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Abstract

Sledgehammer is a tool that integrates external automatic theorem provers (ATPs) into
the Isabelle/HOL proof assistant, allowing users to delegate proof search to the computer.
To guard against bugs, ATP proofs must be reconstructed in Isabelle. Reconstructing
complex proofs involves translating them to detailed Isabelle proof texts, using suitable
proof methods to justify the inference steps. This thesis addresses the main issues that
have prevented previous implementations of this approach from working in practice:
Sledgehammer now reconstructs skolemization inferences correctly, and it equips proof texts
with the right amount of type annotations to ensure formulas are parsed correctly without
overwhelming them with types. In addition, Sledgehammer now employs algorithms to
test and optimize its output, resulting in simpler, faster, and more robust proofs.
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1 Introduction

Sledgehammer [20] is a proof tool that connects the Isabelle/HOL proof assistant [17] with
external automatic theorem provers (ATPs), including first-order resolution provers and
SMT solvers. Given an interactive proof goal, it heuristically selects hundreds of facts
(lemmas, definitions, and axioms) from Isabelle’s vast libraries, translates them to first-order
logic (FOL), and invokes the external provers. Although Sledgehammer may be trusted
as an oracle most users are satisfied only once the proof has been reduced to Isabelle
primitives and been verified by the kernel.

When Sledgehammer was originally conceived, the plan was to have it deliver detailed
proofs in Isabelle’s Isar language [30], a textual, human-readable format inspired by Mizar
[14]. Paulson and Susanto [21] designed a prototype that performs inference-by-inference
translation of ATP proofs into Isar proofs and justifies each Isar inference using metis, a
proof method based on Hurd’s Metis resolution prover [11]. This idea was abandoned for
several reasons: The resulting proofs by contradiction were unpalatable, so that users were
disinclined to insert them in their theory text; they were often syntactically incorrect due to
technical issues; and a single metis call with the short list of needed lemmas, a metis one-liner,
usually sufficed to re-find the proof.

Proof reconstruction with metis one-liners means that the proof must be re-found each
time the Isabelle theory text is processed. This sometimes fails for difficult proofs that
metis cannot re-find within a reasonable time and is vulnerable to small changes in the
formalization. It also provides no answer to users who would like to understand the
proof—whether it be novices who expect to learn from it, experts who must satisfy their
curiosity, or merely skeptics. But perhaps more importantly, metis supports no theories
beyond equality, which is becoming a bottleneck as automatic provers are being extended
with dedicated procedures for theory reasoning. The Z3-based smt proof method [5] is a
powerful alternative to metis, but it depends on the availability of Z3 on the user’s machine
for proof replay, which hinders its acceptance among users. Moreover, due to its incomplete
quantifier handling, it can fail to re-find a proof generated by a resolution prover.

IFor many years, Sledgehammer employed type-unsound encodings by default [15], making it unsuitable as
an oracle. Newer versions use optimized type-sound encodings [4].



1 Introduction

The remedy to all these issues is well known: to generate detailed, structured Isar proofs

based on the machine-generated proofs, as originally envisioned by Paulson and Susanto.

The first issue is that the Isar proof, like the underlying ATP proof, is by contradiction. A

paper by Blanchette describes an algorithm that turns such proofs around [3]]. This thesis

describes further enhancements that increase the intelligibility, efficiency, and robustness

of the output and that are implemented in Sledgehammer’s proof translation pipeline

(Chapter3).

Skolemization: Sledgehammer communicates with ATPs in full FOL as opposed to
quantifier-free clause normal form (CNF). Skolemization is performed by the external
ATPs, but it must be reconstructed in Isar (Chapter .

Type annotations: Isabelle can generate strings from formulas, but it does not always un-
derstand its own output. Terms are often read back with overly general polymorphic
types, resulting in failures. Annotating each subterm with type constraints impedes
readability. Instead, Sledgehammer now employs an algorithm that introduces a
minimal, complete set of type annotations (Chapter ).

Proof preplay: Sledgehammer users waste precious time on proofs that fail or take too
long. Proof preplay addresses this by testing the generated proofs for a few seconds
before presenting them to users. If several proofs are available, users can choose the

fastest one and insert it in their theory text (Chapter [p).

Proof optimization: The generated proofs can be manipulated in several ways to obtain
faster, simpler, and more robust proofs. Sledgehammer now compresses straightfor-
ward chains of deduction into single Isar inferences, replaces metis with faster methods

were possible, and eliminates needless dependencies and proof steps (Chapter 7).

These enhancements are demonstrated in a case study in Chapter

Most contributions of this thesis were published in a paper [24] at the PxTP workshop

2013. The material from [24] has been included in this thesis with the permission of the

coauthor. The abstract, Chapters|[I]-|fland Chapter 9| were adapted from the paper with only

little changes; Section [7.1|shares some text with the paper.




2 Isabelle/HOL

The Isabelle/HOL proof assistant is based on polymorphic higher-order logic (HOL) [8]
extended with axiomatic type classes [29]. The types and terms of HOL are that of the
simply-typed A-calculus [6] augmented with type constructors, type variables, and term
constants.

The types are either type variables (e.g., a, 3) or n-ary type constructors, usually written
in postfix notation (e.g, « list). Nullary type constructors are also called type constants (e.g.,
nat). The binary type constructor o — 3 is interpreted as the (total) function space from o
to 8. Type variables can carry type class constraints, which are essentially predicates on the
types.

Terms are either constants (e.g., map), variables (e.g., z), function applications (e.g., f z),
or M-abstractions (e.g., Az. f z x). Constants and variables can be functions. HOL formulas
are simply terms of type bool. The familiar connectives and quantifiers are predefined (-, A,
V, —, ¥, 9). Constants can be polymorphic; for example, map :: (a« — ) — « list — [ list
applies a unary function elementwise to a list of o elements.

Isabelle is a generic theorem prover whose metalogic is an intuitionistic fragment of
HOL. In the metalogic, propositions have type prop, universal quantification is written A,
implication is written =, and equality is written =. The object logic is embedded in the
metalogic using a constant Trueprop :: bool — prop, which is normally not printed. Some
foundational properties can only be expressed in the metalogic, but they play no role in
Sledgehammer. Readers unfamiliar with this two-layer design may safely pretend there is
just one logic.

Types are inferred using Hindley—Milner inference. Type annotations :: 7 give rise to
additional constraints that further restrict the inferred types. A classic example where type
annotations are needed is 2 + 2 = 4. Without type annotations, the formula is parsed as
(2::a) 4+ (2:: ) = (4:: a), where a belongs to the numeric type class, which defines basic
numeric operators and syntax but imposes no semantics on the “numbers.” An annotation
is necessary to make the formula provable—e.g., (2 :: int) + 2 = 4. A single annotation is
sufficient because of the constraints arising from the most general types of the involved
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operators: op + :: @ - a — aand op = :: o« — o — bool.




3 The Translation Pipeline

The translation from an ATP proof to an Isar proof involves two main intermediate data
structures. The ATP proof is first parsed and translated into a proof by contradiction with
the same structure but with HOL formulas instead of first-order formulas. The proof is
then transformed into a direct proof, from which the Isar proof text is synthesized. Various

operations are implemented on these data structures to enhance the proof.

3.1 ATP Proof

Paulson and Susanto had the foresight to choose TSTP (Thousands of Solutions for Theorem
Provers) [26] as input format for their prototype. Among the automatic provers they wanted
to integrate with Isabelle, only E [23]] supported the format at the time. Nowadays, most
provers feature some support for TSTP.

TSTP specifies the basic syntax for representing proofs as a directed acyclic graph of
inferences. A single parser can be used to integrate all provers that can generate the
syntax. However, the format does not mandate any proof system; hence, interfacing a
new ATP usually requires some work, especially for processing inferences that introduce
new symbols (e.g., skolemization). Isar proof construction is currently supported for the
resolution provers E and Vampire [22] and the unit-equality prover Waldmeister [10].

SPASS generates proofs in its custom DFG format only (even though it can parse TPTP
FOF [25]]). Fortunately, DFG is based on similar concepts and can be represented using the

same data structure as TSTP in memory, so it is also supported to a large extent.

3.2 Proof by Contradiction

The ATP proof is translated into an Isabelle proof by contradiction. This step preserves the
graph structure of the proof, but the nodes are labeled by HOL formulas.
Some consolidation can already take place at this level. ATPs tend to record many more

inferences than are interesting to Isabelle users. For example, trivial operations such as
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clausification and variable renaming produce linear inference chains that can be collapsed.

This translation corresponds largely to the work by Paulson and Susanto. We refer to
their paper [21] for details. In particular, they describe how HOL terms, types, and type
classes are reconstructed from their encoded FOL form. Their code had to be adapted to
cope with the variety of type encodings supported by newer versions of Sledgehammer [4],
but nonetheless their description fairly accurately describes the current state of affairs.

3.3 Direct Proof

The proof redirection algorithm [3] takes a proof by contradiction as the input and produces
a direct proof. The latter can be regarded as a fragment of Isar proofs. The abstract syntax

of proofs (7) and inferences (v) is given by the production rules

= (fix 2*)* (assume l: ¢)* 1*
t=proveqg l: ¢ I* 1" m

| obtain ¢* z* wherel: ¢ I* 1 m

where z ranges over HOL variables (which may be of function types), ¢ over HOL formulas,
[ over Isar fact labels (names), and ¢ over Isar qualifiers (then and show); m denotes a proof
method and is initially set to metis. Asterisks (*) denote repetition. Nested proof blocks are
possible, as indicated by the syntax 7*.

A fix command fixes the specified variables in the local context, and assume enriches
the context with an assumption. Standard inferences are performed using prove. Its variant
obtain proves the existence of HOL variables for which a property holds; the variables are
added to the context.

Once the direct proof has been constructed, it is optimized and preplayed. Finally,
qualifiers are introduced: then indicates that the previous fact is needed to prove the
current fact, whereas show is required for the last inference in the top-level block. The then
keyword is only a convenience; the same effect can be achieved less elegantly using labels.
At the end, useless labels are removed, and the remaining labels are changed to f1, 2, etc.

3.4 Isar Proof

The final step of the translation pipeline produces a textual Isar proof. This step is straight-
forward, but some care is needed to generate strings that can be parsed back correctly by
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Isabelle. This is especially an issue for formulas, where type annotations might be needed.

3.5 Example

The following Isabelle theory fragment declares a two-valued state datatype, defines a flip

function, and states a conjecture about flip:

datatype state = On | Off

fun flip :: state — state where
flip On = Off |
flip Off = On

lemma flipz # x

Invoking Sledgehammer launches a collection of ATPs (typically, E, SPASS, Vampire, and
Z3). The conjecture is easy, so they rapidly return. Vampire delivers the following proof,
presented in a slightly abbreviated TSTP-like format:

51 axiom flip(on) = off flip_simps_1
52 axiom flip(off) =on flip_simps_2
55 axiom - off =on state_distinct_1

57 axiom VX3 (- state(X3) =on — state(X3) = off) state_exhaust

58 axiom  state(s)=s type_of s

774 conj — flip(s) =s goal

775 neg_conj -~ flip(s) =s 774 negate

776 neg_conj flip(s) =s 775 flatten

781 plain off £ on 55 flatten

892 plain VXo (— state(Xy) = on — state(X,) = off) 57 rectify

893 plain VX, (state(X() # on — state(X,) = off) 892 flatten
1596 plain VX, (state(Xo) =on V state(X,) = off) 893 ennf_trans
2238 neg _conj flip(s) =s 776 cnf_trans
2239 plain state(s) =s 58 cnf_trans
2287 plain flip(on) = off 51 enf_trans
2288 plain flip(off) = on 52 cnf_trans
2375 plain off £ on 781 cnf_trans
2485 plain VX, (state(X,) = off v state(Xy) = on) 1596 cnf_trans
3342 plain on =s V state(s) = off 2239, 2485 superpos
3362 plain on=sVoff=s 3342,2239 fwd_demod
3402 neg conj flip(on) =on Vv off=s 2238, 3362 superpos
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3404 neg conj off =on Vv off=s 3402, 2287 fwd_demod
3405 neg_conj off =s 3404, 2375 subsum_res
3407 neg_conj flip(off) = off 3405, 2238 bwd_demod
3408 neg_conj off =on 3407, 2288 fwd_demod
3409 neg_conj L 3408, 2375 subsum_res

The formulas used from the original problem are listed first. Each line gives a formula
number, a role, and a FOL formula. Any problem formula that can be used to prove
the conjecture is an axiom for the automatic prover, irrespective of its status in Isabelle
(lemma, definition, or actual axiom). The rightmost columns indicate how the formulas was
arrived at: Either it appeared in the original problem, in which case its identifier is given
(e.g., flip_simps_1), or it was derived from one or more already proved formulas using a
Vampire-specific proof rule.

If Sledgehammer’s isar_proofs option is enabled, textual Isar proof reconstruction is

attempted. The Isabelle proof by contradiction for the ATP proof above is as follows:

775 flips=s - goal
3402 flipOn =OnV Off = s 775, state.exhaust
3404 Off =0OnV Off = s 3402, flip.simps(1)

3405 Off =s 3404, state.distinct(1)
3407 flip Off = Off 775, 3405
3409 False 3407, flip.simps(2), state.distinct(1)

Linear inference chains are drastically compressed, and the lemmas

state.distinct(1): Off # On
state.exhaust: (y =On = P) = (y = Off = P) = P
flip.simps(1): flip On = Off
flip.simps(2): flip Off = On

are referenced by name rather than repeated. The passage from FOL to HOL also eliminates
encoded type information, such as the state function and the auxiliary axiom type_of _s.
After redirection, the proof becomes

prove [| 3407: “flip Off # Off” [flip.simps(2), state.distinct(1)] [] metis

prove [] 3405: “flip s # s \V Off # s [3407] [] metis

prove [] 3404: “flip s # s V Off # s A Off # On [3405, state.distinct(1)] [] metis

prove [| 3402: “flip s # s V flip On # On A Off # s [3404, flip.simps(1)] [] metis
[

prove [show] 775: “flip s # s” [3402, state.exhaust| || metis
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Compression and cleanup simplify the proof furtherﬂ

prove [| e: “flip Off # Off” [flip.simps(2), state.distinct(1)] ]
prove [then, show] e: “flip s # s” [flip.simps(1), state.distinct(1), state.exhaust] []

From this simplified direct proof, the Isar proof is easy to produce:

proof —

have Off # flip Off by (metis flip.simps(2) state.distinct(1))

thus flip s # s by (metis flip.simps(1) state.distinct(1) state.exhaust)
ged

'We omit the other optimizations from Chapterfrom this example since applying them would result in a
trivial “by simp”-proof




4 Skolemization

The typical architecture of modern first-order provers combines a clausifier and a CNF-
based reasoning core. It is the clausifier’s duty to skolemize the problem and move the
nonskolemizable quantifiers to the front of the formulas, where they can be omitted. Sledge-
hammer historically performed clausification itself, using a naive exponential application
of distributive laws. This was changed a few years ago to use the ATPs’ native clausifiers,
which generate a polynomial number of clauses [2, §6.6.1]. Skolemization transforms a
formula into an equisatisfiable but not equivalent formula, introducing new symbols in the
process. When translating ATP proofs to Isar proofs, this extension of the signature must be
made explicit. Simply invoking metis, as done in Paulson and Susanto’s prototype, will not
work to replay skolemization inferences.

Conjecture and axioms are treated differently because of their different polarities. By
convention, the axioms are positive and the conjecture is negativeﬂ In the positive case,
skolemization eliminates the essentially existential quantifiers (i.e., the positive occurrences
of 3 and the negative occurrences of V). In the negative case, it eliminates the essentially
universal quantifiers. Negative skolemization is usually called dual skolemization or
herbrandization [9].

E and Vampire explicitly record skolemization inferences in their proof, and fortunately
they do it in the same way. On the other hand, SPASS’s proofs are expressed in terms of the
clausified problem, and Sledgehammer currently cannot reconstruct them corretly if they

rely on skolemization.

4.1 The Positive Case

We start with the easier, positive case. Consider the following concrete but archetypal

extract from an E or Vampire proof:

! This choice is justifiable from the point of view of an automatic prover that attempts to derive | from a set of
axioms and a negated conjecture, because all the premises it starts from and the formulas it derives are then
considered positive.

10
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11 axiom VX 3JY p(X,Y) exists_P
53 plain VX p(X,y(X)) 11 skolem

In Isar, a similar effect is achieved using the obtain command:
obtain y where Vz. Pz (y z) by (metis exists_P)

In the abstract Isar-like data structure that stores direct proofs, the inference is represented
as

obtain [] [y] where 53: “Vz. Px (y x)” [exists_P] ]

The approach works for arbitrary quantifier prefixes. All essentially existential variables are
eliminated simultaneously. For example, the ATP proof fragment

18 axiom VV IWVX3IYVZ q(V,W,X,Y, Z) exists_Q
90 plain VVVXVZ q(V,w(V), X,y(V,X), Z) 18 skolem

is translated to
obtain [| [w,y] where 90: “Vvzx z. Qu (wv) z (yvx) 2" [exists_Q] ]

Reconstruction crucially depends not only on metis’s clausifier but also on its support for
mildly higher-order problems, because of the implicit existential quantification over the
Skolem function symbols in obtain. Indeed, metis is powerful enough to prove a weak
form of the HOL axiom of choice:

lemma (Vo.3dy. Pz y) = 3f.Vo. Pz (fx)
by metis

Of course, nothing is derived ex nihilo: metis can only prove the formula because its
clausifier depends on the axiom of choice in the first place. Furthermore, metis will succeed
only if its clausifier puts the arguments to the Skolem functions in the same order as in the
proof text. This is not difficult to ensure in practice: Both E and metis respect the order in
which the universal variables are bound, whereas Vampire uses the opposite order, which is
easy to reverse.

Positive skolemization suffers from a technical limitation connected to polymorphism.
Lemmas containing polymorphic skolemizable variables cannot be reconstructed, because
the variables introduced by obtain must have a ground type. An easy workaround would
be to relaunch Sledgehammer with a monomorphizing type encoding [4, §3] to obtain a
more suitable ATP proof. A more challenging alternative would involve detecting which
monomorphic instances of the problematic lemmas are needed and re-engineer the proof
accordingly.

11



4 Skolemization

4.2 The Negative Case

In the ATPs, negative skolemization of the conjecture is simply reduced to positive skolem-

ization of the negated conjecture. For example:

25 conj YV IWVX Y VZ qV, W, X,Y, Z) goal
41 neg conj ~VVIWVXIYVZ q(V,W,X,Y,Z) 25 negate
43 neg conj —3IWIY q(v, W, x(W), Y, z(W,Y)) 41 skolem

However, once the proof has been turned around in Sledgehammer, the last two lines are
unnegated and exchanged: First, a proof of the (unnegated) conjecture is found for specific
fixed variables (cf. formula 43 above); then these are generalized into quantified variables (cf.
formula 41). A natural name for this process is un-herbrandization. In Isar, the £ix command

achieves a similar effect, as in the example below:

lemma Az. Rz

proof —
fixx
(core of the argument)
show Rz ...

ged

However, this works only for the outermost universal quantifiers. Since we cannot expect
users to always state their conjectures in this format, we must generally use a nested proof
block, enclosed in curly braces. Thus, the ATP proof fragment presented above is translated

to

lemma Yv. Jw.Vz. Jy. Vz. Quwxy 2
proof -
{ fixvz z
(core of the argument)
have Jwy. Quw (z w) y (2 wy) by (metis ...) }
thus Vo. Jw. V. Jy. Vz. Qv w x y z by metis
ged

Seen from outside, the nested block proves the formula Avz z. Jwy. Qv w (z w) y (z w y).
From there, metis derives the desired formula Vv. Jw. Vz. Jy. Vz. Qv w = y z, in which the
quantifiers alternate arbitrarily. In the data structure that stores direct Isar-like proofs, the

proof would be represented as

12
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prove [] 41: “Vv. Jw. Vz. Jy. Vz. Quw z y 2" ]
[fix [v,z, 2]
(core of the argument)

prove [] 43: “Jwy. Quw (zw)y (zwy)” [...] []]

An easy optimization, which is not yet implemented, would be to omit the nested proof
block for conjectures of the form Ax;...x,. ¢, where ¢ contains no essentially universal
quantifiers. It should also be possible to move the inferences that do not depend on the
herbrandized symbols outside the nested block.

4.3 Alternative Approaches

Given a HOL problem, the metis method clausifies it and translates it to FOL, invokes
the first-order prover Metis, and replays the Metis inferences using suitable HOL tactics.
Skolemization is simulated using Hilbert’s choice operator ¢ [21]]; for example, Vz. Jy. P2 y
is skolemized into Vz. P z (¢y. P z y). A newer experimental skolemizer exploits Isabelle’s
schematic variables to eliminate the dependency on Hilbert’s choice [2, §6.6.7], only requir-
ing the weak axiom of choice to move the existentials to the front. Whichever approach
is used, Sledgehammer’s textual proof construction exploits metis’s machinery (and the
reduction of HOL to FOL) instead of replicating it textually.

Other ATP-based proof methods or tactics must also cope with skolemization. Isabelle’s
smt method [5] relies on Hilbert’s choice, whereas HOL(y)Hammer’s proof reconstructor [[12]
depends only on the weak axiom of choice. Another option is to trust the ATP’s clausifier,
leaving it to the user to inspect the generated clausification axioms; this is the approach
implemented for reconstructing proofs found by MizAR [1]. Finally, a radical approach,
designed for textual proof reconstruction in Cogq, is to replace Skolem function symbols by

predicate symbols and adjust the proof accordingly, a process known as deskolemization [7].

13



5 Type Annotations

To ensure that types are inferred correctly when the generated HOL formulas are parsed
again by Isabelle, it is necessary to introduce type annotations. However, redundant
annotations should be avoided: If we insisted on annotating each subterm, the simple

equation zs = ys, where zs and ys range over lists of integers, would be rendered as
((op = :: int list — int list — bool) (xs :: int list) :: int list — bool) (ys :: int list) :: bool

The goal is not to make the Hindley—Milner inference redundant but rather to guide it.

Paulson and Susanto’s prototype generates no type annotations at all. Isabelle provides
alternative print modes (e.g., one mode annotates all bound variables at the binding site)
but none of them is complete. This may seem surprising to users familiar with other proof
assistants, but Isabelle’s extremely flexible syntax, combined with type classes, means that
some terms cannot be parsed back correctly.

We implemented a custom “print mode” for Sledgehammer, which might become an
official Isabelle mode in a future release. The underlying algorithm computes a locally
minimal set of type annotations for a formula and inserts the annotations. In Isabelle, type
annotations are represented by a polymorphic constant ann, :: 7 — 7 that can be thought of
as the identity function. The term ann ¢ is printed as ¢ :: 7. In the presentation below, the

notation ¢7 indicates that term ¢ has type 7.

5.1 The Algorithm

Given a well-typed formula ¢ to annotate, the algorithm starts by replacing all the types in
¢ by the special placeholder _ (Isabelle’s “dummy” type); this corresponds to printing the
formular without annotations. It then emulates parsing the printed term back by infering the
most general types for ¢, resulting in a formula ¢* in which the placeholders are instantiated.
Next, it computes the substitution p = {a; — 71, ..., @, — 7, } such that ¢*p = ¢, which
must exists if ¢ is well-typed and the inferred types in ¢* are the most general. Finally, the

algorithm inserts type annotations of the form :: 7 that cover all the type variables «; in p’s

14
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domain—i.e., such that each type variable «; occurs in at least one type annotation.
The last step is where the complexity arises. The algorithm assigns a cost to each candidate

site t” in ¢ where a type annotation can be inserted. The cost is given as a triple of numbers:
cost of t” = (size of 7, size of ¢, postorder index of ¢ in ¢)

Triples are compared lexicographically. The first two components encode a preference for
smaller annotations and smaller annotated terms. The third component resolves ties by
preferring annotations occurring closer to the beginning of the printed formula. All subterms
of ¢ are potential candidates to carry type annotations. Each site ¢” is also associated with
the set of type variables «; it covers.

The goal is to compute a minimal set of sites that completely covers all type variables.
Computing the globabl minimum amounts to solving the weighted set cover problem,
which is NP-hard [13]. One could probably use a SAT solver to solve the problem efficiently,
but we prefer a more direct greedy approach, which is polynomial and produces satisfactory
results in practice. It calculates a local minimum.

Starting with the set of all possible sites, the algorithm iteratively removes the most
expensive redundant site until the set is minimal in the sense that removing any site from it
would make it incomplete. This reverse greedy approach ensures that a minimal set will be
reached eventually. In contrast, the classical greedy approach could yield a too large set:
For the term h"#=7el ¢t generalized to h®~# ¢, it would first pick ¢ to cover «, only to
find out that h must be annotated as well to cover 3, making the first site redundant.

Since the names of fresh type variables are semantically irrelevant, p can be simplified in
a preprocessing step. If the substitution contains fresh type variables that only occur once as
a subtypein 71,. .., 7y, they are replaced by _; type variables «; in p’s domain that map to
_ can be removed from the subsitution. Thus, the formula length ([] :: « list) = 0 is printed
as length [] = 0 without undesirable gain of generality.

5.2 Example

Letfst :: @« x 8 — a and snd :: o x § — (3 be polymorphic constants that extract the

components of a pair. Suppose the formula ¢ to annotate is

Vey.dp. fstp=x Asndp=y
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5 Type Annotations

with z :: nat and y :: real. Inside Isabelle, the formula’s subterms carry type information
(except the bound variables):

All (nat—bool)—bool ()\.T nat Al (real—bool)—bool ()\yreul' Ex (nat xreal—bool)—bool ()\ natxreul'

p
(Op \/) bool—bool—sbool ((Op :) nat—snat—sbool (fstnutxrealanat p) I‘)
((Op :) real—sreal—bool (snd nat x real—sreal p) y) ) ) )

Replacing the types with _ yields the formula

All= (Az=. Al (Ay~. Ex™ (Ap~. (op V)~ ((op =)~ (fst™ p) z) ((op =)~ (snd™ p) y))))
from which type inference produces the formula ¢*:

A”(a—>bool)—>bool ()\xo‘. A”(ﬂ—>bool)—>bool ()\yﬁ' Ex(axﬁ—>bool)—>bool ()\pax,@'

(Op \/) bool—bool—bool (( a—a—bool ( ta></3—>a

op =) fs p) x)

((op =)77070 (snd 770 p) y))))

The substitution entailed by ¢ and ¢* is p = {« +— nat,  +— real}. There are several possible
ways to annotate the formula so as to cover both a and 3, including

Vay. dp. fst (p::nat x real) =x Asndp =1y
Vey. Ip. (fstp::nat)=x A (sndp::real) =y
Vzy. Ip. fstp = (z :: nat) A snd p = (y :: real)

The third formula is the one produced by the reverse greedy algorithm. It is arguably the
most aesthetically pleasing of the three, because both the annotated terms and the types are
atomic.

Incidentally, the annotations could have been omitted in this example because the prop-
erty holds generally for arbitrary types a and 3, but this cannot always be relied upon.
Moreover, omitting the type annotations is not completely harmless because of the poor

interaction between skolemization and polymorphism.
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6 Proof Preplay

Isar proofs generated from ATP proofs sometimes fail. We already mentioned that skolem-
ization is not supported for polymorphic variables (cf. Chapter ). The TSTP or DFG parser
occasionally goes wrong if it encounters unexpected (undocumented) syntax. The ATP
proof can also contain inferences that are ill-typed from an Isabelle point of view—despite
the use of globally sound encodings, individual inferences can violate the type discipline.
Moreover, the proof reconstruction code is not bug-free. And even in the absence of errors,
the Isar proofs can fail because metis fails to discharge a proof obligation within a reasonable
amount of time.

As the experience with Sledgehammer-generated metis one-liners has shown, it is ad-
vantageous to try out, or preplay, the proofs before presenting them to users [2, §6.6.6].
The proofs are then printed together with timing information, including warnings about
timeouts or failures. Since Sledgehammer invokes multiple ATPs in parallel, users must
often choose between several one-liners and structured Isar proofs. Based on the preplay
information, they can make an informed decision while being spared the tedium of having
to test the proofs manually.

Until recently, users had to enable Isar proof reconstruction to benefit from it. The
preplay mechanism makes a new hybrid mode possible, in which an Isar proof is generated
whenever the one-liner times out or fails. Even when the Isar proof is not entirely correct,
it is easier to repair than the corresponding monolithic one-liner—for example, by adding
some parentheses to guide the parsing or by replacing a failing or too slow metis call by a
hand-written proof.

The following example, based on an Isabelle formalization of the Robbins conjecture [28]],
demonstrates preplaying. When invoked on the goal z LI —z = —z LU ——x and configured
to use Waldmeister, Sledgehammer produces the following output:

Try this: by (metis huntington sup_assoc sup_comm) (> 3 s).

Structured proof (54 steps, 1.33 s):

proof —
have flI: Azy 2. —(—z1 U o) U —(—z1 U —x9) = 21

17



6 Proof Preplay

by (metis huntington sup_comm)

have f2: Azy zax3. 1 U (z2 U xg) = 3 U (21 U x2)
by (metis sup_assoc sup_comm)

have Azizaxs. x1 U (z2 Uxs) =z Uy U xs
by (metis sup_assoc sup_comm)

hence f3: Az z2x3. 1 U (22 U xg) = 22 U (21 U x3)
by (metis sup_assoc)

have f4: Nz zax3. 1 U (z2 Uxg) = 23 U (z2 U x1)
using f2 by (metis sup_comm)

have f5: Ay z2. 21 = —(z2 U —21) U —(—21 U —x2)
using fl by (metis sup_comm)

hence f6: Azj z2. 21 = —(z2 U —21) U —(—z2 U —21)

by (metis sup_comim)

hence s U ———z=zU(—(—zUz)U—(——2z U ——21))
using f10 by metis

hence s U ———x = U -2
using fI12 by metis

hence ——z=—(z U —2) U —(—z U ———2x)
using f6 by metis

hence ——z=—(z U —2) U —(—z U —x)
using f22 by metis

hence ——x ==«
using fb by metis

thuszUd -2z =—-2U——2
by (metis sup_comimn)

ged

Waldmeister found a proof involving the same three lemmas over and over (huntington,
sup_assoc, and sup_comm). However, metis fails to re-find the proof within 3 seconds, as
indicated by the mention “> 3 s” on the first line. (Indeed, metis stands no chance even if
given several minutes.) In contrast, the above (abridged) 54-step Isar proof was replayed
in 1.33 seconds. Users can click it to insert it in their proof text and move on to the next
conjecture.

Behind the scenes, the Isar proof preplay procedure starts by enriching the context with

all the local facts introduced in the proof (fI, f2, etc.). For each inference ® I ¢, it measures
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6 Proof Preplay

the time metis takes to deduce ¢ from ® and caches it in a data structure. The total is printed
at the end, with a >’ prefix if any of the metis calls timed out. In the rare event that a metis
call failed prematurely, Sledgehammer displays the mention “may fail” in the banner.

As we will describe in Section Sledgehammer now supports several other proof
methods besides metis. The preplay framework has been adapted to work with these
alternative methods as well. With this infrastructure in place, we are able to optimize proofs

in several ways. The next chapter will describe them.
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7 Proof Optimization

The proof preplay infrastructure established in Chapter|f] provides us with a precise mea-
sureEI based on which we can optimize proofs: the time it takes to run a proof. This allows
us to take a pragmatic approach: We can simply try out different manipulations and apply
them only if they make the proof faster.

In contrast to speed, intelligibility is in the eye of the beholder and cannot simply be
measured, so it is not our main focus. Nonetheless, we do use simple heuristics that aim at
improving intelligibility whenever a second criterion aside from speed is useful in deciding
what manipulation to apply next. Moreover, users may alter optimization parameters or
disable certain optimizations altogether to obtain proofs that better fit their preferences.

7.1 Proof Compression

Isar proofs generated by Sledgehammer can consist of dozens or hundreds of steps. It is
usually beneficial to compress them by eliminating intermediate steps. Compressed proofs
can be faster to recheck; for example, when the proof related to Robbins conjecture from
Chapter [f]is compressed from 54 to 29 steps, Isabelle also takes nearly half a second less
to process it. Moreover, many users prefer concise Isar proofs, either because they want
to avoid cluttering their theory files or because they find the shorter proofs simpler to
understand. Of course, compression can also be harmful: A metis one-liner is nothing but
an Isar proof compressed to the extreme, and it can be both very slow and very cryptic.

In the simplest case, our compression procedure considers an intermediate step and the
unique successor it is referenced by. It performs a merger if the resulting inference is fast
enough—no more than 20% slower than the original inferences taken together. This 20%
tolerance factor embodies a trade-off between processing speed and conciseness. Given the
inferences ®; - ¢; and {¢1} & @3 - 2, where ¢, is not referenced elsewhere in the proof,
the merged inference is ®; U ®5 - ¢».

'For technical reasons, timings are subject to fluctutations. For our purposes however, they are a close enough
approximation of “reality”.
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7 Proof Optimization

In the general case, the intermediate step may be referenced by n successors. It can be
eliminated by merging it into all of these successors. As n increases, however, it becomes less
likely that the elimination will speed up the proof. Moreover, a high number of references
suggests that an inference is important; removing it may spoil intelligibility. Therefore, we
introduce an upper bound for n which defaults to 2.

Subproofs are always implicitly referenced by the single inference they belong to. If they
consist of just one proof step, their elimination can be achieved in a similar manner. For

example, consider the inference
prove gs lo: g3 Do [(prove [] l1: ¢1 Py [] metis),...] metis.
Merging the one-step subproof into the inference, we obtain
prove gs lo: ¢ (P U Do) [...] metis
The compression algorithm performs the following steps:
1. Apply the algorithm recursively to all subproofs.
2. If there exist one-step subproofs, try eliminating them as described above.

3. While there are intermediate steps in the top level proof that have not been considered:

Pick such a steps and try eliminating it as described above.

We take a depth-first approach since subproofs arguably impede intelligibility more than
intermediate steps on the top level. In step 3, our implementation prefers inferences
with a low number of references (because these are less likely to be important) and with
long formulas (because these clutter the proof more). The process is guided by metis’s
performance. Users who want to understand the proof may find that too many details
have been optimized away. For them, there is a Sledgehammer option that controls the
compression factor, which bounds the number of mergers before the algorithm stops in
relation to the length of the uncompressed proof.

7.2 Beyond Metis: Alternative Proof Methods

Earlier versions of Sledgehammer have relied exclusively on metis to justify the steps of
generated Isar proofs. This choice was due to the fact that metis is complete for first-order
logic. Consequently, every inference performed by an external (first-order logic) ATP

should in principle be reconstructable by metis. In contrast, other automatic proof methods
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7 Proof Optimization

integrated into Isabelle such as simp, auto, or fastforce are incomplete, so there is always the
possibility that they may fail. However, they often succeed in practice, and in that case they
are usually much faster than metis. With the proof preplay framework (Chapter|f) in place,
we can simply try them and find out.

Our implementation is inspired by the try0 tool in Isabelle [16]. For each inference, we
run the methods simp, auto, fastforce, force, arith, and blast in parallel. As soon as one of the
methods succeeds, we replace metis with that method in our Isar-like data structure, and
interrupt the execution of all other methods. We also make sure the methods do not run
longer than metis did; in that case, metis is already the best choice.

As we will demonstrate in Chapter (8} replacing metis with whichever proof method is
fastest can lead to considerable speedups. In addition, this optimization may even fix
broken Isar proofs. If for some reason metis is unable to reconstruct an inference or takes
unacceptably long, there is a chance that one of the other methods can do better and solve
the problem. Furthermore, the optimization can usually be applied without investing much

additional time, since the involved methods succeed or fail quickly in most cases.

7.3 Fact Elimination

When trying to discharge a proof goal, metis uses nothing but logic and the facts (i.e. axioms,
definitions, and lemmas) it is given. For instance, it cannot prove lemmas like hd [z] =  or
(1 :: nat) + 1 = 2 without being supplied with adequate facts; in fact, metis knows nothing
about lists or numbers. In contrast, many of the alternative proof methods mentioned in the
previous section can prove the given lemmas without further hints. They are preconfigured
to draw upon the necessary knowledge from the library. Therefore, we can typically reduce
the set of facts used in a proof step after replacing metis with an alternative proof method.

Just as in the previous two sections, the optimization relies on the proof preplay infras-
tructure (Chapter[6). For each proof step and each fact it uses, we test if the associated
proof method is still successful after removing the fact. If preplay fails or is not successful
within the time limit defined by the previous successful preplay attempt, we consider the
fact essential and keep it; otherwise, we drop it. In the process, we may eliminate referenes
to facts established in previous proof steps. If a step is no longer referenced, we remove it.

The optimization often lead to faster, more concise proofs. Just as the previous opti-
mization, it may even fix broken proofs: If a proof step fails, there is a chance it becomes

dispensable through fact elimination and can be removed.
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8 Case Study

In this chapter, we illustrate some of the contributions of the thesis through a “real world
example” that was posted on the Isabelle mainling list by a novice [27]. Given two real
numbers from the open intervall between zero and one, we want to prove that the difference
of the sum of the numbers and the product of the numbers is greater than zero. Here is the
lemma in Isar syntax:

lemma
fixes a:: real and b :: real
assumes a0: 0 < aandal: a <1andb0: 0 < bandbl:b< 1
showsa+b—a*xb>0

When invoked without arguments, Sledgehammer produces a metis one-liner:

by (metis a0 al add_less_cancel_left b0 comm_monoid_add_class.add.right_neutral
comm_monoid_mult_class.mult.left_neutral
comm_semiring_1_class.normalizing_semiring_rules(24)
diff_add_cancel pos_add_strict real_mult_less_iff1)

Metis can master the proof obligation sucessfully, but it took 798 ms to do so on our test
system. This may be more time than users want to invest on such a simple lemma since
the proof has to be rerun every time the theory is reloaded, which may result in unpleasant
delays when working with large theories containing many lemmas. Furthermore, the metis
one-liner is no help to users who want to understand why the lemma is true.

Running Sledgehammer with the isar_proofs option, but disabling the optimizations
described in Chapter [/, we obtain a step-by-step Isar proof:

proof —
have Azgx1. (zg::real) + (1 — 22) = 21
by (metis comm_semiring_1_class.normalizing_semiring_rules(24) diff_add_cancel)
hence fI: Az g x3. (21 = real) <z —x3 V — 23+ 21 < X2
by (metis add_less_cancel_left)
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8 Case Study

have f2: Ax1 x2. (z1mreal)xxa <x2 V 2 0<x2 V m21 <1
by (metis comm_monoid_mult_class.mult.left_neutral real_mult_less_iff1)
have 0 <bAa<1
by (metis al b0)
henceaxb <b
using f2 by metis
hence0<aAaxb<b
by (metis a0)
henceaxb<a-+b
by (metis pos_add_strict)
henceaxb+0<a-+b
by (metis comm_monoid_add_class.add.right_neutral)
thusO0<a+b—axb
using fl by metis
ged

Thanks to the type annotations inserted in the first three steps (Chapter ), Isabelle parses
the formulas correctly and the proof succeeds. The intermediate steps simplify metis’s task
considerly: It is now able to verify the lemma in 74 ms. Although the proof is arguably
tedious from a human perspective, it is much more insightful than the one-line proof.

By enabling proof compression with an appropriate conpression factor (Section[7.1)), we
can reduce the amount of detail to a more natural level:

proof —
haveaxb <b
by (metis al b0 comm_monoid_mult_class.mult.left_neutral real_mult_less_iff1)
henceaxb<a+b
by (metis a0 pos_add_strict)
thusO0<a+b—axb
by (metis comm_monoid_add_class.add.right_neutral add_less_cancel_left)

comm_semiring_1_class.normalizing_semiring_rules(24) diff_add_cancel
ged

The resulting proof is very close to what a proof written by a human might look like, and
it is even faster than the last one: It can now be checked in only 25 ms. Yet we can go one
step further and try replacing metis with alternative proof methods (Section and try
eliminating unnecessary facts (Section , bringing us to the final result:
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proof —
haveaxb <b
using al b0 by simp
henceaxb<a-+b
using a0 by simp
thusO0<a+b—axb
by simp
ged

All proof steps are now justified by simp. The optimization algorithm was able to eliminate

all references to external facts, producing an even cleaner proof. Running it takes only 5 ms.
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9 Conclusion

The latest version of Sledgehammer employs a variety of techniques to improve the read-
ability and efficiency of the generated Isar proofs. Whenever one-line proof reconstruction
fails or times out, users are offered detailed, direct Isar proofs that discharge the goal,
sometimes after a small amount of manual tuning. Users who are interested in inspecting
the proofs can force their generation by passing an option. Related options control preplay
and optimization.

Sledgehammer-generated proofs cannot be expected to always turn out as nice as in
the case study in Chapter|8| For example, some proofs exhibit a spaghetti-like structure.
Users normally prefer sequential chains of reasoning. In such cases, it should be possible
to minimize the number of jumps or introduce block structure to separate independent
subproofs using appropriate algorithms. Similar work has been carried out for human-
written proofs [18,19].

While their is room for improvement regarding intelligibility, we expect the new features
to be very helpful in enhancing efficiency: Slow metis one-liners should be replaceable with

much faster step-by-step Isar proofs.
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