensure

that this behavioral property is always enforced, even when the

switches are reconfigured by other principals. As for individual de-

vice compromise, while defense against such threats falls out of the

scope of this paper, we could mitigate such risks by employing solu-

tions for device authentication [10, 33, 34], and/or for authorizing

firmware updates to avoid malware installation [26, 27].

5 PCNC IMPLEMENTATION
We have implemented the PCNC client-server framework described

in Section 3 in both a Mininet [39] simulation, and in a real Rasp-

berry Pi-based network with sleep tracking and blood pressure

monitoring devices. We extend the existing Frenetic [12] framework

with features for communicating and verifying PCNC messages. In

this Section we describe important details of the implementation,

and evaluate its performance using the PCNC instance formulated

in Section 4.

5.1 Client and Wire Format
The PCNC client accepts source code of a proof term, configura-

tion program, and credentials as input. It generates a JSON object

intended for communication to the server over https. For expres-
sions e , types τ , and NetKAT programs p, each has an s-expression

representation and we denote their serialized format as ⌊e⌋, ⌊τ ⌋,
and ⌊p⌋, respectively. In full detail, the client takes as input the

following elements:

i. NetKat source code program p.
ii. System FSays source code proof term e .

iii. A list Γ of named credentials each of the form cred : KA Says τ .
iv. A list of private key signature cred : sig(K−1A , ⌊τ ⌋) for each

credential in Γ.

Proof-Carrying Network Code CCS ’19, November 11–15, 2019, London, United Kingdom

{
"title": "PCNC Wire Format"
"description": "PCNC wire format schema"
"type": "object"
"ty": { "type" : "string", "description": "install request" }

"exp": { "type" : "string", "description": "install request proof"}
"tenv":
{
"type" : "array",
"items" :
{
"type": "object"
"key": { "type" : "string", "description": "credential id" }
"ty": { "type" : "string", "description": "credential" }
"enc": { "type" : "string", "description": "credential signature" }

}
}

"prog": { "type" : "string", "description": "configuration program"}
}

Figure 6: PCNC wire format schema.

{
"ty":"(Says (Principal K

Bob
) Reconfig(Program ⌊reconfig⌋))",

"exp": "Bind config
(Var delegate_cred)
(Apply (TyApply Projl(Var config) (Program ⌊reconfig⌋))

(Var reconfig_cred))"
"tenv":
[{"key" : "reconfig_cred",

"ty" : "Says (Principal K
NetCo

) (Reconfig (Program ⌊reconfig⌋))",
"enc" : sig(K−1

NetCo
, ⌊τreconfig ⌋)},

{"key" : "delegate_cred",
"ty" : "Says (Principal K

Bob
)

Prod (
(Forall X (Fun (Says (Principal K

NetCo
) Reconfig(TVar X))

(Says (Principal K
Bob

) Reconfig(TVar X)))),
(Forall X (Fun (Says (Principal K

NetCo
) Extend(TVar X))

(Says (Principal K
Bob

) Extend(TVar X)))))",

"enc" : sig(K−1
Bob

, ⌊τdelegate ⌋)}],
"prog": ⌊reconfig⌋

}

Figure 7: PCNC wire format example, with definitions from
Section 4 reconfiguration scenario.

In our implementation we generate and check signatures using the

Ring cryptography library [36]. Note, however, that the client does

not require access to private keys, so it can use credentials signed

and provided by non-local sources.

The client parses p, e , and Γ to a serialized format, associates sig-

natures with their credentials, and generates a JSON object match-

ing the schema defined in Figure 6. An example PCNCmessage that

instantiates this schema with definitions from Section 4, specifically

the reconfiguration scenario embodied in proof term witness1 and
program reconfig, is given in Figure 7. We show some details of the

proof witness and credentials in serialized format to give a flavor

of the syntax, while we elide details of the cryptographic material

and the serialized format of NetKAT programs.

5.2 Server and Configuration Workflow
The PCNC server receives messages and processes them—it verifies

that requests are authorized, that submitted reconfiguration pro-

grams adhere to behavioral policies, and then compiles and deploys

derived tables to network components. The server has the following

components:

i. A parser that converts JSON-formatted PCNC messages to ele-

ments Γ, e , p, and a list of signatures sigs indexed by credential

name.

ii. An authorization check to prove that the request is allowed

given the proof witness e and credentials in Γ.

Message
Parser

OpenFlow v1.3 tables

Authorization
Check

Behavioral
Check

Network Configuration

PCNC message

Figure 8: PCNC server workflow.

iii. A behavioral check to verify p ≼ spec given a policy specifica-

tion spec.
iv. Frenetic compilation of p to Open Flow v1.3 tables.

v. Deployment of tables to network devices.

We describe authorization and behavioral checks in more detail as

follows. Compilation and deployment to OpenFlow tables use ex-

isting Frenetic technology. As discussed in Section 2.3.1, behavioral

verification (item iii) is based on an existing bisimulation algorithm,

but our implementation includes some new optimizations.

5.2.1 Authorization Check. In the authorization check, we first

verify that sigs(cred) is a valid signature for Γ(cred) = KA Says τ for

each cred ∈ domain(Γ), using the public key KA in the credential

itself. Following this verification step, we type check �, Γ ⊢ e :

reconfig(p). This type check verifies authorization, as well as the

authenticity and integrity of p, as discussed in Section 3.1.

5.2.2 Behavioral Check. To perform the behavioral check, we

obtain A(spec) and A(p+ spec), which are the determinized NetKAT

automata derived from spec and p + spec, respectively. Then we

check A(p + spec) ∼ A(spec) using the algorithm described in Sec-

tion 2.3, leveraging FDD-based optimizations discussed in Section

3.2. This verifies that p ≼ spec and thus behavioral compliance of

p. The authorization and behavioral components together obtain

validity of the target System FSays judgment for PCNC verification

as described at the very end of Section 3.

5.3 Virtual Network Experiment
We first used a virtual network environment to evaluate the efficacy

and usefulness of PCNC proof for authorization and NetKAT for

defining policy on the data plane. Specifically, we used Mininet [39]

with Frenetic [12] to create a virtual network topology with routers

in an SDN environment, that is endowed with PCNC server capa-

bilities. Our network configuration shown in Figure 5 reflects the

case study introduced in Section 1 and formalized in the PCNC

framework in Section 4.

The topology specifications and configuration, reconfiguration,

and extension programs we tested are essentially the same as de-

fined in Section 4.2, except there we made some simplifications that

need to be fleshed out for testing in Mininet (and on real platforms).

For example addresses H3, H4, and H5 need to be replaced with

real IP addresses. And unfortunately Frenetic uses OpenFlow 1.0

that does not provide the metadata field (OpenFlow 1.1 or later

versions support the metadata field), but we circumvent this hurdle

by using the vlanID field, specifically assigned to values 1000 or

1001 to denote PUB and 911 flags, respectively. The NetKAT policies

CCS ’19, November 11–15, 2019, London, United Kingdom Skalka et al.

wireless
access point

fitbit sleep tracker

blood pressure
monitor

NAT
Internet

fitbit server

iHealth server

Frenetic
PCNC

Edge router

edge device

Figure 9: Real network testbed with a Fitbit Charge 3 for
sleep tracking and an iHealth Feel wireless blood pressure
monitor.

Network Packets

Type Initial Reconfig.

No. Destination TCP port

1 104.16.65.50 443 PUB ✓ ✓
2 104.16.66.50 443 PUB ✓ ✓
3 89.30.121.150 443 911 ✗ ✓
4 151.101.146.217 443 911 ✗ ✓
5 129.21.62.150 443 PUB ✓ ✓

Table 1: Packets that are allowed (✓) or blocked (✗) for the
initial policy and after the policy reconfiguration.

were implemented in OCaml [21]. The policies were tested with

the Linux utility nc to facilitate communication channels between

the destination hosts and the device hosts.

5.3.1 Results. The size of the tested PCNCmessages were 2.6KB

including all cryptographic material which constitutes the bulk of

the encoding. Authorization and behavioral verification on an x86-

64 laptop computer as implemented for the Mininet version of the

server takes 0.172 seconds. The size of the PCNC server binary for

x86-64 is 19.3MB for the verification components and cryptography

library, and 47MB for the Frenetic codebase.

The results from this testing also show that the edge router

allows packets with proper header information to pass—i.e., packets

with PUB go to H3 while packets with 911 are forwarded to H4.

The router also successfully drops packets with improper header

information. All of the source code for the policies and documents

on how to run them with Frenetic and Mininet is available online.
2

5.4 Real Network Testbed
We also tested PCNC in a real network. In this section we discuss

configuration with hardware and software components, and evalua-

tion of the use case. Notably, we show that PCNC can run effectively

on embedded devices such as Raspberry Pis, an attractive platform

for adding security and privacy protections in home IoT systems.

5.4.1 Testbed Configuration. As shown in Figure 9, the testbed

consists of two IoT devices connected to their remotely-located

servers through an edge router. The two IoT devices are a Fitbit

Charge 3 [11] for tracking sleep data and an iHealth Feel wireless

2
https://github.com/uvm-plaid/PCNC_CCS_2019

Match Action

IP4Dst = 104.16.65.50 Vlan = 1000 EthType = 0x800 (ip) Output(1)

IP4Dst = 104.16.66.50 Vlan = 1000 EthType = 0x800 (ip) Output(1)

Table 2: The flow table at the edge router before the reconfig-
uration where the destination IP addresses are the two fitbit
servers, VLAN is used as the metadata field (VLAN = 1000
represents PUB), and the outgoing port is 1.

blood pressure monitor [20]. The Fitbit Charge tracks the sleep ac-

tivities of the user, and periodically sends data to the Fitbit servers

running on Cloudflare [9] via its app on an Android phone. Simi-

larly, the blood pressure monitor aggregates blood pressure data

and communicates with the Withings servers [40] via the iHealth

app on the phone. The phone connects to a wireless access point,

then to the edge router that runs Open VSwitch (OVS version 2.7)

[30] for external communication. We used a Raspberry Pi 3 Model

B+ with a 1.4GHz 64-bit quad-core processor [14], wireless LAN,

Bluetooth, and Ethernet for both the switch and access points. We

used the Linux host access point daemon (hostapd) to turn the Pi to

a virtual access point and to create a virtual LAN, and dnsmasq as a
lightweight DHCP and caching DNS server. We used a laptop with

a 2.2 GHz Intel Core i7 and 16GB RAM as the NAT server that is

connected to the switch through an Ethernet interface, and another

laptop for the edge device that also receives the same data from

the fitbit. We bridge the wireless and Ethernet interfaces via bridge-
utils available in Ubuntu. The OVS data plane is controlled by a

Frenetic controller component of the PCNC server which is located

on the Raspberry Pi, that performs verification and deployment of

programs via OpenFlow. In fact it would be easy to also incorporate

the NAT server on the Raspberry Pi, indicating the feasibility of a

low-cost embedded platform to support PCNC functionality.

5.4.2 Authorization and Behavioral Policies. The PCNC server

runs on the Raspberry Pi and uses the same implementation as de-

veloped for the Mininet experiment. The wire format is as defined

previously, and for this experiment we assume the same authoriza-

tion proof target, credentials, etc. as for the Mininet experiment.

The PCNC evaluation example for the Raspberry Pi-based server is

therefore the same as in Figure 7, except with modifications to the

reconfiguration program and specification.

Again, we use vlanID values of 1000 and 1001 to denote PUB and

911 data, respectively. The firewall component of the behavioral

policy specification for the testbed server is as follows. A technical

detail is that this specification allows for messages sent via UDP

protocol for DNS lookups (via the condition ipProto = 17) as
required by the testbed for initialization:

(filter (not (switch = 346653522121)) or
(switch = 346653522121 and
((vlanId=1000 and ip4Dst=104.16.65.50 and tcpDstPort=443) or
(vlanId=1000 and ip4Dst=104.16.66.50 and tcpDstPort=443) or
ipProto = 17)))

Emergency data (911) from the iHealth app is sent specifically to

either 89.30.121.150:443 or 151.101.146.217:443, which are the With-

ings cloud servers, while public data (PUB) from the fitbit is sent to

the fitbit servers at 104.16.65.50:443 and 104.16.66.50:443. The public

https://github.com/uvm-plaid/PCNC_CCS_2019

Proof-Carrying Network Code CCS ’19, November 11–15, 2019, London, United Kingdom

Match Action

IP4Dst = 104.16.65.50 Vlan = 1000 EthType = 0x800 (ip) SetField(ipDst, 129.21.62.150) Output(1) + Output(1)

IP4Dst = 104.16.66.50 Vlan = 1000 EthType = 0x800 (ip) SetField(ipDst, 129.21.62.150) Output(1) + Output(1)

IP4Dst = 151.101.146.217 Vlan = 1001 EthType = 0x800 (ip) Output(1)

IP4Dst = 89.30.121.150 Vlan = 1001 EthType = 0x800 (ip) Output(1)

Table 3: The flow table at the edge router after the reconfiguration where two new entries are added with VLAN = 1001, which
denotes 911, destined to the iHealth servers for blood pressure data.

data (PUB) is also replicated to the edge device at 129.21.62.150. In

Table 1, the types of packets are displayed with their destination

before and after the reconfiguration. The reconfiguration firewall

also specifies an additional well-formedness condition that TCP

destination port 443 should be used for all communications:

(filter (not (switch = 346653522121)) or
(switch = 346653522121 and

((vlanId=1000 and ip4Dst=104.16.65.50 and tcpDstPort=443) or
(vlanId=1000 and ip4Dst=104.16.66.50 and tcpDstPort=443) or
(vlanId=1001 and ip4Dst=89.30.121.150 and tcpDstPort=443) or
(vlanId=1001 and ip4Dst=151.101.146.217 and tcpDstPort=443) or
ipProto = 17)))

Additionally, the forwarding policy is revised to duplicate pack-

ets from H3 to H5 for the extended network presented in Sec-

tion 4.2.2. The firewall policy is not changed as we use the second

approach (see Section 4.2.2) since the iHealth device allows only

one destination address to be specified. The revised forwarding

policy is:

(if switch = 346653522121
then (ip4Dst := 104.16.66.50; port := 1

+ ip4Dst := 129.21.61.113; port := 1)
else port := 55555 (* packet drop *))

where the IP address of H5 is 129.21.61.113.

5.4.3 Results. As for the Mininet example, the case study PCNC

messages for the testbed are 2.6KB including all cryptographic

material which constitutes the bulk of the encoding. Authorization

and behavioral verification on the Raspberry Pi server takes 0.444

seconds. The size of the PCNC server binary for Raspberry Pi is

13MB for the verification components and cryptography library,

and 27MB for the Frenetic codebase.

In Tables 2 and 3, part of the flow tables is shown, specifically

the entries for forwarding from the devices to the servers, before

and after the reconfiguration in the OVS switch. In the initial flow

table, the packets destined to either 151.101.146.217 or 89.30.121.150

(with VLAN = 1001, i.e., emergency data from iHealth) are blocked,

while other traffic (data from fitbit, i.e., VLAN = 1000) is forwarded

to outgoing port 1, where Output(n) means that traffic is to be

replicated to port n. After the reconfiguration and extension, the

flow table (Table 3) is changed to forward both the PUB and 911

traffic to the outgoing port, i.e., the emergency data is no longer

blocked, and the data is replicated to another destination set by

SetField(ipDst, 129.21.62.150). We also captured packets from the

ingress and egress ports of the switch to ensure that the installed

policy takes effect. The flow tables and entire .pcap file containing

the captured packets are available online.
3

3
https://github.com/uvm-plaid/PCNC_CCS_2019

6 CONCLUSION
In this paper we developed the Proof Carrying Network Code

(PCNC) framework, that allows software defined network (SDN)

programming by multiple, possibly non-local administrative do-

mains in a secure manner. PCNC provides features for checking

authorization of administrative domains for network programming,

and allows programs themselves to be verified with respect to be-

havioral policy specifications.

PCNC is based on mathematically well-founded theories, specif-

ically Nexus Authorization Logic and the NetKAT programming

language. We developed a method for verifying behavioral proper-

ties that leverages the decidable equational theory of NetKAT. We

also introduced a new language and type theory called System FSays
that provides proof terms for an authorization logic via a types-as-

formulas correspondence.

To evaluate the practicality of PCNC, we implemented it in both

simulated and real network settings, and considered the use-case

scenario of an home health monitoring network. The latter incor-

porated a sleep monitor, where privacy concerns are relevant, and

a heart rate monitor that may report emergency data that must be

allowed to escape the network. We showed how PCNC can be used

to support these sorts of applications and security concerns, while

allowing external users to reconfigure local networks, even when

direct trust relationships do not exist with those users as in a feder-

ated setting. Our results show that the PCNC system can support

authorization, verification, and deployment of network programs

efficiently and with a small binary footprint, even when installed

on embedded devices. PCNC messages themselves are shown to be

of manageable size in our case study.

ACKNOWLEDGMENTS
The authors wish to thank the CCS reviewers, Jonathan Dilorenzo,

Ryan Doenges, and Fred Schneider for helpful comments and sug-

gestions. Hossein Hojjat, Mark Reitblatt, and Lindsey Stuntz con-

tributed many early ideas related to PCNC. This work was sup-

ported in part by the NSF under grants 1413972, 1717581, 1718036,

and 1718083, and gifts from Fujitsu and InfoSys.

REFERENCES
[1] M. Abadi. 2003. Logic in access control. In IEEE Symposium of Logic in Computer

Science (LICS). 228–233. https://doi.org/10.1109/LICS.2003.1210062
[2] Martín Abadi. 2006. Access Control in a Core Calculus of Dependency. In ACM

International Conference on Functional Programming (ICFP). 263–273. https://doi.
org/10.1145/1159803.1159839

[3] Martín Abadi. 2008. Variations in Access Control Logic. In International Confer-
ence on Deontic Logic in Computer Science (DEON). 96–109. https://doi.org/10.

1007/978-3-540-70525-3_9

https://github.com/uvm-plaid/PCNC_CCS_2019
https://doi.org/10.1109/LICS.2003.1210062
https://doi.org/10.1145/1159803.1159839
https://doi.org/10.1145/1159803.1159839
https://doi.org/10.1007/978-3-540-70525-3_9
https://doi.org/10.1007/978-3-540-70525-3_9

CCS ’19, November 11–15, 2019, London, United Kingdom Skalka et al.

[4] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Founda-

tions for Networks. In ACM Symposium on Principles of Programming Languages
(POPL).

[5] Andrew W. Appel and Edward W. Felten. 1999. Proof-carrying Authentication.

In ACM Conference on Computer and Communications Security (CCS). 52–62.
https://doi.org/10.1145/319709.319718

[6] Ljudevit Bauer. 2003. Access Control for the Web via Proof Carrying Authorization.
Ph.D. Dissertation. Princeton University.

[7] Qiang Cao, Vamsi Thummala, Jeffrey S. Chase, Yuanjun Yao, and Bing Xie. 2017.

Certificate Linking and Caching for Logical Trust. CoRR abs/1701.06562 (2017).

http://arxiv.org/abs/1701.06562

[8] Peter Chapin, Christian Skalka, and X. Sean Wang. 2008. Authorization in Trust

Management: Features and Foundations. Comput. Surveys 40, 3 (2008), 1–48.
[9] CloudFlare. 2019. Cloudflare. (2019). https://www.cloudflare.com/.

[10] Heather Crawford, Karen Renaud, and Tim Storer. 2013. A framework for con-

tinuous, transparent mobile device authentication. Elsevier Computers & Security
39 (2013), 127–136.

[11] fitbit. 2019. Fitbit Charge 3. (2019). https://www.fitbit.com/home.

[12] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer

Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming

Language. In ACM International Conference on Functional Programming (ICFP).
279–291.

[13] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thomp-

son. 2015. A Coalgebraic Decision Procedure for NetKAT. In ACM Symposium on
Principles of Programming Languages (POPL). 343–355. https://doi.org/10.1145/
2676726.2677011

[14] Raspberry Pi Foundation. 2019. Raspberry Pi 3 Model B+. (2019).

https://www.raspberrypi.org/.

[15] Deepak Garg. 2007. An Introduction to Proof-Carrying Authorization. (2007).

https://people.mpi-sws.org/~dg/papers/intro-pca.pdf Course notes for CMU

18-739: Foundations of Security and Privacy.

[16] Deepak Garg and Martín Abadi. 2008. A Modal Deconstruction of Access

Control Logics. In Proceedings of the Theory and Practice of Software, 11th In-
ternational Conference on Foundations of Software Science and Computational
Structures (FOSSACS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 216–230.
http://dl.acm.org/citation.cfm?id=1792803.1792819

[17] Deepak Garg and Frank Pfenning. 2012. Stateful Authorization Logic—Proof

Theory and a Case Study. Journal of Computer Security 20, 4 (July 2012), 353–391.

http://dl.acm.org/citation.cfm?id=2590602.2590605

[18] Arpit Gupta, Nick Feamster, and Laurent Vanbever. 2016. Authorizing Network

Control at Software Defined Internet Exchange Points. In Proceedings of the
Symposium on SDN Research (SOSR ’16). ACM, New York, NY, USA, Article 16,

6 pages. https://doi.org/10.1145/2890955.2890956

[19] Andrew K. Hirsch and Michael R. Clarkson. 2013. Belief Semantics of Authoriza-

tion Logic. In ACM Conference on Computer and Communications Security (CCS).
561–572. https://doi.org/10.1145/2508859.2516667

[20] iHealth. 2019. iHealth. https://ihealthlabs.com/. (2019).

[21] INRIA. 2019. OCaml. (2019). https://ocaml.org/.

[22] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In USENIX Symposium on Network Sys-
tems Design and Implementation (NSDI).

[23] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten

Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In

USENIX Symposium on Network Systems Design and Implementation (NSDI).
[24] Dexter Kozen. 1997. Kleene algebra with tests. Transactions on Programming

Languages and Systems 19, 3 (May 1997), 427–443.

[25] Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. 2013. Towards Secure

and Dependable Software-defined Networks. In ACM SIGCOMMWorkshop on
Hot Topics in Software Defined Networking (HotSDN). 55–60. https://doi.org/10.
1145/2491185.2491199

[26] Dan Mihai, James Martucci, and Kenneth Kohler. 2004. System and method for

medical device authentication. (Aug. 2004). US Patent App. 10/748,762.

[27] Takayuki Miura, Tsuyoshi Ono, Naoshi Suzuki, and Kouji Miyata. 2010. Device

authentication system. (Mar. 2010). US Patent 7,681,033.

[28] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David

Walker. 2013. Composing Software Defined Networks. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Lombard, IL.

[29] George C. Necula. 1997. Proof-carrying Code. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). 106–119. https:

//doi.org/10.1145/263699.263712

[30] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross, A.

Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado. 2015. The Design and

Implementation of Open vSwitch. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 117–130.

[31] Frank Pfenning and Rowan Davies. 2001. A Judgmental Reconstruction of Modal

Logic. Mathematical. Structures in Comp. Sci. 11, 4 (Aug. 2001), 511–540. https:
//doi.org/10.1017/S0960129501003322

[32] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,

and Guofei Gu. 2012. A Security Enforcement Kernel for OpenFlow Networks. In

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networks (HotSDN).
121–126. https://doi.org/10.1145/2342441.2342466

[33] Yue Qiu and Maode Ma. 2016. A mutual authentication and key establishment

scheme for m2m communication in 6lowpan networks. IEEE transactions on
industrial informatics 12, 6 (2016), 2074–2085.

[34] Freddy K Santoso and Nicholas CH Vun. 2015. Securing IoT for smart home

system. In IEEE International Symposium on Consumer Electronics (ISCE). 1–2.
[35] Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer. 2011. Nexus Authorization

Logic (NAL): Design Rationale and Applications. ACM Trans. Inf. Syst. Secur. 14,
1, Article 8 (June 2011), 28 pages. https://doi.org/10.1145/1952982.1952990

[36] Brian Smith. 2019. ring cryptography API for Rust. (2019). https://github.com/

briansmith/ring

[37] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. 2015. A Fast

Compiler for NetKAT. In ACM International Conference on Functional Program-
ming (ICFP). 328–341. https://doi.org/10.1145/2858949.2784761

[38] Richard Statman. 1979. Intuitionistic propositional logic is polynomial-space

complete. Theoretical Computer Science 9, 1 (1979), 67 – 72. https://doi.org/10.

1016/0304-3975(79)90006-9

[39] Mininet Team. 2019. Mininet. (2019). http://mininet.org/.

[40] withings. 2019. Withings BPM Core. (2019). https://www.withings.com/.

A System FSays DEFINITION
Section 3 presented a summary of System FSays . This appendix

provides a more complete definition.

The syntax of System FSays is given in Figure 10. The language

is an extension of System F with a Says monad to represent the

Says modality in NALlight , and other features to represent NALlight
connectives. Types τ of System FSays have a tight correspondence

with NALlight formulas F . The System F fragment of System FSays
is adequate to represent implication and higher order quantification

as in NALlight , and the addition of sum (+) and product (×) types are

adequate to represent disjunction and conjunction. The Saysmonad

is realized using the return and bind style. Existential quantification

is realized using standard pack and unpack terms. The predicate

reconfig(p) asserts the intent to install configuration program p,
while p ≼ q asserts semantic containment of p in q. The language
could be endowed with a type preserving reduction semantics [31],

but we leave this as future work.

The System FSays type derivation rules are given in Figure 11.

There are two main judgment forms, well-formedness, S ⊢ τ where

S is a set of variables assumed to be in scope and τ is required to

have no free variables outside of S , and typing judgments S, Γ ⊢ e : τ
where Γ is a free variable typing environment. These rules are fairly

standard and include System F-style polymorphism, existential

quantification for pack and unpack, and monadic typing rules for

return and bind. Most notable is the Equiv rule, which is predicated

on the NetKAT equivalence p ≡ q.

https://doi.org/10.1145/319709.319718
http://arxiv.org/abs/1701.06562
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://people.mpi-sws.org/~dg/papers/intro-pca.pdf
http://dl.acm.org/citation.cfm?id=1792803.1792819
http://dl.acm.org/citation.cfm?id=2590602.2590605
https://doi.org/10.1145/2890955.2890956
https://doi.org/10.1145/2508859.2516667
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1145/2342441.2342466
https://doi.org/10.1145/1952982.1952990
https://github.com/briansmith/ring
https://github.com/briansmith/ring
https://doi.org/10.1145/2858949.2784761
https://doi.org/10.1016/0304-3975(79)90006-9
https://doi.org/10.1016/0304-3975(79)90006-9

Proof-Carrying Network Code CCS ’19, November 11–15, 2019, London, United Kingdom

p ∈ prog B . . . NetKAT Programs

X ∈ tvar B . . . type variables

A ∈ pals B . . . principles

τ ∈ type F unit | τ + τ | τ × τ | τ → τ | X | ∀X .τ | ∃X .τ |
τ Says τ | install(τ) | τ ≼ τ | p | A

x ∈ var B . . . term variables

e ∈ exp F tt | unit
inl(e) as · + τ | inr(e) as τ + · | case(e){x .e }{x .e } | sums
⟨e, e ⟩ | projl(e) | projr(e) | products
x | let x B e in e | λ(x : τ).e | e(e) | variables, let and functions
ΛX .e | e[τ] | ⟨∗τ , e ⟩ as ∃X .τ | let ⟨∗X , x ⟩ B e in e | existential quantification
ret

A(e) | x ← e ; e | e ≼ e | p

v ∈ val F tt | unit
inl(v) as · + τ | inr(v) as τ + · | sums
⟨v, v ⟩ | products
λ(x : τ).e |
ΛX .e | ⟨∗τ , v ⟩ as ∃X .τ | existential quantification
ret

A(v) | p ≼ p program equivalence

Γ ∈ tenv B var ⇀ type type environment

S ∈ scope B ℘(tvar) type scope

Figure 10: System FSays Syntax

Scope Well-formedness S ⊢ τ

Unit

S ⊢ unit

Sum

S ⊢ τ1 S ⊢ τ2
S ⊢ τ1 + τ2

Prod

S ⊢ τ1 S ⊢ τ2
S ⊢ τ1 × τ2

Fun

S ⊢ τ1 S ⊢ τ2
S ⊢ τ1 → τ2

TVar

X ∈ S

S ⊢ X

Forall

S ∪ {X } ⊢ τ

S ⊢ ∀X .τ

Exists

S ∪ {X } ⊢ τ

S ⊢ ∃X .τ

Says

S ⊢ τ

S ⊢ A Says τ

Equiv

S ⊢ p ≼ p′

Type Well-formedness S, Γ ⊢ e : τ

TT

S, Γ ⊢ tt : unit

Inl

S ⊢ τ2 S, Γ ⊢ e : τ1
S, Γ ⊢ inl(e) as · + τ2 : τ1 + τ2

Inr

S ⊢ τ1 S, Γ ⊢ e : τ2
S, Γ ⊢ inr(e) as τ1 + · : τ1 + τ2

Case

S, Γ ⊢ e1 : τ1 + τ2 S, Γ[x 7→ τ1] ⊢ e2 : τ S, Γ[y 7→ τ2] ⊢ e3 : τ

S, Γ ⊢ case(e1){x .e2 }{y .e3 } : τ

Pair

S, Γ ⊢ e1 : τ1 S, Γ ⊢ e2 : τ2
S, Γ ⊢ ⟨e1, e2 ⟩ : τ1 × τ2

Projl

S, Γ ⊢ e : τ1 × τ2
S, Γ ⊢ projl(e) : τ1

Projr

S, Γ ⊢ e : τ1 × τ2
S, Γ ⊢ projr(e) : τ2

Var

Γ(x) = τ

S, Γ ⊢ x : τ

Let

S, Γ ⊢ e1 : τ1 S, Γ[x 7→ τ1] ⊢ e2 : τ2
S, Γ ⊢ let x B e1 in e2 : τ2

Lambda

S ⊢ τ1 S, Γ[x 7→ τ1] ⊢ e : τ2
S, Γ ⊢ λ(x : τ1).e : τ1 → τ2

Apply

S, Γ ⊢ e1 : τ1 → τ2 S, Γ ⊢ e2 : τ1
S, Γ ⊢ e1(e2) : τ2

TypeLambda

S ∪ {X }, Γ ⊢ e : τ

S, Γ ⊢ ΛX .e : ∀X .τ

TypeApply

S ⊢ τ ′ S, Γ ⊢ e : ∀X .τ

S, Γ ⊢ e[τ ′] : [τ ′/X]τ

Pack

S, Γ ⊢ e : [τ ′/X]τ

S, Γ ⊢ ⟨∗τ ′, e ⟩ as ∃X .τ : ∃X .τ

Unpack

S \ {X } ⊢ τ2 S, Γ ⊢ e1 : ∃X .τ1 S ∪ {X }, Γ[x 7→ τ1] ⊢ e2 : τ2
S, Γ ⊢ let ⟨∗X , x ⟩ B e1 in e2 : τ2

Ret

S, Γ ⊢ e : τ

S, Γ ⊢ retA(e) : A Says τ

Bind

S, Γ ⊢ e1 : A Says τ1 S, Γ[x 7→ τ1] ⊢ e2 : A Says τ2
S, Γ ⊢ x ← e1 ; e2 : A Says τ2

Contains

q ≡ p + q

S, Γ ⊢ p ≼ q : p ≼ q

Figure 11: System FSays Type Derivation Rules.

	Abstract
	1 Introduction
	1.1 Overview and Foundations
	1.2 Contributions and Related Work

	2 PCNC Foundations
	2.1 Authorization Logic
	2.2 Network Programming
	2.3 Decidable Behavioral Properties

	3 The PCNC Framework
	3.1 Authorization in System FSays
	3.2 Behavioral Verification in NetKAT

	4 PCNC Instance: Case Study
	4.1 Authorization
	4.2 Behavioral Verification
	4.3 Additional Concerns

	5 PCNC Implementation
	5.1 Client and Wire Format
	5.2 Server and Configuration Workflow
	5.3 Virtual Network Experiment
	5.4 Real Network Testbed

	6 Conclusion
	Acknowledgments
	References
	A System FSays Definition

